Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgments
- List of abbreviations
- 1 Fetal nutrition
- 2 Determinants of intrauterine growth
- 3 Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia
- 4 Postnatal growth in preterm infants
- 5 Thermal regulation and effects on nutrient substrate metabolism
- 6 Development and physiology of the gastrointestinal tract
- 7 Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods
- 8 Nutrient regulation in brain development: glucose and alternate fuels
- 9 Water and electrolyte balance in newborn infants
- 10 Amino acid metabolism and protein accretion
- 11 Carbohydrate metabolism and glycogen accretion
- 12 Energy requirements and protein-energy metabolism and balance in preterm and term infants
- 13 The role of essential fatty acids in development
- 14 Vitamins
- 15 Normal bone and mineral physiology and metabolism
- 16 Disorders of mineral, vitamin D and bone homeostasis
- 17 Trace minerals
- 18 Iron
- 19 Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides
- 20 Intravenous feeding
- 21 Enteral amino acid and protein digestion, absorption, and metabolism
- 22 Enteral carbohydrate assimilation
- 23 Enteral lipid digestion and absorption
- 24 Minimal enteral nutrition
- 25 Milk secretion and composition
- 26 Rationale for breastfeeding
- 27 Fortified human milk for premature infants
- 28 Formulas for preterm and term infants
- 29 Differences between metabolism and feeding of preterm and term infants
- 30 Gastrointestinal reflux
- 31 Hypo- and hyperglycemia and other carbohydrate metabolism disorders
- 32 The infant of the diabetic mother
- 33 Neonatal necrotizing enterocolitis: clinical observations and pathophysiology
- 34 Neonatal short bowel syndrome
- 35 Acute respiratory failure
- 36 Nutrition for premature infants with bronchopulmonary dysplasia
- 37 Nutrition in infants with congenital heart disease
- 38 Nutrition therapies for inborn errors of metabolism
- 39 Nutrition in the neonatal surgical patient
- 40 Nutritional assessment of the neonate
- 41 Methods of measuring body composition
- 42 Methods of measuring energy balance: calorimetry and doubly labelled water
- 43 Methods of measuring nutrient substrate utilization using stable isotopes
- 44 Postnatal nutritional influences on subsequent health
- 45 Growth outcomes of preterm and very low birth weight infants
- 46 Post-hospital nutrition of the preterm infant
- Index
- References
18 - Iron
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgments
- List of abbreviations
- 1 Fetal nutrition
- 2 Determinants of intrauterine growth
- 3 Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia
- 4 Postnatal growth in preterm infants
- 5 Thermal regulation and effects on nutrient substrate metabolism
- 6 Development and physiology of the gastrointestinal tract
- 7 Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods
- 8 Nutrient regulation in brain development: glucose and alternate fuels
- 9 Water and electrolyte balance in newborn infants
- 10 Amino acid metabolism and protein accretion
- 11 Carbohydrate metabolism and glycogen accretion
- 12 Energy requirements and protein-energy metabolism and balance in preterm and term infants
- 13 The role of essential fatty acids in development
- 14 Vitamins
- 15 Normal bone and mineral physiology and metabolism
- 16 Disorders of mineral, vitamin D and bone homeostasis
- 17 Trace minerals
- 18 Iron
- 19 Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides
- 20 Intravenous feeding
- 21 Enteral amino acid and protein digestion, absorption, and metabolism
- 22 Enteral carbohydrate assimilation
- 23 Enteral lipid digestion and absorption
- 24 Minimal enteral nutrition
- 25 Milk secretion and composition
- 26 Rationale for breastfeeding
- 27 Fortified human milk for premature infants
- 28 Formulas for preterm and term infants
- 29 Differences between metabolism and feeding of preterm and term infants
- 30 Gastrointestinal reflux
- 31 Hypo- and hyperglycemia and other carbohydrate metabolism disorders
- 32 The infant of the diabetic mother
- 33 Neonatal necrotizing enterocolitis: clinical observations and pathophysiology
- 34 Neonatal short bowel syndrome
- 35 Acute respiratory failure
- 36 Nutrition for premature infants with bronchopulmonary dysplasia
- 37 Nutrition in infants with congenital heart disease
- 38 Nutrition therapies for inborn errors of metabolism
- 39 Nutrition in the neonatal surgical patient
- 40 Nutritional assessment of the neonate
- 41 Methods of measuring body composition
- 42 Methods of measuring energy balance: calorimetry and doubly labelled water
- 43 Methods of measuring nutrient substrate utilization using stable isotopes
- 44 Postnatal nutritional influences on subsequent health
- 45 Growth outcomes of preterm and very low birth weight infants
- 46 Post-hospital nutrition of the preterm infant
- Index
- References
Summary
Overview
Iron is a ubiquitous element required by virtually all cells for normal growth and metabolism. Rapidly growing and differentiating cells have particularly high iron requirements. Since preterm and term human infants have high growth rates (on a per-weight basis), it is not surprising that these infants also have high iron needs. Term infants typically acquire adequate iron stores during the last trimester of gestation, but preterm infants are relatively compromised in this respect. This fact, combined with their higher postnatal growth rates in the first year, renders preterm infants at higher risk than their term counterparts for iron deficiency and iron-deficiency anemia. This increased risk could theoretically be avoided by administering large doses of iron to the preterm infant, were it not for the concern of iron toxicity; iron plays an important catalytic role in the Fenton reaction, which creates radical oxygen species that peroxidate the lipids in cell membranes. The concern is relevant particularly in the premature infant whose plasma total iron-binding capacity (TIBC) is low and whose antioxidant defense system is immature. Thus, iron can be considered a highly necessary element with a narrow therapeutic window where both deficiency and overload contribute to significant morbidity.
Iron balance in the fetus and neonate
Iron is classically seen as an integral part of the hemoglobin molecule, and iron deficiency is thus frequently assumed to be synonymous with anemia.
- Type
- Chapter
- Information
- Neonatal Nutrition and Metabolism , pp. 291 - 298Publisher: Cambridge University PressPrint publication year: 2006
References
- 1
- Cited by