Published online by Cambridge University Press: 15 September 2022
A review of current constitutive formulations for Network materials is presented in this chapter. Network materials are composed from discrete elements and are not continua. Their behavior is somewhat similar to that of mechanisms. Furthermore, deformation is generally nonaffine due to the stochastic network structure. These observations render difficult the adaptation of classical constitutive equations for this class of materials. These issues are discussed in detail in the opening section. Further, the chapter is divided into four sections, each presenting models of a certain type. The first category includes phenomenological models defined based on a free energy functional and examples relevant for thermal networks (elastomers and gels) are presented. The next three categories encompass mechanism-based models, which are divided based on the degree to which the respective models account for nonaffinity in affine, quasi-affine, and nonaffine models. An outline of the challenges and opportunities related to the development of mechanism-based constitutive models for Network materials is presented in closure.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.