Published online by Cambridge University Press: 15 September 2022
Affine models have been used traditionally to describe the deformation of networks. Due to their prevalence, this chapter is dedicated to the review of such formulations. The chapter begins with a brief review of finite kinematics of continua and the definition of stress measures. Further, the affine deformation is defined and several parameters used to quantify the degree of nonaffinity are introduced. An expression is derived to quantify the evolution of preferential fiber orientation during affine deformation. Several constitutive models based on the affine deformation assumption are discussed: The affine models for molecular networks of flexible and semi-flexible filaments, and the affine model for athermal networks. The stress–optical law is reviewed, and its relation to the affine deformation models is discussed.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.