Skip to main content Accessibility help
×
Hostname: page-component-5f745c7db-sbzbt Total loading time: 0 Render date: 2025-01-06T23:00:41.142Z Has data issue: true hasContentIssue false

11 - Carbohydrate metabolism and glycogen accretion

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Rebecca A. Simmons
Affiliation:
Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Metabolism of glucose in the fetus

Glucose is a vital substrate for the growing and developing fetus. It is required by most cells for oxidative and nonoxidative ATP production and serves as a precursor for other carbon-containing compounds. It is the primary fuel used for several specialized cells and is the major fuel used by the brain. Its storage in the liver as glycogen provides a means by which glucose homeostasis can be maintained, particularly during the neonatal period. The fetal requirement for glucose is met almost, if not entirely, by transplacental transport from the mother to the fetus. At birth, there is an abrupt loss of the maternal supply of substrates and nutrients and the newborn has to mobilize glucose and other substrates to meet its energy needs.

A number of studies in a variety of species, including humans, have shown that fetal plasma glucose concentrations are significantly lower than that of the mother. Furthermore, there is a direct relationship between maternal and fetal plasma glucose concentrations and the supply of glucose to the fetus is highly dependent upon maternal glycemia. Thus, the supply of glucose to the fetus is likely to be diminished in the case of maternal hypoglycemia and to be increased in the case of maternal hyperglycemia. However, the placenta has a large capacity for glucose storage in the form of glycogen which blunts glucose transfer to the fetus when significant maternal hyperglycemia occurs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hay, W. W. Jr, Sparks, J. W., Quissell, B. J., Battaglia, F. C., Meschia, G.Simultaneous measurements of umbilical uptake, fetal utilization rate, and fetal turnover rate of glucose. Am. J. Physiol. 1981;240:E662–8.Google ScholarPubMed
Hay, W. W. Jr, Myers, S. A., Sparks, J. W.et al.Glucose and lactate oxidation rates in the fetal lamb. Proc. Soc. Exp. Biol. Med. 1983;173:553–63.CrossRefGoogle ScholarPubMed
Aynsley-Green, A., Soltesz, G., Jenkins, P. A., Mackenzie, I. Z.The metabolic and endocrine milieu of the human fetus at 18–21 weeks of gestation. II. Blood glucose, lactate, pyruvate and ketone body concentrations. Biol. Neonate 1985;47:19–25.CrossRefGoogle Scholar
Bozzetti, P., Ferrari, M. M., Marconi, A. M.et al.The relationship of maternal and fetal glucose concentrations in the human from midgestation until term. Metabolism 1988;37:358–63.CrossRefGoogle ScholarPubMed
James, E. J., Raye, J. R., Gresham, E. L.et al.Fetal oxygen consumption, carbon dioxide production, and glucose uptake in a chronic sheep preparation. Pediatrics 1972;50:361–71.Google Scholar
Goodner, C. J., Conway, M. J., Werrbach, J. H.Relation between plasma glucose levels of mother and fetus during maternal hyperglycemia, hypoglycemia, and fasting in the rat. Pediatr. Res. 1969;3:121–7.CrossRefGoogle ScholarPubMed
Bossi, E., Greenberg, R. E.Sources of blood glucose in the rat fetus. Pediatr. Res. 1972;6:765–72.CrossRefGoogle ScholarPubMed
Kalhan, S. C., D'Angelo, L. J., Savin, S. M., Adam, P. A.Glucose production in pregnant women at term gestation. Sources of glucose for the human fetus. J. Clin. Invest. 1979;63:388–94.CrossRefGoogle ScholarPubMed
Anand, R. S., Ganguli, S., Sperling, M. A.Effect of insulin induced maternal hypoglycemia on glucose turnover in maternal and fetal sheep. Am. J. Physiol. 1980;238:E524–32.Google ScholarPubMed
Hay, W. W. Jr, Sparks, J. W., Wilkening, R. B., Battaglia, F. C., Meschia, G.Fetal glucose uptake and utilization as functions of maternal glucose concentration. Am. J. Physiol. 1984;246:E237–42.Google ScholarPubMed
Battaglia, F. C., Meschia, G.Foetal and placental metabolisms: their interrelationship and impact upon maternal metabolism. Proc. Nutr. Soc. 1981;40:99–113.CrossRefGoogle ScholarPubMed
Hauguel, S., Desmaizieres, V., Challier, J. C.Glucose uptake, utilization, and transfer by the human placenta as functions of maternal glucose concentration. Pediatr. Res. 1986;20:269–73.CrossRefGoogle ScholarPubMed
Boyle, D. W., Lecklitner, S., Liechty, E. A.Effect of prolonged uterine blood flow reduction on fetal growth in sheep. Am. J. Physiol. 1996;270:R246–53.Google Scholar
Gardner, D. S., Giussani, D. A.Enhanced umbilical blood flow during acute hypoxemia after chronic umbilical cord compression: a role for nitric oxide. Circulation 2003;Epub: Jun 30.CrossRefGoogle ScholarPubMed
Lueder, F. L., Ogata, E. S.Uterine artery ligation in the maternal rat alters fetal tissue glucose utilization. Pediatr. Res. 1990;28:464–8.CrossRefGoogle ScholarPubMed
Takata, K.Localization of erythrocyte/HepG2-type glucose transporter (glucose transporters-1) in human placental villi. Cell Tissue Res. 1992;267:407–12.CrossRefGoogle Scholar
Jansson, T., Wennergren, M., Illsley, N. P.Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J. Clin. Endocrinol. Metab. 1993;77:1554–62.Google ScholarPubMed
Jansson, T., Ekstrand, Y., Wennergren, M., Powell, T. L.Placental glucose transport in gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2001;184:111–16.CrossRefGoogle ScholarPubMed
Arnott, G., Coghill, G., McArdle, H. J., Hundal, H. S.Immunolocalization of glucose transporters1 and glucose transporters3 glucose transporters in human placenta. Biochem. Soc. Trans. 1994;22:272S.CrossRefGoogle Scholar
Illsley, N. P.Glucose transporters in the human placenta. Placenta 2000;21:14–22.CrossRefGoogle ScholarPubMed
Teasdale, F., Jean-Jacques, G.Intrauterine growth retardation: morphometry of the microvillous membrane of the human placenta. Placenta 1988;9:47–55.CrossRefGoogle ScholarPubMed
Schneider, H., Reiber, W., Sager, R., Malek, A.Asymmetrical transport of glucose across the in vitro perfused human placenta. Placenta 2003;24:27–33.CrossRefGoogle ScholarPubMed
Molina, R. D., Meschia, G., Battaglia, F. C., Hay, W. W. Jr.Gestational maturation of placental glucose transfer capacity in sheep. Am. J. Physiol. 1991;261:R697–704.Google Scholar
Takata, K., Hirano, H.Mechanism of glucose transfer across the human and rat placental barrier: a review. Micros. Res. Tech. 1997;38:145–52.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Leach, L., Firth, J. A.Advances in understanding permeability in fetal capillaries of the human placenta: a review of organization of the endothelial paracellular clefts and their junctional complexes. Reprod. Fert. Dev. 1995;7:1451–6.CrossRefGoogle ScholarPubMed
Eaton, B. M., Leach, L., Firth, J. A.Permeability of the fetal villous microvasculature in the isolated perfused term human placenta. J. Physiol. 1993;463: 141–55.CrossRefGoogle ScholarPubMed
Leach, L., Firth, J. A.Structure and permeability of human placental microvasculature. Micros. Res. Tech. 1997;38:137–44.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Burton, G. J., Palmer, M. E., Dalton, K. J.Morphometric differences between the placental vasculature of non-smokers, smokers and ex-smokers. Br. J. Obstet. Gynaecol. 1989;96:907–15.CrossRefGoogle ScholarPubMed
Mayhew, T. M., Jackson, M. R., Haas, J. D.Microscopical morphology of the human placenta and its effects on oxygen diffusion: a morphometric model. Placenta 1986;7:121–31.CrossRefGoogle ScholarPubMed
Mayhew, T. M., Sorensen, F. B., Klebe, J. G., Jackson, M. R.Growth and maturation of villi in placentae from well-controlled diabetic women. Placenta 1994;15:57–65.CrossRefGoogle ScholarPubMed
Teasdale, F.Histomorphometry of the human placenta in maternal preeclampsia. Am. J. Obstet. Gynecol. 1985;152:25–31.CrossRefGoogle ScholarPubMed
Teasdale, F.Histomorphometry of the human placenta in pre-eclampsia associated with severe intrauterine growth retardation. Placenta 1987;8:119–28.CrossRefGoogle ScholarPubMed
Anand, R. S., Sperling, M. A., Ganguli, S., Nathanielsz, P. W.Bidirectional placental transfer of glucose and its turnover in fetal and maternal sheep. Pediatr. Res. 1979;13:783–87.CrossRefGoogle ScholarPubMed
Hay, W. W. Jr.Regulation of placental metabolism by glucose supply. Reprod. Fertil. Dev. 1995;7:365–75.CrossRefGoogle ScholarPubMed
Owens, J. A., Falconer, J., Robinson, J. S.Glucose metabolism in pregnant sheep when placental growth is restricted. Am. J. Physiol. 1989;257:R350–7.Google ScholarPubMed
Fowden, A. L., Mundy, L., Silver, M.Developmental regulation of glucogenesis in the sheep fetus during late gestation. J. Physiol. 1998;508:937–47.CrossRefGoogle ScholarPubMed
Kalhan, S. C., D'Angelo, L. J., Savin, S. M., Adam, P. A.Glucose production in pregnant women at term gestation. Sources of glucose for human fetus. J. Clin. Invest. 1979;63:388–94.CrossRefGoogle ScholarPubMed
Mersmann, H. J.Glycolytic and gluconeogenic enzyme levels in pre- and postnatal pigs. Am. J. Physiol. 1971;220:1297–302.Google ScholarPubMed
Jones, C. T., Ashton, I. K.The appearance, properties, and functions of gluconeogenic enzymes in the liver and kidney of the guinea pig during fetal and early neonatal development. Arch. Biochem. Biophys. 1976;174:506–22.CrossRefGoogle ScholarPubMed
Fowden, A. L., Mijovic, J., Ousey, J. C., McGladdery, A., Silver, M.The development of gluconeogenic enzymes in the liver and kidney of fetal and newborn foals. J. Dev. Physiol. 1992;18:137–42.Google ScholarPubMed
Fowden, A. L., Mijovic, J., Silver, M.The effects of cortisol on hepatic and renal gluconeogenic enzyme activities in the sheep fetus during late gestation. J. Endocrinol. 1993;137:213–22.CrossRefGoogle ScholarPubMed
Capkova, A., Jirasek, J. E.Glycogen reserves in organs of human fetuses in the first half of pregnancy. Biol. Neonat. 1968;13:129–42.CrossRefGoogle ScholarPubMed
Devi, B. G., Habeebullah, C. M., Gupta, P. D.Glycogen metabolism during human liver development. Biochem. Int. 1992;28:229–37.Google ScholarPubMed
Shelley, H. J.Blood sugars and tissue carbohydrate in fetal and infant lambs and rhesus monkeys. J. Physiol. 1960;153:527.CrossRefGoogle Scholar
Shelley, H. J.Glycogen reserves and their changes at birth and in anoxia. Br. Med. Bull. 1961;17:137.CrossRefGoogle Scholar
Whelan, W. J.The initiation of glycogen synthesis. Bioessays 1986;5:136–40.CrossRefGoogle ScholarPubMed
Lomako, J., Lomako, W. M., Whelan, W. J.Proglycogen: a low-molecular-weight form of muscle glycogen. FEBS Lett. 1991;279:223–8.CrossRefGoogle ScholarPubMed
Hahn, D., Blaschitz, A., Korgun, E. T.et al.From maternal glucose to fetal glycogen: expression of key regulators in the human placenta. Mole. Hum. Reprod. 2001;12:1173–8.CrossRefGoogle Scholar
Katz, J., McGarry, J. D.The glucose paradox. Is glucose a substrate for liver metabolism?J. Clin. Invest. 1984;74:1901–9.CrossRefGoogle ScholarPubMed
Magnusson, I., Chandramouli, V., Schumann, W. C.et al.Quantitation of the pathways of hepatic glycogen formation on ingesting a glucose load. J. Clin. Invest. 1987;80:1748–54.CrossRefGoogle ScholarPubMed
Bourbon, J., Gilbert, M.Role of fetal insulin in glycogen metabolism in the liver of the rat fetus. Biol. Neonate 1981;40:38–45.CrossRefGoogle ScholarPubMed
Plas, C., Forest, N., Pringault, E., Menuelle, P.Contribution of glucose and gluconeogenic substrates to insulin-stimulated glycogen synthesis in cultured fetal hepatocytes. J. Cell Physiol. 1982;113:475–80.CrossRefGoogle ScholarPubMed
Bismut, H., Plas, C.Role of serine biosynthesis and its utilization in the alternative pathway from glucose to glycogen during the response to insulin in cultured foetal-rat hepatocytes. Biochem. J. 1991;276:577–82.CrossRefGoogle ScholarPubMed
Zheng, Q., Levitsky, L. L., Fan, J., Ciletti, N., Mink, K.Glycogenesis in the cultured fetal and adult rat hepatocyte is differently regulated by medium glucose. Pediatr. Res. 1992;32:714–18.CrossRefGoogle ScholarPubMed
Cetin, I., Fennessey, P. V., Sparks, J. W., Meschia, G., Battaglia, F. C.Fetal serine fluxes across fetal liver, hindlimb, and placenta in late gestation. Am. J. Physiol. 1992;263:E786–93.Google ScholarPubMed
Levitsky, L. L., Paton, J. B., Fisher, D. E.Precursors to glycogen in ovine fetuses. Am. J. Physiol. 1988;255:E743–7.Google ScholarPubMed
Plas, C., Nunez, J.Role of cortisol on the glycogenolytic effect of glucagon and on the glycogenic response to insulin in fetal hepatocyte culture. J. Biol. Chem. 1976;251:1431–7.Google ScholarPubMed
Gruppuso, P. A., Brautigan, D. L.Induction of hepatic glycogenesis in the fetal rat. Am. J. Physiol. 1989;256:E49–54.Google ScholarPubMed
Girard, J. R., Ferre, P., Gilbert, M.et al.Fetal metabolic response to maternal fasting in the rat. Am. J. Physiol. 1977;232:E456–63.Google ScholarPubMed
Freemark, M.Epidermal growth factor stimulates glycogen synthesis in fetal rat hepatocytes: comparison with the glycogenic effects of insulin-like growth factor I and insulin. Endocrinology 1986;119:522–6.CrossRefGoogle ScholarPubMed
Plas, C., Duval, D.Dexamethasone binding sites and steroid-dependent stimulation of glycogenesis by insulin in cultured fetal hepatocytes. Endocrinology 1986;118:587–94.CrossRefGoogle ScholarPubMed
Menuelle, P., Binoux, M., Plas, C.Regulation by insulin-like growth factor (IGF) binding proteins of IGF-II-stimulated glycogenesis in cultured fetal rat hepatocytes. Endocrinology 1995;136:5305–10.CrossRefGoogle ScholarPubMed
Lopez, M. F., Dikkes, P., Zurakowski, D., Villa-Komaroff, L., Majzoub, J. A.Regulation of hepatic glycogen in the insulin-like growth factor II-deficient mouse. Endocrinology 1999;140:1442–8.CrossRefGoogle ScholarPubMed
Rannels, S. R., Liu, L., Weaver, T. E.Expression of glycogen phosphorylase isozymes in developing rat lung. Am. J. Physiol. 1997;273:L389–94.Google ScholarPubMed
Maniscalco, W. M., Wilson, C. M., Gross, I.et al.Development of glycogen and phospholipid metabolism in fetal and newborn rat lung. Biochim. Biophys. Acta 1978;530:333–46.CrossRefGoogle ScholarPubMed
Srinivasan, G., Pildes, R. S., Cattamanchi, G., Voora, S., Lilien, L. D.Plasma glucose values in normal neonates: a new look. J. Pediatr. 1986;109:114–17.CrossRefGoogle ScholarPubMed
Shelley, H. J., Neligan, G. A.Neonatal hypoglycaemia. Br. Med. Bull. 1966;22:34–9.CrossRefGoogle ScholarPubMed
Shelley, H. J.Carbohydrate metabolism in the foetus and the newly born. Proc. Nutr. Soc. 1969;28:42–9.CrossRefGoogle ScholarPubMed
Margolis, R. N., Tanner, K.Glycogen metabolism in neonatal liver of the rat. Arch. Biochem. Biophys. 1986;249:605–10.CrossRefGoogle ScholarPubMed
Gain, K. R., Malthus, R., Watts, C.Glucose homeostasis during the perinatal period in normal rats and rats with a glycogen storage disorder. J. Clin. Invest. 1981;67:1569–73.CrossRefGoogle ScholarPubMed
Biondi, R., Viola-Magni, M. P.Regulatory mechanisms of hepatic phosphorylase in fetal and neonatal livers of rats. Am. J. Physiol. 1977;232:E370–4.Google ScholarPubMed
Kawai, Y., Arinze, I. J.Activation of glycogenolysis in neonatal liver. J. Biol. Chem. 1981;256:853–8.Google ScholarPubMed
Margolis, R. N.Hepatic glycogen synthase phosphatase and phosphorylase phosphatase activities are increased in obese (fa/fa) hyperinsulinemic Zucker rats: effects of glyburide administration. Life Sci. 1987;41:2615–22.CrossRefGoogle ScholarPubMed
Girard, J. R., Caquet, D., Bal, D., Guillet, I.Control of rat liver phosphorylase, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities by insulin and glucagon during the perinatal period. Enzyme 1973;15:272–85.Google ScholarPubMed
Plas, C., Nunez, J.Glycogenolytic response to glucagon of cultured fetal hepatocytes. Refractoriness following prior exposure to glucagon. J. Biol. Chem. 1975;250:5304–11.Google Scholar
Ktorza, A., Bihoreau, M. T., Nurjhan, N., Picon, L., Girard, J.Insulin and glucagon during the perinatal period: secretion and metabolic effects on the liver. Biol. Neonate 1985;48:204–20.CrossRefGoogle ScholarPubMed
Padbury, J. F., Diakomanolis, E. S., Hobel, C. J., Perelman, A., Fisher, D. A.Neonatal adaptation: sympatho-adrenal response to umbilical cord cutting. Pediatr. Res. 1981;15:1483–87.CrossRefGoogle ScholarPubMed
Padbury, J. F., Polk, D. H., Newnham, J. P., Lam, R. W.Neonatal adaptation: greater sympathoadrenal response in preterm than full-term fetal sheep at birth. Am. J. Physiol. 1985;248:E443–9.Google ScholarPubMed
Padbury, J. F., Ludlow, J. K., Ervin, M. G., Jacobs, H. C., Humme, J. A.Thresholds for physiological effects of plasma catecholamines in fetal sheep. Am. J. Physiol. 1987;252:E530–7.Google ScholarPubMed
Shimizu, T.Regulation of glycogen metabolism in the liver by autonomic nervous system. Activation of glycogen synthetase by vagal stimulation. Biochim. Biophys. Acta 1971;252:28–38.CrossRefGoogle Scholar
Shimizu, T., Fukuda, A.Increased activities of glycogenolytic enzymes in liver after splanchnic-nerve stimulation. Science 1965;150:1607–8.CrossRefGoogle Scholar
Cardin, S., Walmsley, K., Neal, D. W., Williams, P. E., Cherrington, A. D.Involvement of the vagus nerves in the regulation of basal hepatic glucose production in conscious dogs. Am. J. Physiol. Endocrinol. Metab. 2002;283:E958–64.CrossRefGoogle ScholarPubMed
Stevenson, R. E., Morriss, F. H. Jr, Adcock, E. W. 3rd, Howell, R. R.Development of gluconeogenic enzymes in fetal sheep liver and kidney. Dev. Biol. 1976;52:167–72.CrossRefGoogle ScholarPubMed
Marsac, C., Augereau, C., Boue, J., Vidailhet, M.Antenatal diagnosis of pyruvate-carboxylase deficiency. Lancet 1981;1:675.CrossRefGoogle ScholarPubMed
Greengard, O.Enzymic differentiation of human liver: comparison with the rat model. Pediatr. Res. 1977;11:669–76.CrossRefGoogle ScholarPubMed
Jitrapakdee, S., Booker, G. W., Cassady, A. I., Wallace, J. C.The rat pyruvate carboxylase gene structure. Alternate promoters generate multiple transcripts with the 5′-end heterogeneity. J. Biol. Chem. 1997;272:20522–30.CrossRefGoogle ScholarPubMed
Jitrapakdee, S., Gong, Q., MacDonald, M. J., Wallace, J. C.Regulation of rat pyruvate carboxylase gene expression by alternate promoters during development, in genetically obese rats and in insulin-secreting cells. Multiple transcripts with 5′-end heterogeneity modulate translation. J. Biol. Chem. 1998;273:34422–8.CrossRefGoogle Scholar
Rolph, T. P., Jones, C. T.Delayed development of gluconeogenic capacity and the appearance of hypoglycaemia in the newborn guinea-pig after intra-uterine growth restriction. J. Dev. Physiol. 1982;4:1–21.Google ScholarPubMed
Chang, L. O.The development of pyruvate carboxylase in rat liver mitochondria. Pediatr. Res. 1977;11:6–8.CrossRefGoogle ScholarPubMed
Lynch, C. J., McCall, K. M., Billingsley, M. L.et al.Pyruvate carboxylase in genetic obesity. Am. J. Physiol. 1992;262:E608–18.Google ScholarPubMed
Hanson, R. W., Reshef, L., Ballard, J.Hormonal regulation of hepatic P-enolpyruvate carboxykinase (GTP) during development. Fed. Proc. 1975;34:166–71.Google ScholarPubMed
Mencher, D., Shouval, D., Reshef, L.Premature appearance of hepatic phosphoenolpyruvate carboxykinase in fetal rats, not mediated by adenosine 3′:5′-monophosphate. Eur. J. Biochem. 1979;102:489–95.CrossRefGoogle Scholar
Mencher, D., Cohen, H., Benvenisty, N., Meyuhas, O., Reshef, L.Primary activation of cytosolic phosphoenolpyruvate carboxykinase gene in fetal rat liver and the biogenesis of its mRNA. Eur. J. Biochem. 1984;141:199–203.CrossRefGoogle ScholarPubMed
Benvenisty, N., Reshef, L.Developmental acquisition of DNase I sensitivity of the phosphoenolpyruvate carboxykinase (GTP) gene in rat liver. Proc. Natl. Acad. Sci. USA 1987;84:1132–6.CrossRefGoogle ScholarPubMed
Birkenmeier, E. H., Gwinn, B., Howard, S.et al.Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Genes Dev. 1989;3;1146–56.CrossRefGoogle ScholarPubMed
Descombes, P., Schibler, U.A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 1991;67:569–79.CrossRefGoogle Scholar
Croniger, C., Trus, M., Lysek-Stupp, C.et al.Role of the isoforms of CCAAT/enhancer-binding protein in the initiation of phosphoenolpyruvate carboxykinase (GTP) gene transcription at birth. J. Biol. Chem. 1997;272:26306–12.CrossRefGoogle ScholarPubMed
Friedman, A. D., Landschultz, W. H., McKnight, S. L.CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells. Genes Dev. 1989;3:767–76.CrossRefGoogle ScholarPubMed
Yanuka-Kashles, O., Cohen, H., Trus, M.et al.Transcriptional regulation of the phosphoenolpyruvate carboxykinase gene by cooperation between hepatic nuclear factors. Mol. Cell Biol. 1994;14:7124–33.CrossRefGoogle ScholarPubMed
Cassuto, H., Aran, A., Cohen, H., Eisenberger, C. L., Reshef, L.Repression and activation of transcription of phosphoenolpyruvate carboxykinase gene during liver development. FEBS Lett. 1999;457:441–4.CrossRefGoogle ScholarPubMed
Nordlie, R. C., Stepanik, P. A., Traxinger, R. R.Comparative reactivity of carbamyl phosphate and glucose 6-phosphate with the glucose-6-phosphatase of intact microsomes. Biochim. Biophys. Acta 1986;881:300–4.CrossRefGoogle ScholarPubMed
Nilsson, O. S., Arion, W. J., Depierre, J. W., Dallner, G., Ernster, L.Evidence for the involvement of a glucose-6-phosphate carrier in microsomal glucose-6-phosphatase activity. Eur. J. Biochem. 1978;82:627–34.CrossRefGoogle ScholarPubMed
Pan, C. J., Lei, K. J., Annabi, B., Hemrika, W., Chou, J. Y.Transmembrane topology of glucose-6-phosphatase. J. Biol. Chem. 1998;273:6144–8.CrossRefGoogle ScholarPubMed
Puskas, F., Marcolongo, P., Watkins, S. L.et al.Conformational change of the catalytic subunit of glucose-6-phosphatase in rat liver during the fetal-to-neonatal transition. J. Biol. Chem. 1999;274:117–22.CrossRefGoogle ScholarPubMed
Burchell, A., Gibb, L., Waddell, I. D., Giles, M., Hume, R.The ontogeny of human hepatic microsomal glucose-6-phosphatase proteins. Clin. Chem. 1990;36:1633–7.Google ScholarPubMed
Girard, J., Pegorier, J. P.An overview of early post-partum nutrition and metabolism. Biochem. Soc. Trans. 1998;26:69–74.CrossRefGoogle ScholarPubMed
Chatelain, F., Pegorier, J. P., Minassian, C.Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes 1998;47:882–9.CrossRefGoogle ScholarPubMed
Greengard, O.Enzymic differentiation in mammalian liver injection of fetal rats with hormones causes the premature formation of liver enzymes. Science 1969;163:891–5.CrossRefGoogle ScholarPubMed
Forhead, A. J., Poore, K. R., Mapstone, J., Fowden, A. L.Developmental regulation of hepatic and renal gluconeogenic enzymes by thyroid hormones in fetal sheep during late gestation. J. Physiol. 2003;548:941–7.CrossRefGoogle ScholarPubMed
Kalhan, S., Parimi, P.Gluconeogenesis in the fetus and newborn. Semin. Perinatol. 2000;24:94–106.CrossRefGoogle Scholar
Sparks, J. W.Augmentation of the glucose supply in the fetus and newborn. Semin. Perinatol. 1979;3:141–55.Google Scholar
Hay, W. J.Fetal and neonatal glucose homeostasis and their relation to the small for gestational age infant. Semin. Perinatol. 1984;8:101–16.Google ScholarPubMed
Cohn, R. M., Segal, S.Galactose metabolism and its regulation. Metabolism 1973;22:627–42.CrossRefGoogle ScholarPubMed
Wright, E. M., Turk, E., Martin, M. G.Molecular basis for glucose-galactose malabsorption. Cell Biochem. Biophys. 2002;36:115–21.CrossRefGoogle ScholarPubMed
Kliegman, R. M., Sparks, J. W.Perinatal galactose metabolism. J. Pediatr. 1985;107:831–41.CrossRefGoogle ScholarPubMed
Battaglia, F. C., Sparks, J. W. Perinatal nutrition and metabolism. In Boyd, R. D. H., Battaglia, F. C., eds. Pediatrics 2: Perinatal Medicine. London: Butterworths; 1983:145–71.Google Scholar
Mulligan, P. B., Schwartz, R.Hepatic carbohydrate metabolism in the genesis of neonatal hypoglycemia. Pediatrics 1961;30:125–35.Google Scholar
Ballard, F. J., Oliver, I. T.Carbohydrate metabolism in liver from fetal and neonatal sheep. Biochem. J. 1965;95:191–200.CrossRefGoogle ScholarPubMed
Sparks, J. W., Lynch, A., Chez, R. A., Glinsmann, W. H.Glycogen regulation in isolated perfused near term monkey liver. Pediatr. Res. 1976;10:51–6.CrossRefGoogle ScholarPubMed
Sparks, J. W., Lynch, A., Glinsmann, W. H.Regulation of rat liver glycogen synthesis and activities of glycogen cycle enzymes by glucose and galactose. Metabolism 1976;25:47–55.CrossRefGoogle ScholarPubMed
Seitz, H. J., Porsche, E., Tarnowski, W.Glycerolkinase – a regulatory enzyme of gluconeogenesis?Acta Biol. Med. Ger. 1976;35:141–54.Google ScholarPubMed
Patel, D., Kalhan, S.Glycerol metabolism and triglyceride-fatty acid cycling in the human newborn: effect of maternal diabetes and intrauterine growth retardation. Pediatr. Res. 1992;31:52–8.CrossRefGoogle ScholarPubMed
Bougneres, P. F., Karl, I. E., Hillman, L. S., Bier, D. M.Lipid transport in the human newborn. Palmitate and glycerol turnover and the contribution of glycerol to neonatal hepatic glucose output. J. Clin. Invest. 1982;70:262–70.Google ScholarPubMed
Sunehag, A., Ewald, U., Larsson, A., Gustafsson, J.Attenuated hepatic glucose production but unimpaired lipolysis in newborn infants of mothers with diabetes. Pediatr. Res. 1997;42:492–7.CrossRefGoogle ScholarPubMed
Sunehag, A., Gustafsson, J., Ewald, U.Glycerol carbon contributes to hepatic glucose production during the first eight hours in healthy term infants. Acta Paediatr. 1996;85:1339–43.CrossRefGoogle ScholarPubMed
Sunehag, A., Ewald, U., Gustafsson, J.Extremely preterm infants (<28 weeks) are capable of gluconeogenesis from glycerol on their first day of life. Pediatr. Res. 1996;40:553–7.CrossRefGoogle ScholarPubMed
Chandramouli, V., Ekberg, K., Schumann, W. C.et al.Quantifying gluconeogenesis during fasting. Am. J. Physiol. Endocrinol. Metab. 1997;273: E1209–15.CrossRefGoogle ScholarPubMed
Landau, B. R., Wahren, J., Chandramouli, V.et al.Use of 2H2O for estimating rates of gluconeogenesis. Application to the fasted state. J. Clin. Invest. 1995;95:172–8.CrossRefGoogle ScholarPubMed
Kalhan, S. C., Parimi, P., Beek, R.et al.Estimation of gluconeogenesis in newborn infants. Am. J. Physiol. Endocrinol. Metab. 2001;281:E991–7.CrossRefGoogle ScholarPubMed
Haymond, M. W., Sunehag, A. L.The reciprocal pool model for the measurement of gluconeogenesis by use of [U-13C]glucose. Am. J. Physiol. Endocrinol. Metab. 2000;278:E140–5.CrossRefGoogle ScholarPubMed
Tayek, J. A., Katz, J.Glucose production, recycling, and gluconeogenesis in normals and diabetics: a mass isotopomer [U-13C]glucose study. Am. J. Physiol. Endocrinol. Metab. 1996;270:E709–17.CrossRefGoogle ScholarPubMed
Consoli, A., Kennedy, F., Miles, J., Gerich, J.Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. J. Clin. Invest. 1987;80:1303–10.CrossRefGoogle ScholarPubMed
Diraison, F., Large, V., Brunengraber, H., Beylot, M.Non-invasive tracing of liver intermediary metabolism in normal subjects and in moderately hyperglycaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM. Diabetologia 1998;41:212–20.CrossRefGoogle ScholarPubMed
Lecavalier, L., Bolli, G., Gerich, J.Glucagon-cortisol interactions on glucose turnover and lactate gluconeogenesis in normal humans. Am. J. Physiol. Endocrinol. Metab. 1990;258:E569–75.CrossRefGoogle ScholarPubMed
Frazer, T. E., Karl, I. E., Hillman, L. S., Bier, D. M.Direct measurement of gluconeogenesis from [2,3]13C2]alanine in the human neonate. Am. J. Physiol. 1981;240:E615–21.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×