Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T01:10:52.286Z Has data issue: false hasContentIssue false

15 - Graphical Networks

from Part III - Multihop Networks

Published online by Cambridge University Press:  05 June 2012

Abbas El Gamal
Affiliation:
Stanford University
Young-Han Kim
Affiliation:
University of California, San Diego
Get access

Summary

So far we have studied single-hop networks in which each node is either a sender or a receiver. In this chapter, we begin the discussion of multihop networks, where some nodes can act as both senders and receivers and hence communication can be performed over multiple rounds. We consider the limits on communication of independent messages over networks modeled by a weighted directed acyclic graph. This network model represents, for example, a wired network or a wireless mesh network operated in time or frequency division, where the nodes may be servers, handsets, sensors, base stations, or routers. The edges in the graph represent point-to-point communication links that use channel coding to achieve close to error-free communication at rates below their respective capacities. We assume that each node wishes to communicate a message to other nodes over this graphical network. The nodes can also act as relays to help other nodes communicate their messages. What is the capacity region of this network?

Although communication over such a graphical network is not hampered by noise or interference, the conditions on optimal information flow are not known in general. The difficulty arises in determining the optimal relaying strategies when several messages are to be sent to different destination nodes.

We first consider the graphical multicast network, where a source node wishes to communicate a message to a set of destination nodes. We establish the cutset upper bound on the capacity and show that it is achievable error-free via routing when there is only one destination, leading to the celebrated max-flow min-cut theorem. When there are multiple destinations, routing alone cannot achieve the capacity, however. We show that the cutset bound is still achievable, but using more sophisticated coding at the relays. The proof of this result involves linear network coding in which the relays perform simple linear operations over a finite field.

We then consider graphical networks with multiple independent messages. We show that the cutset bound is tight when the messages are to be sent to the same set of destination nodes (multimessage multicast), and is achieved again error-free using linear network coding. When each message is to be sent to a different set of destination nodes, however, neither the cutset bound nor linear network coding is optimal in general.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×