Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T07:31:51.620Z Has data issue: false hasContentIssue false

Section IV - Platelet Disorders

Published online by Cambridge University Press:  30 January 2021

Pedro A. de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric J. Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
University of Utah
Martha C. Sola-Visner
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Over the last decades, as the survival of neonates admitted to the neonatal intensive care unit (NICU) improved, thrombocytopenia became an increasingly important problem in the care of sick term and particularly preterm neonates. In this population, the majority of thrombocytopenias are due to acquired processes, and most resolve with time and/or treatment of the underlying illness. Frequently, however, the etiology of the thrombocytopenia poses a diagnostic dilemma, and – if severe enough – may place the affected neonate at risk of bleeding.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 201 - 260
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aballi, AJ, Puapondh, Y, Desposito, F. Platelet counts in thriving premature infants. Pediatrics 1968;42(4):685–9.Google Scholar
Ablin, AR, Kushner, JH, Murphy, A, Zippin, C. Platelet enumeration in the neonatal period. Pediatrics 1961;28:822–4.CrossRefGoogle ScholarPubMed
Sell, EJ, Corrigan, JJ, Jr. Platelet counts, fibrinogen concentrations, and factor V and factor VIII levels in healthy infants according to gestational age. J Pediatr 1973;82(6):1028–32.CrossRefGoogle ScholarPubMed
Wiedmeier, SE, Henry, E, Sola-Visner, MC, Christensen, RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009;29(2):130–6.CrossRefGoogle Scholar
McPherson, RJ, Juul, S. Patterns of thrombocytosis and thrombocytopenia in hospitalized neonates. J Perinatol 2005;25(3):166–72.CrossRefGoogle ScholarPubMed
Dreyfus, M, Kaplan, C, Verdy, E, et al. Frequency of immune thrombocytopenia in newborns: A prospective study. Blood 1997;89(12):4402–6.CrossRefGoogle ScholarPubMed
Uhrynowska, M, Maslanka, K, Zupanska, B. Neonatal thrombocytopenia: Incidence, serological and clinical observations. Am J Perinatol 1997;14(7):415–18.CrossRefGoogle ScholarPubMed
Castle, V, Andrew, M, Kelton, J, et al. Frequency and mechanism of neonatal thrombocytopenia. J Pediatr 1986;108(5 Pt 1):749–55.Google Scholar
Mehta, P, Vasa, R, Neumann, L, Karpatkin, M. Thrombocytopenia in the high-risk infant. J Pediatr 1980;97(5):791–4.Google Scholar
Oren, H, Irken, G, Oren, B, Olgun, N, Ozkan, H. Assessment of clinical impact and predisposing factors for neonatal thrombocytopenia. Indian J Pediatr 1994;61(5):551–8.Google Scholar
Christensen, RD, Henry, E, Wiedmeier, SE, et al. Thrombocytopenia among extremely low birth weight neonates: Data from a multihospital healthcare system J Perinatol 2006;26(6):348–53.Google ScholarPubMed
Sola, MC, Slayton, WB, Rimsza, LM, et al. A neonate with severe thrombocytopenia and radio-ulnar synostosis. J Perinatol 2004;24(8):528–30.Google Scholar
Tighe, P, Rimsza, LM, Christensen, RD, Lew, J, Sola, MC. Severe thrombocytopenia in a neonate with congenital HIV infection. J Pediatr 2005;146(3):408–13.CrossRefGoogle Scholar
Saxonhouse, MA, Manco-Johnson, MJ. The evaluation and management of neonatal coagulation disorders. Semin Perinatol 2009;33(1):5265.Google Scholar
Kaushansky, K. Lineage-specific hematopoietic growth factors. N Engl J Med 2006;354(19):2034–45.Google Scholar
Dame, C. Thrombopoietin in thrombocytopenias of childhood. Semin Thromb Hemost 2001;27(3):215–28.CrossRefGoogle ScholarPubMed
Murray, NA, Roberts, IA. Circulating megakaryocytes and their progenitors (BFU-MK and CFU-MK) in term and pre-term neonates. Br J Haematol 1995;89(1):41–6.Google ScholarPubMed
Murray, NA, Roberts, IA. Circulating megakaryocytes and their progenitors in early thrombocytopenia in preterm neonates. Pediatr Res 1996;40(1):112–19.Google Scholar
Ault, KA, Knowles, C. In vivo biotinylation demonstrates that reticulated platelets are the youngest platelets in circulation. Exp Hematol 1995;23(9):9961001.Google ScholarPubMed
Ault, KA, Rinder, HM, Mitchell, J, et al. The significance of platelets with increased RNA content (reticulated platelets). A measure of the rate of thrombopoiesis. Am J Clin Path 1992;98(6):637–46.Google Scholar
Joseph, MA, Adams, D, Maragos, J, Saving, KL. Flow cytometry of neonatal platelet RNA. J Pediatr Hematol Oncol 1996;18(3):277–81.Google Scholar
Peterec, SM, Brennan, SA, Rinder, HM, Wnek, JL, Beardsley, DS. Reticulated platelet values in normal and thrombocytopenic neonates. J Pediatr 1996;129(2):269–74.Google Scholar
Saxonhouse, MA, Sola, MC, Pastos, KM, et al. Reticulated platelet percentages in term and preterm neonates. J Pediatr Hematol Oncol 2004;26(12):797802.Google Scholar
Jilma-Stohlawetz, P, Homoncik, M, Jilma, B, et al. High levels of reticulated platelets and thrombopoietin characterize fetal thrombopoiesis. Br J Haematol 2001;112(2):466–8.Google Scholar
Briggs, C, Kunka, S, Hart, D, Oguni, S, Machin, SJ. Assessment of an immature platelet fraction (IPF) in peripheral thrombocytopenia. Br J Haematol 2004;126(1):93–9.Google Scholar
Cremer, M, Paetzold, J, Schmalisch, G, et al. Immature platelet fraction as novel laboratory parameter predicting the course of neonatal thrombocytopenia. Br J Haematol 2009;144(4):619–21.CrossRefGoogle ScholarPubMed
Ko, YJ, Hur, M, Kim, H, et al. Reference interval for immature platelet fraction on Sysmex XN hematology analyzer: A comparison study with Sysmex XE-2100. Clin Chem Lab Med 2015;53(7):1091–7.CrossRefGoogle ScholarPubMed
Cremer, M, Weimann, A, Szekessy, D, et al. Low immature platelet fraction suggests decreased megakaryopoiesis in neonates with sepsis or necrotizing enterocolitis. J Perinatol 2013;33(8):622–6.CrossRefGoogle ScholarPubMed
MacQueen, BC, Christensen, RD, Henry, E, et al. The immature platelet fraction: Creating neonatal reference intervals and using these to categorize neonatal thrombocytopenias. J Perinatol 2017;37(7):834–8.Google Scholar
Josephson, CD, Su, LL, Christensen, RD, et al. Platelet transfusion practices among neonatologists in the United States and Canada: Results of a survey. Pediatrics 2009;123(1):278–85.Google Scholar
Cremer, M, Sola-Visner, M, Roll, S, et al. Platelet transfusions in neonates: Practices in the United States vary significantly from those in Austria, Germany, and Switzerland. Transfusion 2011;51(12):2634–41.Google Scholar
Kahn, DJ, Richardson, DK, Billett, HH. Inter-NICU variation in rates and management of thrombocytopenia among very low birth-weight infants. J Perinatol 2003;23(4):312–16.CrossRefGoogle ScholarPubMed
Del Vecchio, A, Sola, MC, Theriaque, DW, et al. Platelet transfusions in the neonatal intensive care unit: Factors predicting which patients will require multiple transfusions. Transfusion 2001;41(6):803–8.CrossRefGoogle ScholarPubMed
Garcia, MG, Duenas, E, Sola, MC, et al. Epidemiologic and outcome studies of patients who received platelet transfusions in the neonatal intensive care unit. J Perinatol 2001;21(7):415–20.Google Scholar
Murray, NA, Howarth, LJ, McCloy, MP, Letsky, EA, Roberts, IA. Platelet transfusion in the management of severe thrombocytopenia in neonatal intensive care unit patients. Transfus Med 2002;12(1):3541.Google Scholar
Andrew, M, Vegh, P, Caco, C, et al. A randomized, controlled trial of platelet transfusions in thrombocytopenic premature infants. J Pediatr 1993;123(2):285–91.CrossRefGoogle ScholarPubMed
Curley, A, Stanworth, SJ, Willoughby, K, et al. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2019;380(3):242–51.Google Scholar
Stanworth, SJ, Clarke, P, Watts, T, et al. Prospective, observational study of outcomes in neonates with severe thrombocytopenia. Pediatrics 2009;124(5):e826–34.Google Scholar
Sparger, KA, Assmann, SF, Granger, S, et al. Platelet transfusion practices among very-low-birth-weight infants. JAMA Pediatr 2016;170(7):687–94.Google Scholar
von Lindern, JS, van den Bruele, T, Lopriore, E, Walther, FJ. Thrombocytopenia in neonates and the risk of intraventricular hemorrhage: A retrospective cohort study. BMC Pediatr 2011;11:16.Google Scholar
von Lindern, JS, Hulzebos, CV, Bos, AF, et al. Thrombocytopaenia and intraventricular haemorrhage in very premature infants: A tale of two cities. Arch Dis Child Fetal Neonatal Ed 2012;97(5):F348–52.CrossRefGoogle ScholarPubMed
Sparger, K, Deschmann, E, Sola-Visner, M. Platelet transfusions in the neonatal intensive care unit. Clin Perinatol 2015;42(3):613–23.Google Scholar
Baer, VL, Lambert, DK, Henry, E, et al. Do platelet transfusions in the NICU adversely affect survival? Analysis of 1600 thrombocytopenic neonates in a multihospital healthcare system. J Perinatol 2007;27(12):790–6.Google Scholar
Kenton, AB, Hegemier, S, Smith, EO, et al. Platelet transfusions in infants with necrotizing enterocolitis do not lower mortality but may increase morbidity. J Perinatol 2005;25(3):173–7.Google Scholar
Patel, RM, Josephson, CD, Shenvi, N, et al. Platelet transfusions and mortality in necrotizing enterocolitis. Transfusion 2018;59(3):981–8.Google Scholar
Ferrer-Marin, F, Chavda, C, Lampa, M, et al. Effects of in vitro adult platelet transfusions on neonatal hemostasis. Thromb Haemost 2011;9(5):1020–8.Google Scholar
Fustolo, -Gunnink, SF, Fijnvandraat, K, van Klaveren, D, et al. Preterm neonates benefit from low prophylactic platelet transfusion threshold despite varying risk of bleeding or death. Blood. 2019;134(26):2354–60.Google Scholar
Muthukumar, P, Venkatesh, V, Curley, A, et al. Severe thrombocytopenia and patterns of bleeding in neonates: Results from a prospective observational study and implications for use of platelet transfusions. Transfus Med 2012;22(5):338–43.Google Scholar

References

Murray, NA, Watts, TL, Roberts, IA. Endogenous thrombopoietin levels and effect of recombinant human thrombopoietin on megakaryocyte precursors in term and preterm babies. Pediatr Res 1998;43(1):148–51.Google Scholar
Sola, MC, Calhoun, DA, Hutson, AD, Christensen, RD. Plasma thrombopoietin concentrations in thrombocytopenic and non-thrombocytopenic patients in a neonatal intensive care unit. Br J Haematol 1999;104(1):90–2.CrossRefGoogle Scholar
Walka, MM, Sonntag, J, Dudenhausen, JW, Obladen, M. Thrombopoietin concentration in umbilical cord blood of healthy term newborns is higher than in adult controls. Biol Neonate 1999;75(1):54–8.Google Scholar
Nishihira, H, Toyoda, Y, Miyazaki, H, et al., Growth of macroscopic human megakaryocyte colonies from cord blood in culture with recombinant human thrombopoietin (c-mpl ligand) and the effects of gestational age on frequency of colonies. Br J Haematol 1996;92(1):23–8.Google Scholar
Olson, TA, Levine, RF, Mazur, EM, et al., Megakaryocytes and megakaryocyte progenitors in human cord blood. Am J Pediatr Hematol Oncol 1992;14(3):241–7.CrossRefGoogle ScholarPubMed
Liu, ZJ, Italiano, J Jr., Ferrer-Marin, F, et al., Developmental differences in megakaryocytopoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes. Blood 2011;117(15):4106–17.Google Scholar
Liu, ZJ, Sola-Visner, M. Neonatal and adult megakaryopoiesis. Curr Opin Hematol 2011;18(5):330–7.CrossRefGoogle ScholarPubMed
de Alarcón, PA Graeve, JL. Analysis of megakaryocyte ploidy in fetal bone marrow biopsies using a new adaptation of the feulgen technique to measure DNA content and estimate megakaryocyte ploidy from biopsy specimens. Pediatr Res 1996;39(1):166–70.CrossRefGoogle ScholarPubMed
Hegyi, E, Nakazawa, M, Debili, N, et al. Developmental changes in human megakaryocyte ploidy. Exp Hematol 1991;19(2):8794.Google Scholar
Mattia, G, Vulcano, F, Milazzo, L, et al. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 2002;99(3):888–97.Google Scholar
Harker, LA. Kinetics of thrombopoiesis. J Clin Invest 1968;47(3):458–65.Google Scholar
Harker, LA, Finch, CA. Thrombokinetics in man. J Clin Invest 1969;48(6):963–74.Google Scholar
Sola-Visner, MC, Christensen, RD, Hutson, AD, et al. Megakaryocyte size and concentration in the bone marrow of thrombocytopenic and nonthrombocytopenic neonates. Pediatr Res, 2007;61(4):479–84.Google Scholar
Hu, Z, Slayton, WB, Rimsza, LM, et al. Differences between newborn and adult mice in their response to immune thrombocytopenia. Neonatology 2010;98(1):100–8.Google Scholar
Sparger, KA, Ramsey, H, Lorenz, V, et al. Developmental differences between newborn and adult mice in response to romiplostim. Platelets 2017:18.Google Scholar
Israels, SJ, Odaibo, FS, Robertson, C, et al. Deficient thromboxane synthesis and response in platelets from premature infants. Pediatr Res 1997;41(2):218–23.Google Scholar
Rajasekhar, D, Kestin, AS, Bednarek, FJ, et al. Neonatal platelets are less reactive than adult platelets to physiological agonists in whole blood. Thromb Haemost 1994;72(6):957–63.Google Scholar
Andrew, M, Castle, V, Mitchell, L, et al. Modified bleeding time in the infant. Am J Hematol 1989;30(3):190–1.Google Scholar
Boudewijns, M, Raes, M, Peeters, V, et al. Evaluation of platelet function on cord blood in 80 healthy term neonates using the Platelet Function Analyser (PFA-100); shorter in vitro bleeding times in neonates than adults. Eur J Pediatr 2003;162(3):212–13.Google Scholar
Israels, SJ, Cheang, T, McMillan-Ward, EM, et al. Evaluation of primary hemostasis in neonates with a new in vitro platelet function analyzer. J Pediatr 2001;138(1):116–19.CrossRefGoogle ScholarPubMed
Roschitz, B, Sudi, K, Kostenberger, M, et al. Shorter PFA-100 closure times in neonates than in adults: role of red cells, white cells, platelets and von Willebrand factor. Acta Paediatr 2001;90(6):664–70.Google Scholar
Bednarek, FJ, Bean, S, Barnard, MR, et al. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res 2009;124(1):42–5.CrossRefGoogle ScholarPubMed
Del Vecchio, A, Latini, G, Henry, E, et al. Template bleeding times of 240 neonates born at 24 to 41 weeks’ gestation. J Perinatol 2008;28(6):427–31.Google Scholar
Christensen, RD, Baer, VL, Henry, E, et al. Thrombocytopenia in small-for-gestational-age infants. Pediatrics 2015;136(2):e361–70.Google Scholar
Murray, NA, Roberts, IA. Circulating megakaryocytes and their progenitors in early thrombocytopenia in preterm neonates. Pediatr Res 1996;40(1):112–19.Google Scholar
McDonald, TP, Cottrell, MB, Steward, SA, et al. Comparison of platelet production in two strains of mice with different modal megakaryocyte DNA ploidies after exposure to hypoxia. Exp Hematol 1992;20(1):51–6.Google Scholar
Meberg, A. Transitory thrombocytopenia in newborn mice after intrauterine hypoxia. Pediatr Res 1980;14(9):1071–3.Google Scholar
Saxonhouse, MA, Rimsza, LM, Christensen, RD, et al. Effects of anoxia on megakaryocyte progenitors derived from cord blood CD34pos cells. Eur J Haematol 2003;71(5):359–65.Google Scholar
LaIuppa, JA, Papoutsakis, ET, Miller, WM. Oxygen tension alters the effects of cytokines on the megakaryocyte, erythrocyte, and granulocyte lineages. Exp Hematol 1998;26(9):835–43.Google Scholar
Burrows, RF, Kelton, JG. Pregnancy in patients with idiopathic thrombocytopenic purpura: assessing the risks for the infant at delivery. Obstet Gynecol Surv 1993;48(12):781–8.Google Scholar
Samuels, P, Bussel, JB, Braitman, LE, et al. Estimation of the risk of thrombocytopenia in the offspring of pregnant women with presumed immune thrombocytopenic purpura. N Engl J Med 1990;323(4):229–35.Google Scholar
Provan, D, Stasi, R, Newland, AC, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood 2010;115(2):168–86.Google Scholar
Kaplan, C, Daffos, F, Forestier, F, et al. Fetal platelet counts in thrombocytopenic pregnancy. Lancet 1990;336(8721):979–82.Google Scholar
Care, A, Pavord, S, Knight, M, et al. Severe primary autoimmune thrombocytopenia in pregnancy: a national cohort study. BJOG 2018;125(5):604–12.Google ScholarPubMed
Kong, Z, Qin, P, Xiao, S, et al. A novel recombinant human thrombopoietin therapy for the management of immune thrombocytopenia in pregnancy. Blood 2017;130(9):1097–103.Google Scholar
Burrows, RF, Kelton, JG. Low fetal risks in pregnancies associated with idiopathic thrombocytopenic purpura. Am J Obstet Gynecol 1990;163(4 Pt 1):1147–50.Google Scholar
Hauschner, H, Rosenberg, N, Seligsohn, U, et al. Persistent neonatal thrombocytopenia can be caused by IgA antiplatelet antibodies in breast milk of immune thrombocytopenic mothers. Blood 2015;126(5):661–4.Google Scholar
Castle, V, Andrew, M, Kelton, J, et al. Frequency and mechanism of neonatal thrombocytopenia. J Pediatr 1986;108(5 Pt 1):749–55.Google Scholar
Ropert, JC, Dreyfus, M, Dehan, M, Tchernia, G. Severe neonatal thrombopenia. Analysis of the etiologic data on 64 cases [in French]. Arch Fr Pediatr 1984;41(2):8590.Google Scholar
Christensen, RD, Baer, VL, Yaish, HM. Thrombocytopenia in late preterm and term neonates after perinatal asphyxia. Transfusion 2015;55(1):187–96.Google Scholar
Boutaybi, N, Steggerda, SJ, Smits-Wintjens, VE, et al. Early-onset thrombocytopenia in near-term and term infants with perinatal asphyxia. Vox Sang 2014;106(4):361–7.Google Scholar
Castle, V, Coates, G, Mitchell, LG, O’Brodovich, H, Andrew, M. The effect of hypoxia on platelet survival and site of sequestration in the newborn rabbit. Thromb Haemost 1988;59(1):45–8.Google Scholar
Shankaran, S, Laptook, AR, Ehrenkranz, RA, et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N Engl J Med 2005;353(15):1574–84.Google Scholar
Wolberg, AS, Meng, Z, Monroe, D, Hoffman, M. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma 2004;56(6):1221–8.Google Scholar
Michelson, AD, Barnard, M, Khuri, S, et al. The effects of aspirin and hypothermia on platelet function in vivo. Br J Haematol 1999;104(1):64–8.Google Scholar
Valeri, CR, Feingold, H, Cassidy, G, et al. Hypothermia-induced reversible platelet dysfunction. Ann Surg 1987;205(2):175–81.Google Scholar
Boutaybi, N, Razenberg, F, Smits-Wintjens, VE, et al. Neonatal thrombocytopenia after perinatal asphyxia treated with hypothermia: a retrospective case control study. Int J Pediatr 2014;2014:760654.CrossRefGoogle ScholarPubMed
Christensen, RD, Sheffield, M, Lambert, D, Baer, V. Effect of therapeutic hypothermia in neonates with hypoxic-ischemic encephalopathy on platelet function. Neonatology 2012;101(2):91–4.Google Scholar
Forman, KR, Diab, Y, Wong, EC, et al. Coagulopathy in newborns with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia: A retrospective case-control study. BMC Pediatr 2014;14:277.Google Scholar
Shankaran, S, Pappas, A, Laptook, AR, et al. Outcomes of safety and effectiveness in a multicenter randomized, controlled trial of whole-body hypothermia for neonatal hypoxic-ischemic encephalopathy. Pediatrics 2008;122(4):e791–8.Google Scholar
Gluckman, PD, Wyatt, JS, Azzopardi, D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet 2005;365(9460):663–70.Google Scholar
Forman, KR, Wong, E, Gallagher, M, et al. Effect of temperature on thromboelastography and implications for clinical use in newborns undergoing therapeutic hypothermia. Pediatr Res 2014;75(5):663–9.Google Scholar
Pakvasa, MA, Winkler, AM, Hamrick, SE, Josephson, CD, Patel, RM. Observational study of haemostatic dysfunction and bleeding in neonates with hypoxic-ischaemic encephalopathy. BMJ Open 2017;7(2):e013787.Google Scholar
Guida, JD, Kunig, AM, Leef, KH, McKenzie, SE, Paul, DA. Platelet count and sepsis in very low birth weight neonates: Is there an organism-specific response? Pediatrics 2003;111(6 Pt 1):1411–15.Google Scholar
Manzoni, P, Mostert, M, Galletto, P, et al. Is thrombocytopenia suggestive of organism-specific response in neonatal sepsis? Pediatr Int 2009;51(2):206–10.Google Scholar
Murray, NA, Howarth, LJ, McCloy, MP, Letsky, EA, Roberts, IAG. Platelet transfusion in the management of severe thrombocytopenia in neonatal intensive care unit patients. Transfus Med 2002;12(1):3541.Google Scholar
Modanlou, HD, Ortiz, OB. Thrombocytopenia in neonatal infection. Clin Pediatr (Phila) 1981;20(6):402–7.CrossRefGoogle ScholarPubMed
Dohner, ML, Wiedmeier, SE, Stoddard, RA, et al. Very high users of platelet transfusions in the neonatal intensive care unit. Transfusion 2009;49(5):869–72.Google Scholar
Brown, RE, Rimsza, LM, Pastos, K, et al. Effects of sepsis on neonatal thrombopoiesis. Pediatr Res 2008;64(4):399404.Google Scholar
Haselmayer, P, Grosse-Hovest, L, von Landenberg, P, Schild, H, Radsak, MP. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 2007;110(3):1029–35.Google Scholar
Semple, JW, Italiano, JE Jr., Freedman, J. Platelets and the immune continuum. Nat Rev Immunol 2011;11(4):264–74.Google Scholar
Andonegui, G, Kerfoot, SM, McNagny, K, et al. Platelets express functional Toll-like receptor-4. Blood 2005;106(7):2417–23.Google Scholar
Clark, SR, Ma, A, Tavener, S, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007;13(4):463–9.Google Scholar
Kraemer, BF, Campbell, RA, Schwertz, H, et al. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets. Blood 2012;120(25):5014–20.Google Scholar
Steinberg, HN, Anderson, J Jr., Lim, B, Chatis, PA. Cytomegalovirus infection of the BS-1 human stroma cell line: effect on murine hemopoiesis. Virology 1993;196(2):427–32.Google Scholar
Crapnell, K, Zanjani, ED, Chaudhuri, A, et al. In vitro infection of megakaryocytes and their precursors by human cytomegalovirus. Blood 2000;95(2):487–93.Google Scholar
Isomura, H, Yoshida, M, Namba, H, Yamada, M. Interaction of human herpesvirus 6 with human CD34 positive cells. J Med Virol 2003;70(3):444–50.Google Scholar
Srivastava, A, Bruno, E, Briddell, R, et al. Parvovirus B19-induced perturbation of human megakaryocytopoiesis in vitro. Blood 1990;76(10):19972004.Google Scholar
Forestier, F, Tissot, JD, Vial, Y, Daffos, F, Hohlfeld, P. Haematological parameters of parvovirus B19 infection in 13 fetuses with hydrops fetalis. Br J Haematol 1999;104(4):925–7.CrossRefGoogle Scholar
Abzug, MJ. Prognosis for neonates with enterovirus hepatitis and coagulopathy. Pediatr Infect Dis J 2001;20(8):758–63.Google Scholar
Tighe, P, Rimsza, LM, Christensen, RD, Lew, J, Sola, MC. Severe thrombocytopenia in a neonate with congenital HIV infection. J Pediatr 2005;146(3):408–13.Google Scholar
Hutter, JJ Jr., Hathaway, WE, Wayne, ER. Hematologic abnormalities in severe neonatal necrotizing enterocolitis. J Pediatr 1976;88(6):1026–31.CrossRefGoogle ScholarPubMed
Muthukumar, P, Venkatesh, V, Curley, A, et al. Severe thrombocytopenia and patterns of bleeding in neonates: Results from a prospective observational study and implications for use of platelet transfusions. Transfus Med 2012;22(5):338–43.Google Scholar
Ververidis, M, Kiely, EM, Spitz, L, et al. The clinical significance of thrombocytopenia in neonates with necrotizing enterocolitis. J Pediatr Surg 2001;36(5):799803.Google Scholar
Namachivayam, K, MohanKumar, K, Garg, L, Torres, BA, Maheshwari, A. Neonatal mice with necrotizing enterocolitis-like injury develop thrombocytopenia despite increased megakaryopoiesis. Pediatr Res 2017;81(5):817–24.Google Scholar
Cremer, M, Weimann, A, Szekessy, D, et al. Low immature platelet fraction suggests decreased megakaryopoiesis in neonates with sepsis or necrotizing enterocolitis. J Perinatol 2013;33(8):622–6.Google Scholar
Frost, BL, Jilling, T, Caplan, MS. The importance of pro-inflammatory signaling in neonatal necrotizing enterocolitis. Semin Perinatol 2008;32(2):100–6.Google Scholar
Caplan, MS, Hedlund, E, Adler, L, Lickerman, M, Hsueh, W. The platelet-activating factor receptor antagonist WEB 2170 prevents neonatal necrotizing enterocolitis in rats. J Pediatr Gastroenterol Nutr 1997;24(3):296301.Google Scholar
Markel, TA, Crisostomo, PR, Wairiuko, GM, et al. Cytokines in necrotizing enterocolitis. Shock 2006;25(4):329–37.Google Scholar
Bubel, S, Wilhelm, D, Entelmann, M, Kirchner, H, Kluter, H. Chemokines in stored platelet concentrates. Transfusion 1996;36(5):445–9.Google Scholar
Kluter, H, Bubel, S, Kirchner, H, Wilhelm, D. Febrile and allergic transfusion reactions after the transfusion of white cell-poor platelet preparations. Transfusion 1999;39(11–12):1179–84.Google Scholar
Fujihara, M, Ikebuchi, K, Wakamoto, S, Sekiguchi, S. Effects of filtration and gamma radiation on the accumulation of RANTES and transforming growth factor-beta1 in apheresis platelet concentrates during storage. Transfusion 1999;39(5):498505.Google Scholar
Sellberg, F, Berglund, E, Ronaghi, M, et al. Composition of growth factors and cytokines in lysates obtained from fresh versus stored pathogen-inactivated platelet units. Transfus Apher Sci 2016;55(3):333–7.Google Scholar
Patel, RM, Josephson, CD, Shenvi, N, et al. Platelet transfusions and mortality in necrotizing enterocolitis. Transfusion 2019;59(3):981–8.Google Scholar
Kenton, AB, Hegemier, S, Smith, EO, et al. Platelet transfusions in infants with necrotizing enterocolitis do not lower mortality but may increase morbidity. J Perinatol 2005;25(3):173–7.CrossRefGoogle Scholar
Saxonhouse, MA, Manco-Johnson, MJ. The evaluation and management of neonatal coagulation disorders. Semin Perinatol 2009;33(1):5265.Google Scholar
Marks, SD, Massicotte, MP, Steeleet, BT, et al. Neonatal renal venous thrombosis: Clinical outcomes and prevalence of prothrombotic disorders. J Pediatr 2005;146(6):811–16.Google Scholar
Zigman, A, Yazbeck, S, Emil, S, Nguyen, L. Renal vein thrombosis: A 10-year review. J Pediatr Surg 2000;35(11):1540–2.CrossRefGoogle Scholar
Nowak-Gottl, U, Kosch, A, Schlegel, N. Neonatal thromboembolism. Semin Thromb Hemost 2003; 29(2):227–34.Google Scholar
Nowak-Gottl, U, von Kries, R, Gobel, U. Neonatal symptomatic thromboembolism in Germany: Two-year survey. Arch Dis Child Fetal Neonatal Ed 1997;76(3):F163–7.Google Scholar
Goel, R, Ness, PM, Takemoto, CM, et al. Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in-hospital mortality. Blood 2015;125(9):1470–6.Google Scholar
Levi, M, de Jonge, E, Meijers, J. The diagnosis of disseminated intravascular coagulation. Blood Rev 2002;16(4):217–23.Google Scholar
Neame, PB, Kelton, JG, Walker, IR, et al. Thrombocytopenia in septicemia: The role of disseminated intravascular coagulation. Blood 1980;56(1):8892.Google Scholar
Dairaku, M, Sueishi, K, Tanaka, K. Disseminated intravascular coagulation in newborn infants. Prevalence in autopsies and significance as a cause of death. Pathol Res Pract 1982;174(1–2):106–15.Google Scholar
Arkhangel’skii, AV, Masliakova, GN. Frequency and morphology of DIC-syndrome in children in early neonatal period [in Russian]. Arkh Patol 1996;58(5):61–3.Google Scholar
Schmidt, B, Vegh, P, Johnston, M, Andrew, M, Weitz, J. Do coagulation screening tests detect increased generation of thrombin and plasmin in sick newborn infants? Thromb Haemost 1993;69(5):418–21.Google Scholar
Sola-Visner, M, Bercovitz, RS. Neonatal platelet transfusions and future areas of research. Transfus Med Rev 2016;30(4):183–8.Google Scholar
Veldman, A, Fischer, D, Nold, M, Wong, F. Disseminated intravascular coagulation in term and preterm neonates. Semin Thromb Hemost 2010;36(4):419–28.Google Scholar
El Beshlawy, A, Alaraby, I, Abou, Hussein, H, et al. Study of protein C protein S and antithrombin III in newborns with sepsis. Pediatr Crit Care Med 2010;11(1):52–9.Google Scholar
Enjolras, O, Wassef, M, Mazoyer, E, et al. Infants with Kasabach–Merritt syndrome do not have “true” hemangiomas. J Pediatr 1997;130(4):631–40.Google Scholar
Phillips, WG, Marsden, JR. Kasabach–Merritt syndrome exacerbated by platelet transfusion. J R Soc Med 1993;86(4):231–2.Google Scholar
Drolet, BA, Trenor, CC 3rd, Brandão, LR, et al. Consensus-derived practice standards plan for complicated Kaposiform hemangioendothelioma. J Pediatr 2013;163(1):285–91.Google Scholar
Aster, RH, Bougie, DW. Drug-induced immune thrombocytopenia. N Engl J Med 2007;357(6):580–7.Google Scholar
Spadone, D, Clark, F, James, E, et al. Heparin-induced thrombocytopenia in the newborn. J Vasc Surg 1992;15(2):306–11; discussion 311–12.Google Scholar
Klenner, AF, Fusch, C, Rakow, A, et al. Benefit and risk of heparin for maintaining peripheral venous catheters in neonates: A placebo-controlled trial. J Pediatr 2003;143(6):741–5.Google Scholar
Risch, L, Huber, AR, Schmugge, M. Diagnosis and treatment of heparin-induced thrombocytopenia in neonates and children. Thromb Res 2006;118(1):123–35.Google Scholar
Nguyen, TN, Gal, P, Ransom, JL, Carlos, R. Lepirudin use in a neonate with heparin-induced thrombocytopenia. Ann Pharmacother 2003;37(2):229–33.Google Scholar
Del Vecchio, A, Sola, MC, Theriaque, DW, et al. Platelet transfusions in the neonatal intensive care unit: Factorspredicting which patients will require multiple transfusions. Transfusion 2001;41(6):803–8.Google Scholar
Garcia, MG, Duenas, E, Sola, MC, et al. Epidemiologic and outcome studies of patients who received platelet transfusions in the neonatal intensive care unit. J Perinatol 2001;21(7):415–20.Google Scholar
Peck-Radosavljevic M, Wichlas M, Zacherl, J, et al. Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production. Blood 2000;95(3):795801.Google Scholar
Rios, R, Sangro, B, Herrero, I, Quiroga, J, Prieto, J. The role of thrombopoietin in the thrombocytopenia of patients with liver cirrhosis. Am J Gastroenterol 2005;100(6):1311–16.Google Scholar
Aster, RH. Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytopenia. J Clin Invest 1966;45(5):645–57.Google Scholar

References

Burrows, RF, Kelton, JG. Fetal thrombocytopenia and its relation to maternal thrombocytopenia. N Engl J Med 1993;329(20):1463–6.Google Scholar
von dem Borne, AE, Decary, F. Nomenclature of platelet-specific antigens. Transfusion 1990;30(5):477.Google Scholar
Kelton, JG, Smith, JW, Horsewood, P, et al. ABH antigens on human platelets: Expression on the glycosyl phosphatidylinositol-anchored protein CD109. J Lab Clin Med 1998;132(2):142–8.Google Scholar
von dem Borne, AE, Decary, F. ICSH/ISBT Working Party on platelet serology: Nomenclature of platelet-specific antigens. Vox Sang 1990;58(2):176.Google Scholar
Kunicki, TJ, Newman, PJ. The molecular immunology of human platelet proteins. Blood 1992;80(6):1386–404.Google Scholar
Skupski, DW, Bussel, JB. Alloimmune thrombocytopenia. Clin Obstet Gynecol 1999;42(2):335–48.Google Scholar
Metcalfe, P, Watkins, NA, Ouwehand, WH, et al. Nomenclature of human platelet antigens. Vox Sang 2003;85(3):240–5.Google Scholar
Newman, PJ. Nomenclature of human platelet alloantigens: A problem with the HPA system? Blood 1994;83(6):1447–51.Google Scholar
Robinson, J, Waller, MJ, Stoehr, P, Marsh, SG. IPD: The Immuno Polymorphism Database. Nucleic Acids Res 2005;33(Database issue): D523526.Google Scholar
Robinson, J, Halliwell, JA, McWilliam, H, Lopez, R, Marsh, SG. IPD: The Immuno Polymorphism Database. Nucleic Acids Res 2013;41(Database issue): D123440.Google Scholar
Blanchette, VS, Peters, MA, Pegg-Feige, K. Alloimmune thrombocytopenia: Review from a neonatal intensive care unit. Curr Stud Hematol Blood Transfus 1986(52):8796.Google Scholar
Mueller-Eckhardt, C, Kiefel, V, Grubert, A, et al. 348 cases of suspected neonatal alloimmune thrombocytopenia. Lancet 1989;1(8634):363–6.Google Scholar
Hohlfeld, P, Forestier, F, Kaplan, C, Tissot, JD, Daffos, F. Fetal thrombocytopenia: A retrospective survey of 5,194 fetal blood samplings. Blood 1994;84(6):1851–6.Google Scholar
Taaning, E, Petersen, S, Reinholdt, J, Bock, J, Svejgaard, A. Neonatal immune thrombocytopenia due to allo-or autoantibodies: Clinical and immunological analysis of 83 cases. Platelets 1994;5(1):53–8.Google Scholar
Bonacossa, IA, Jocelyn, LJ. Alloimmune thrombocytopenia of the newborn: Neurodevelopmental sequelae. Am J Perinatol 1996;13(4):211–15.Google Scholar
Uhrynowska, M, Maslanka, K, Zupanska, B. Neonatal thrombocytopenia: Incidence, serological and clinical observations. Am J Perinatol 1997;14(7):415–18.Google Scholar
Williamson, LM, Hackett, G, Rennie, J, et al. The natural history of fetomaternal alloimmunization to the platelet-specific antigen HPA-1a (PlA1, Zwa) as determined by antenatal screening. Blood 1998;92(7):2280–7.Google Scholar
Jaegtvik, S, Husebekk, A, Aune, B, Oian, P, Dahl, LB, Skogen, B. Neonatal alloimmune thrombocytopenia due to anti-HPA 1a antibodies; the level of maternal antibodies predicts the severity of thrombocytopenia in the newborn. BJOG 2000;107(5):691–4.Google Scholar
Uhrynowska, M, Niznikowska-Marks, M, Zupanska, B. Neonatal and maternal thrombocytopenia: Incidence and immune background. Eur J Haematol 2000;64(1):42–6.Google Scholar
Kaplan, C, Morel-Kopp, MC, Kroll, H, et al. HPA-5b (Br(a)) neonatal alloimmune thrombocytopenia: Clinical and immunological analysis of 39 cases. Br J Haematol 1991;78(3):425–9.Google Scholar
Panzer, S, Auerbach, L, Cechova, E, et al. Maternal alloimmunization against fetal platelet antigens: A prospective study. Br J Haematol. 1995;90(3):655–60.Google Scholar
Kurz, M, Stockelle, E, Eichelberger, B, Panzer, S. IgG titer, subclass, and light-chain phenotype of pregnancy-induced HPA-5b antibodies that cause or do not cause neonatal alloimmune thrombocytopenia. Transfusion 1999;39(4):379–82.Google Scholar
Gruel, Y, Boizard, B, Daffos, F, Forestier, F, Caen, J, Wautier, JL. Determination of platelet antigens and glycoproteins in the human fetus. Blood 1986;68(2):488–92.Google Scholar
Giovangrandi, Y, Daffos, F, Kaplan, C, Forestier, F, Mac Aleese, J, Moirot, M. Very early intracranial haemorrhage in alloimmune fetal thrombocytopenia. Lancet 1990;336(8710):310.Google Scholar
Murphy, MF, Metcalfe, P, Waters, AH, Ord, J, Hambley, H, Nicolaides, K. Antenatal management of severe feto-maternal alloimmune thrombocytopenia: HLA incompatibility may affect responses to fetal platelet transfusions. Blood 1993;81(8):2174–9.Google Scholar
Kumpel, BM, Sibley, K, Jackson, DJ, White, G, Soothill, PW. Ultrastructural localization of glycoprotein IIIa (GPIIIa, beta 3 integrin) on placental syncytiotrophoblast microvilli: Implications for platelet alloimmunization during pregnancy. Transfusion 2008;48(10):2077–86.Google Scholar
van Loghem, JJ, Dorfmeijer, H, van der Hart, M, Schreuder, F. Serological and genetical studies on a platelet antigen (Zw). Vox Sang 1959;4(2):161–9.Google Scholar
Schulman, NR, Marder, VJ, Heller, MC, Collier, EM. Platelet and leukocyte isoantigens and their antibodies: Serologic, physiologic, and clinical studies. Prog Hematol 1964;4:222304.Google Scholar
Flug, F, Karpatkin, M, Karpatkin, S. Should all pregnant women be tested for their platelet PLA (Zw, HPA-1) phenotype? Br J Haematol 1994;86(1):15.Google Scholar
Blanchette, VS, Chen, L, de Friedberg, ZS, et al. Alloimmunization to the PlA1 platelet antigen: Results of a prospective study. Br J Haematol 1990;74(2):209–15.Google Scholar
Durand-Zaleski, I, Schlegel, N, Blum-Boisgard, C, et al. Screening primiparous women and newborns for fetal/neonatal alloimmune thrombocytopenia: A prospective comparison of effectiveness and costs. Immune Thrombocytopenia Working Group. Am J Perinatol 1996;13(7):423–31.Google Scholar
Mueller-Eckhardt, C, Mueller-Eckhardt, G, Willen-Ohff, H, et al. Immunogenicity of and immune response to the human platelet antigen Zwa is strongly associated with HLA-B8 and DR3. Tissue Antigens 1985;26(1):71–6.Google Scholar
Reznikoff-Etievant, MF, Dangu, C, Lobet, R. HLA-B8 antigens and anti-PLa1 allo-immunization. Tissue Antigens 1981;18(1):66–8.Google Scholar
Eckhardt, CM. Letter to the editor. Tissue Antigens 1982;19(2):154–4.Google Scholar
Taaning, E, Antonsen, H, Petersen, S, Svejgaard, A, Thomsen, M. HLA antigens and maternal antibodies in allo-immune neonatal thrombocytopenia. Tissue Antigens 1983;21(5):351–9.Google Scholar
Decary, F. Is HLA-DR3 a risk factor in PLA1-negative pregnant women? Curr Stud Hematol Blood Transfus 1986(52):7886.Google Scholar
Valentin, N, Vergracht, A, Bignon, JD, et al. HLA-DRw52a is involved in alloimmunization against PL-A1 antigen. Hum Immunol 1990;27(2):73–9.Google Scholar
Decary, F, L’Abbe, D, Tremblay, L, Chartrand, P. The immune response to the HPA-1a antigen: Association with HLA-DRw52a. Transfus Med 1991;1(1):5562.Google Scholar
L’Abbe, D, Tremblay, L, Filion, M, et al. Alloimmunization to platelet antigen HPA-1a (PIA1) is strongly associated with both HLA-DRB3*0101 and HLA-DQB1*0201. Hum Immunol 1992;34(2):107–14.Google Scholar
de Waal, LP, van Dalen, CM, Engelfriet, CP, von dem Borne, AE. Alloimmunization against the platelet-specific Zwa antigen, resulting in neonatal alloimmune thrombocytopenia or posttransfusion purpura, is associated with the supertypic DRw52 antigen including DR3 and DRw6. Hum Immunol 1986;17(1):4553.Google Scholar
Ahlen, MT, Husebekk, A, Killie, MK, Skogen, B, Stuge, TB. T-cell responses associated with neonatal alloimmune thrombocytopenia: Isolation of HPA-1a–specific, HLA-DRB3*0101–restricted CD4+ T cells. Blood 2009;113(16):3838–44.Google Scholar
Wu, S, Maslanka, K, Gorski, J. An integrin polymorphism that defines reactivity with alloantibodies generates an anchor for MHC class II peptide binding: A model for unidirectional alloimmune responses. J Immunol 1997;158(7):3221–6.Google Scholar
Mueller-Eckhardt, C, Becker, T, Weisheit, M, Witz, C, Santoso, S. Neonatal alloimmune thrombocytopenia due to fetomaternal Zwb incompatibility. Vox Sang 1986;50(2):94–6.Google Scholar
Westman, P, Hashemi-Tavoularis, S, Blanchette, V, et al. Maternal DRB1*1501, DQA1*0102, DQB1*0602 haplotype in fetomaternal alloimmunization against human platelet alloantigen HPA-6b (GPIIIa-Gln489). Tissue Antigens 1997;50(2):113–18.Google Scholar
Dreyfus, M, Kaplan, C, Verdy, E, Schlegel, N, Durand-Zaleski, I, Tchernia, G. Frequency of immune thrombocytopenia in newborns: A prospective study. Immune Thrombocytopenia Working Group. Blood 1997;89(12):4402–6.Google Scholar
Mueller-Eckhardt, C, Marks, HJ, Baur, MP, Mueller-Eckhardt, G. Immunogenetic studies of the platelet-specific antigen P1A1 (Zw(a)). Immunobiology 1982;160(5):375–81.Google Scholar
Sainio, S, Jarvenpaa, AL, Renlund, M, et al. Thrombocytopenia in term infants: A population-based study. Obstet Gynecol 2000;95(3):441–6.Google Scholar
Ghevaert, C, Rankin, A, Huiskes, E, et al. Alloantibodies against low-frequency human platelet antigens do not account for a significant proportion of cases of fetomaternal alloimmune thrombocytopenia: Evidence from 1054 cases. Transfusion 2009;49(10):2084–9.Google Scholar
Sharon, R, Amar, A. Maternal anit-HLA antibodies and neonatal thrombocytopenia. Lancet 1981;1(8233):1313.Google Scholar
Marshall, LR, Brogden, FE, Roper, TS, Barr, AL. Antenatal platelet antibody testing by flow cytometry: Results of a pilot study. Transfusion. 1994;34(11):961–5.Google Scholar
King, KE, Kao, KJ, Bray, PF, et al. The role of HLA antibodies in neonatal thrombocytopenia: A prospective study. Tissue Antigens 1996;47(3):206–11.Google Scholar
Saito, S, Ota, M, Komatsu, Y, et al. Serologic analysis of three cases of neonatal alloimmune thrombocytopenia associated with HLA antibodies. Transfusion 2003;43(7):908–17.Google Scholar
Moncharmont, P, Dubois, V, Obegi, C, et al. HLA antibodies and neonatal alloimmune thrombocytopenia. Acta Haematol 2004;111(4):215–20.Google Scholar
Thude, H, Schorner, U, Helfricht, C, et al. Neonatal alloimmune thrombocytopenia caused by human leucocyte antigen-B27 antibody. Transfus Med 2006;16(2):143–9.Google Scholar
Curtis, BR, Edwards, JT, Hessner, MJ, Klein, JP, Aster, RH. Blood group A and B antigens are strongly expressed on platelets of some individuals. Blood 2000;96(4):1574–81.Google Scholar
Ogasawara, K, Ueki, J, Takenaka, M, Furihata, K. Study on the expression of ABH antigens on platelets. Blood 1993;82(3):993–9.Google Scholar
Curtis, BR, Ali, S, Glazier, AM, et al. Isoimmunization against CD36 (glycoprotein IV): Description of four cases of neonatal isoimmune thrombocytopenia and brief review of the literature. Transfusion 2002;42(9):1173–9.Google Scholar
de Moerloose, P, Boehlen, F, Extermann, P, Hohfeld, P. Neonatal thrombocytopenia: Incidence and characterization of maternal antiplatelet antibodies by MAIPA assay. Br J Haematol 1998;100(4):735–40.Google Scholar
Kjeldsen-Kragh, J, Killie, MK, Tomter, G, et al. A screening and intervention program aimed to reduce mortality and serious morbidity associated with severe neonatal alloimmune thrombocytopenia. Blood 2007;110(3):833–9.Google Scholar
Bussel, JB, Zacharoulis, S, Kramer, K, et al. Clinical and diagnostic comparison of neonatal alloimmune thrombocytopenia to non‐immune cases of thrombocytopenia. Pediatr Blood Cancer 2005;45(2):176–83.Google Scholar
Pearson, HA, Shulman, NR, Marder, VJ, Cone, TE, Jr. Isoimmune neonatal thrombocytopenic purpura: Clinical and therapeutic considerations. Blood 1964;23:154–77.Google Scholar
Chaoying, M, Junwu, G, Chituwo, B. Intraventricular haemorrhage and its prognosis, prevention and treatment in term infants. J Trop Pediatr 1999;45(4):237–40.Google Scholar
Bussel, J. Diagnosis and management of the fetus and neonate with alloimmune thrombocytopenia. J Thromb Haemost 2009;7 Suppl 1:253–7.Google Scholar
Naidu, S, Messmore, H, Caserta, V, Fine, M. CNs lesions in neonatal isoimmune thrombocytopenia. Arch Neurol 1983;40(9):552–4.Google Scholar
Dean, LM, McLeary, M, Taylor, GA. Cerebral hemorrhage in alloimmune thrombocytopenia. Pediatr Radiol 1995;25(6):444–5.Google Scholar
Johnson, J-AM, Ryan, G, Al-Musa, A, Farkas, S, Blanchette, VS. Prenatal diagnosis and management of neonatal alloimmune thrombocytopenia. Semin Perinat 1997;21(1):4552.Google Scholar
Sherer, DM, Anyaegbunam, A, Onyeije, C. Antepartum fetal intracranial hemorrhage, predisposing factors and prenatal sonography: A review. Am J Perinatol 1998;15(7):431–41.Google Scholar
Meyer, M, Kirchmaier, CM, Schirmer, A, Spangenberg, P, Strohl, C, Breddin, K. Acquired disorder of platelet function associated with autoantibodies against membrane glycoprotein IIb-IIIa complex–1. Glycoprotein analysis. Thromb Haemost 1991;65(5):491–6.Google Scholar
Yougbare, I, Lang, S, Yang, H, et al. Maternal antiplatelet beta3 integrins impair angiogenesis and cause intracranial hemorrhage. J Clin Invest 2015;125(4):1545–56.Google Scholar
Bussel, JB, Tanli, S, Peterson, HC. Favorable neurological outcome in 7 cases of perinatal intracranial hemorrhage due to immune thrombocytopenia. Am J Pediatr Hematol Oncol 1991;13(2):156–9.Google Scholar
Bussel, JB, Zabusky, MR, Berkowitz, RL, McFarland, JG. Fetal alloimmune thrombocytopenia. N Engl J Med 1997;337(1):22–6.CrossRefGoogle ScholarPubMed
Khouzami, AN, Kickler, TS, Callan, NA, et al. Devastating sequelae of alloimmune thrombocytopenia: An entity that deserves more attention. J Matern Fetal Med 1996;5(3):137–41.Google Scholar
Murphy, MF, Hambley, H, Nicolaides, K, Waters, AH. Severe fetomaternal alloimmune thrombocytopenia presenting with fetal hydrocephalus. Prenat Diagn 1996;16(12):1152–5.Google Scholar
Zalneraitis, EL, Young, RS, Krishnamoorthy, KS. Intracranial hemorrhage in utero as a complication of isoimmune thrombocytopenia. J Pediatr 1979;95(4):611–14.Google Scholar
Herman, JH, Jumbelic, MI, Ancona, RJ, Kickler, TS. In utero cerebral hemorrhage in alloimmune thrombocytopenia. Am J Pediatr Hematol Oncol 1986;8(4):312–17.Google Scholar
Morales, WJ, Stroup, M. Intracranial hemorrhage in utero due to isoimmune neonatal thrombocytopenia. Obstet Gynecol 1985;65(3 Suppl):20S21S.Google ScholarPubMed
Friedman, JM, Aster, RH. Neonatal alloimmune thrombocytopenic purpura and congenital porencephaly in two siblings associated with a “new” maternal antiplatelet antibody. Blood 1985;65(6):1412–15.Google Scholar
Jesurun, CA, Levin, GS, Sullivan, WR, Stevens, D. Intracranial hemorrhage in utero re thrombocytopenia. J Pediatr 1980;97(4):695–6.Google Scholar
Beadling, WV, Herman, JH, Stuart, MJ, Keashen-Schnell, M, Miller, JL. Fetal bleeding in neonatal alloimmune thrombocytopenia mediated by anti-PlAl is not associated with inhibition of fibrinogen binding to platelet GPIIb/IIIa. Am J Clin Pathol 1995;103(5):636–41.Google Scholar
Glade-Bender, J, McFarland, JG, Kaplan, C, Porcelijn, L, Bussel, JB. Anti-HPA-3A induces severe neonatal alloimmune thrombocytopenia. J Pediatr 2001;138(6):862–7.Google Scholar
Proulx, C, Filion, M, Goldman, M, et al. Analysis of immunoglobulin class, IgG subclass and titre of HPA-1a antibodies in alloimmunized mothers giving birth to babies with or without neonatal alloimmune thrombocytopenia. Br J Haematol 1994;87(4):813–17.Google Scholar
Mawas, F, Wiener, E, Williamson, LM, Rodeck, CH. Immunoglobulin G subclasses of anti-human platelet antigen 1a in maternal sera: Relation to the severity of neonatal alloimmune thrombocytopenia. Eur J Haematol 1997;59(5):287–92.Google Scholar
McFarland, JG, Aster, RH, Bussel, JB, et al. Prenatal diagnosis of neonatal alloimmune thrombocytopenia using allele-specific oligonucleotide probes. Blood 1991;78(9):2276–82.Google Scholar
Skogen, B, Bellissimo, DB, Hessner, MJ, et al. Rapid determination of platelet alloantigen genotypes by polymerase chain reaction using allele-specific primers. Transfusion 1994;34(11):955–60.Google Scholar
Avent, ND. Antenatal genotyping of the blood groups of the fetus. Vox Sang 1998;74 Suppl 2:365–74.Google Scholar
Hughes, D, Hurd, C, Williamson, LM. Genotyping for human platelet antigen-1 directly from dried blood spots on cards. Blood 1996;88(8):3242–3.Google Scholar
Bessos, H, Mirza, S, McGill, A, et al. A whole blood assay for platelet HPA1 (PLA1) phenotyping applicable to large-scale screening. Br J Haematol 1996;92(1):221–5.Google Scholar
Bessos, H, Hofner, M, Salamat, A, Wilson, D, Urbaniak, S, Turner, ML. An international trial demonstrates suitability of a newly developed whole-blood ELISA kit for multicentre platelet HPA-1 phenotyping. Vox Sang 1999;77(2):103–6.Google Scholar
Quintanar, A, Jallu, V, Legros, Y, Kaplan, C. Human platelet antigen genotyping using a fluorescent SSCP technique with an automatic sequencer. Br J Haematol 1998;103(2):437–44.Google Scholar
von dem Borne, AE, Verheugt, FW, Oosterhof, F, et al. A simple immunofluorescence test for the detection of platelet antibodies. Br J Haematol 1978;39(2):195207.Google Scholar
von dem Borne, AE, van Leeuwen, EF, von Riesz, LE, van Boxtel, CJ, Engelfriet, CP. Neonatal alloimmune thrombocytopenia: Detection and characterization of the responsible antibodies by the platelet immunofluorescence test. Blood 1981;57(4):649–56.Google Scholar
Kiefel, V, Santoso, S, Weisheit, M, Mueller-Eckhardt, C. Monoclonal antibody-specific immobilization of platelet antigens (MAIPA): A new tool for the identification of platelet-reactive antibodies. Blood 1987;70(6):1722–6.Google Scholar
Morel-Kopp, MC, Kaplan, C. Modification of the MAIPA technique to detect and identify antiplatelet glycoprotein auto-antibodies. Platelets 1994;5:285.Google Scholar
Joutsi, L, Kekomaki, R. Comparison of the direct platelet immunofluorescence test (direct PIFT) with a modified direct monoclonal antibody-specific immobilization of platelet antigens (direct MAIPA) in detection of platelet-associated IgG. Br J Haematol 1997;96(1):204–9.Google Scholar
Dawkins, B. Monitoring anti-HPA-1a platelet antibody levels during pregnancy using the MAIPA test. Vox Sang 1995;68(1):2734.Google Scholar
Metcalfe, P, Doughty, HA, Murphy, MF, Waters, AH. A simplified method for large-scale HPA-1a phenotyping for antenatal screening. Transfus Med 1994;4(1):21–4.Google Scholar
Curtis, BR, McFarland, JG. Detection and identification of platelet antibodies and antigens in the clinical laboratory. Immunohematology 2009;25(3):125–35.Google Scholar
Curtis, BR. Genotyping for human platelet alloantigen polymorphisms: Applications in the diagnosis of alloimmune platelet disorders. Semin Thromb Hemost 2008;34(6):539–48.Google Scholar
Bussel, JB, Sola-Visner, M. Current approaches to the evaluation and management of the fetus and neonate with immune thrombocytopenia. Semin Perinatol 2009;33(1):3542.Google Scholar
Bussel, JB, Berkowitz, RL, Lynch, L, et al. Antenatal management of alloimmune thrombocytopenia with intravenous gamma-globulin: A randomized trial of the addition of low-dose steroid to intravenous gamma-globulin. Am J Obstet Gynecol 1996;174(5):1414–23.Google Scholar
Turner, ML, Bessos, H, Fagge, T, et al. Prospective epidemiologic study of the outcome and cost-effectiveness of antenatal screening to detect neonatal alloimmune thrombocytopenia due to anti-HPA-1a. Transfusion 2005;45(12):1945–56.Google Scholar
Sitarz, AL, Driscoll, JM, Jr., Wolff, JA. Management of isoimmune neonatal thrombocytopenia. Am J Obstet Gynecol 1976;124(1):3942.Google Scholar
Murray, JM, Harris, RE. The management of the pregnant patient with idiopathic thrombocytopenic purpura. Am J Obstet Gynecol 1976;126(4):449–51.Google Scholar
Sia, CG, Amigo, NC, Harper, RG, Farahani, G, Kochen, J. Failure of cesarean section to prevent intracranial hemorrhage in siblings with isoimmune neonatal thrombocytopenia. Am J Obstet Gynecol 1985;153(1):7981.Google Scholar
Cook, RL, Miller, RC, Katz, VL, Cefalo, RC. Immune thrombocytopenic purpura in pregnancy: A reappraisal of management. Obstet Gynecol 1991;78(4):578–83.Google Scholar
Buscaglia, M, Ghisoni, L, Bellotti, M, et al. Percutaneous umbilical blood sampling: Indication changes and procedure loss rate in a nine years’ experience. Fetal Diagn Ther 1996;11(2):106–13.Google Scholar
Petrikovsky, B, Schneider, EP, Klein, VR, Wyse, LJ. Cordocentesis using the combined technique; needle guide-assisted and free-hand. Fetal Diagn Ther 1997;12(4):252–4.Google Scholar
Antsaklis, A, Daskalakis, G, Papantoniou, N, Michalas, S. Fetal blood sampling: Indication-related losses. Prenat Diagn 1998;18(9):934–40.Google Scholar
Tongsong, T, Wanapirak, C, Kunavikatikul, C, et al. Cordocentesis at 16–24 weeks of gestation: Experience of 1,320 cases. Prenat Diagn 2000;20(3):224–8.Google Scholar
Pielet, BW, Socol, ML, MacGregor, SN, Ney, JA, Dooley, SL. Cordocentesis: An appraisal of risks. Am J Obstet Gyneco 1988;159(6):1497–500.Google Scholar
Paidas, MJ, Berkowitz, RL, Lynch, L, et al. Alloimmune thrombocytopenia: Fetal and neonatal losses related to cordocentesis. Am J Obstet Gynecol 1995;172(2 Pt 1):475–9.Google Scholar
Daffos, F, Forestier, F, Muller, JY, et al. Prenatal treatment of alloimmune thrombocytopenia. Lancet 1984;2(8403):632.Google Scholar
Kaplan, C, Daffos, F, Forestier, F, et al. Management of alloimmune thrombocytopenia: Antenatal diagnosis and in utero transfusion of maternal platelets. Blood 1988;72(1):340–3.Google Scholar
Nicolini, U, Rodeck, CH, Kochenour, NK, et al. In-utero platelet transfusion for alloimmune thrombocytopenia. Lancet 1988;2(8609):506.Google Scholar
Murphy, MF, Waters, AH, Doughty, HA, et al. Antenatal management of fetomaternal alloimmune thrombocytopenia–report of 15 affected pregnancies. Transfus Med 1994;4(4):281–92.Google Scholar
Daffos, F, Forestier, F, Kaplan, C. Prenatal treatment of fetal alloimmune thrombocytopenia. Lancet 1988;2(8616):910.Google Scholar
Suarez, CR, Anderson, C. High-dose intravenous gammaglobulin (IVG) in neonatal immune thrombocytopenia. Am J Hematol 1987;26(3):247–53.Google Scholar
Bussel, JB, Berkowitz, RL, McFarland, JG, Lynch, L, Chitkara, U. Antenatal treatment of neonatal alloimmune thrombocytopenia. N Engl J Med 1988;319(21):1374–8.Google Scholar
Wenstrom, KD, Weiner, CP, Williamson, RA. Antenatal treatment of fetal alloimmune thrombocytopenia. Obstet Gynecol 1992;80(3 Pt 1):433–5.Google Scholar
Lynch, L, Bussel, JB, McFarland, JG, Chitkara, U, Berkowitz, RL. Antenatal treatment of alloimmune thrombocytopenia. Obstet Gynecol 1992;80(1):6771.Google Scholar
Bussel, JB, Berkowitz, RL, McFarland, JG. Maternal IVIG in neonatal alloimmune thrombocytopenia. Br J Haematol 1997;98(2):493–4.Google Scholar
Debre, M, Bonnet, MC, Fridman, WH, et al. Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 1993;342(8877):945–9.Google Scholar
Urbaniak, SJ, Duncan, JI, Armstrong-Fisher, SS, Abramovich, DR, Page, KR. Transfer of anti-D antibodies across the isolated perfused human placental lobule and inhibition by high-dose intravenous immunoglobulin: A possible mechanism of action. Br J Haematol 1997;96(1):186–93.Google Scholar
Bowman, J, Harman, C, Mentigolou, S, Pollock, J. Intravenous fetal transfusion of immunoglobulin for alloimmune thrombocytopenia. Lancet 1992;340(8826):1034–5.Google Scholar
Zimmermann, R, Huch, A. In-utero fetal therapy with immunoglobulin for alloimmune thrombocytopenia. Lancet 1992;340(8819):606.Google Scholar
Liu, Z-J, Bussel, JB, Lakkaraja, M, et al. Suppression of in vitro megakaryopoiesis by maternal sera containing anti-HPA-1a antibodies. Blood 2015;126(10):1234–6.Google Scholar
Mir, N, Samson, D, House, MJ, Kovar, IZ. Failure of antenatal high-dose immunoglobulin to improve fetal platelet count in neonatal allo-immune thrombocytopenia. Vox Sang 1988;55(3):188–9.Google Scholar
Nicolini, U, Tannirandorn, Y, Gonzalez, P, et al. Continuing controversy in alloimmune thrombocytopenia: Fetal hyperimmunoglobulinemia fails to prevent thrombocytopenia. Am J Obstet Gynecol 1990; 163(4 Pt 1):1144–6.Google Scholar
Kroll, H, Kiefel, V, Giers, G, et al. Maternal intravenous immunoglobulin treatment does not prevent intracranial haemorrhage in fetal alloimmune thrombocytopenia. Transfus Med 1994;4(4):293–6.Google Scholar
Bussel, JB, Berkowitz, RL, Hung, C, et al. Intracranial hemorrhage in alloimmune thrombocytopenia: Stratified management to prevent recurrence in the subsequent affected fetus. Am J Obstet Gynecol 2010;203(2):135e131114.Google Scholar
Lakkaraja, M, Berkowitz, RL, Vinograd, CA, et al. Omission of fetal sampling in treatment of subsequent pregnancies in fetal-neonatal alloimmune thrombocytopenia. Am J Obstet Gynecol 2016;215(4):471.e1-9.Google Scholar
Ferro, M, Macher, HC, Fornés, G, et al. Noninvasive prenatal diagnosis by cell-free DNA screening for fetomaternal HPA-1a platelet incompatibility. Transfusion 2018;58(10):2272–9.Google Scholar
Nogues, N. Recent advances in non-invasive fetal HPA-1a typing. Transfus Apher Sci 2020;59(1):102708.Google Scholar
Adner, MM, Fisch, GR, Starobin, SG, Aster, RH. Use of “compatible” platelet transfusions in treatment of congenital isoimmune thrombocytopenic purpura. N Engl J Med 1969;280(5):244–7.Google Scholar
Sidiropoulos, D, Straume, B. The treatment of neonatal isoimmune thrombocytopenia with intravenous immunoglobin (IgG i.v.). Blut 1984;48(6):383–6.Google Scholar
Derycke, M, Dreyfus, M, Ropert, JC, Tchernia, G. Intravenous immunoglobulin for neonatal isoimmune thrombocytopenia. Arch Dis Child 1985;60(7):667–9.Google Scholar
Massey, GV, McWilliams, NB, Mueller, DG, Napolitano, A, Maurer, HM. Intravenous immunoglobulin in treatment of neonatal isoimmune thrombocytopenia. J Pediatr 1987;111(1):133–5.Google Scholar
Kiefel, V, Bassler, D, Kroll, H, et al. Antigen-positive platelet transfusion in neonatal alloimmune thrombocytopenia (NAIT). Blood 2006;107(9):3761–3.Google Scholar
Bakchoul, T, Bassler, D, Heckmann, M, et al. Management of infants born with severe neonatal alloimmune thrombocytopenia: The role of platelet transfusions and intravenous immunoglobulin. Transfusion 2014;54(3):640–5.Google Scholar
Bussel, J, Kaplan, C, McFarland, J. Recommendations for the evaluation and treatment of neonatal autoimmune and alloimmune thrombocytopenia. The Working Party on Neonatal Immune Thrombocytopenia of the Neonatal Hemostasis Subcommittee of the Scientific and Standardization Committee of the ISTH. Thromb Haemost 1991;65(5):631–4.Google Scholar
Mezo, AR, McDonnell, KA, Hehir, CAT, et al. Reduction of IgG in nonhuman primates by a peptide antagonist of the neonatal Fc receptor FcRn. Proc Natl Acad Sci USA 2008;105(7):2337–42.Google Scholar
Tiller, H, Killie, MK, Chen, P, et al. Toward a prophylaxis against fetal and neonatal alloimmune thrombocytopenia: Induction of antibody-mediated immune suppression and prevention of severe clinical complications in a murine model. Transfusion 2012;52(7):1446–57.Google Scholar
Stuge, TB, Skogen, B, Ahlen, MT, et al. The cellular immunobiology associated with fetal and neonatal alloimmune thrombocytopenia. Transfus Apher Sci 2011;45(1):53–9.Google Scholar
Bakchoul, T, Boylan, B, Sachs, UJ, et al. Blockade of maternal anti-HPA-1a-mediated platelet clearance by an HPA-1a epitope-specific F(ab’) in an in vivo mouse model of alloimmune thrombocytopenia. Transfusion 2009;49(2):265–70.Google Scholar
Bakchoul, T, Greinacher, A, Sachs, UJ, et al. Inhibition of HPA-1a alloantibody-mediated platelet destruction by a deglycosylated anti-HPA-1a monoclonal antibody in mice: Toward targeted treatment of fetal-alloimmune thrombocytopenia. Blood 2013;122(3):321–7.Google Scholar
Maslanka, K, Lucas, GF, Gronkowska, A, Davis, JG, Zupanska, B. A second case of neonatal alloimmune thrombocytopenia associated with anti-PlA2 (Zwb) antibodies. Haematologia (Budap) 1989;22(2):109–13.Google Scholar
Kuijpers, RW, van den Anker, JN, Baerts, W, von dem Borne, AE. A case of severe neonatal thrombocytopenia with schizencephaly associated with anti-HPA-1b and anti-HPA-2a. Br J Haematol 1994;87(3):576–9.Google Scholar
Mercier, P, Chicheportiche, C, Reviron, D, et al. Neonatal thrombocytopenia in HLA-DR, -DQ, -DP-typed mother due to rare anti-HPA-1b (PLA2) (Zwb) fetomaternal immunization. Vox Sang 1994;67(1):4651.Google Scholar
Van den Anker, JN, Huiskes, E, Porcelein, L, von dem Borne, AE. Anti-HPA-1b really causes neonatal thrombocytopenia. Br J Haematol 1995;89(2):428.Google Scholar
Winters, JL, Jennings, CD, Desai, NS, Dickson, LG, Ford, RF. Neonatal alloimmune thrombocytopenia due to anti-HPA-1b (PLA2)(Zwb). A case report and review. Vox Sang 1998;74(4):256–9.Google Scholar
von dem Borne, AE, von Riesz, E, Verheugt, FW, et al. Baka, a new platelet-specific antigen involved in neonatal allo-immune thrombocytopenia. Vox Sang 1980;39(2):113–20.Google Scholar
Kiefel, V, Santoso, S, Katzmann, B, Mueller-Eckhardt, C. A new platelet-specific alloantigen Bra. Report of 4 cases with neonatal alloimmune thrombocytopenia. Vox Sang 1988;54(2):101–6.Google Scholar
Kekomaki, R, Jouhikainen, T, Ollikainen, J, Westman, P, Laes, M. A new platelet alloantigen, Tua, on glycoprotein IIIa associated with neonatal alloimmune thrombocytopenia in two families. Br J Haematol 1993;83(2):306–10.Google Scholar
McFarland, JG, Blanchette, V, Collins, J, et al. Neonatal alloimmune thrombocytopenia due to a new platelet-specific alloantibody. Blood 1993;81(12):3318–23.Google Scholar

References

Murray, NA. Evaluation and treatment of thrombocytopenia in the neonatal intensive care unit. Acta Paediatr Suppl 2002;91(438):7481.Google Scholar
Garcia, MG, Duenas, E, Sola, MC, et al. Epidemiologic and outcome studies of patients who received platelet transfusions in the neonatal intensive care unit. J Perinatol 2001;21(7):415–20.Google Scholar
Noris, P, Pecci, A. Hereditary thrombocytopenias: A growing list of disorders. Hematology Am Soc Hematol Educ Program 2017;2017(1):385–99.Google Scholar
Greinacher, A, Pecci, A, Kunishima, S, et al. Diagnosis of inherited platelet disorders on a blood smear: A tool to facilitate worldwide diagnosis of platelet disorders. J Thromb Haemost 2017;15(7):1511–21.Google Scholar
Noris, P, Biino, G, Pecci, A, et al. Platelet diameters in inherited thrombocytopenias: Analysis of 376 patients with all known disorders. Blood 2014;124(6):e4-e10.Google Scholar
Buchanan, GR, Alter, BP, Holtkamp, CA, Walsh, EG. Platelet number and function in Diamond-Blackfan anemia. Pediatrics 1981;68(2):238–41.Google Scholar
Gibson, BE, Todd, A, Roberts, I, et al. Transfusion guidelines for neonates and older children. Br J Haematol 2004;124(4):433–53.Google Scholar
Candotti, F. Clinical manifestations and pathophysiological mechanisms of the Wiskott–Aldrich syndrome. J Clin Immunol 2018;38(1):1327.Google Scholar
Bastida, JM, Del Rey, M, Revilla, N, et al. Wiskott–Aldrich syndrome in a child presenting with macrothrombocytopenia. Platelets 2017;28(4):417–20.Google Scholar
Buchbinder, D, Nugent, DJ, Fillipovich, AH. Wiskott–Aldrich syndrome: Diagnosis, current management, and emerging treatments. Appl Clin Genet 2014;7:5566.Google Scholar
Sullivan, KE, Mullen, CA, Blaese, RM, Winkelstein, JA. A multi-institutional survey of the Wiskott–Aldrich syndrome. J Pediatr 1994;125(6 Pt 1):876–85.Google Scholar
Alekhina, O, Burstein, E, Billadeau, DD. Cellular functions of WASP family proteins at a glance. J Cell Sci 2017;130(14):2235–41.Google Scholar
Ochs, HD. Mutations of the Wiskott–Aldrich syndrome protein affect protein expression and dictate the clinical phenotypes. Immunol Res 2009; 44(1–3):84–8.Google Scholar
Notarangelo, LD. In Wiskott–Aldrich syndrome, platelet count matters. Blood 2013;121(9):1484–5.Google Scholar
Crispino, JD, Horwitz, MS. GATA factor mutations in hematologic disease. Blood 2017;129(15):2103–10.Google Scholar
Ochs, HD, Slichter, SJ, Harker, LA, et al. The Wiskott–Aldrich syndrome: Studies of lymphocytes, granulocytes, and platelets. Blood 1980;55(2):243–52.Google Scholar
Mathew, P, Conley, ME. Effect of intravenous gammaglobulin (IVIG) on the platelet count in patients with Wiskott–Aldrich syndrome. Pediatr Allergy Immunol 1995;6(2):91–4.Google Scholar
Ozsahin, H, Cavazzana-Calvo, M, Notarangelo, LD, et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott–Aldrich syndrome: Collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation. Blood 2008;111(1):439–45.Google Scholar
Moratto, D, Giliani, S, Bonfim, C, et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott–Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980–2009: An international collaborative study. Blood 2011;118(6):1675–84.Google Scholar
Gabelli, M, Marzollo, A, Notarangelo, LD, Basso, G, Putti, MC. Eltrombopag use in a patient with Wiskott–Aldrich syndrome. Pediatr Blood Cancer 2017;64(12).Google Scholar
Gerrits, AJ, Leven, EA, Frelinger, AL, et al. Effects of eltrombopag on platelet count and platelet activation in Wiskott–Aldrich syndrome/X-linked thrombocytopenia. Blood 2015;126(11):1367–78.Google Scholar
Alexander, WS, Roberts, AW, Nicola, NA, Li, R, Metcalf, D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 1996;87(6):2162–70.Google Scholar
Sitnicka, E, Lin, N, Priestley, GV, et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 1996;87(12):49985005.Google Scholar
Kaushansky, K. Thrombopoietin: More than a lineage-specific megakaryocyte growth factor. Stem Cells 1997;15 Suppl 1:97103; discussion 103.Google Scholar
Rose, MJ, Nicol, KK, Skeens, MA, Gross, TG, Kerlin, BA. Congenital amegakaryocytic thrombocytopenia: The diagnostic importance of combining pathology with molecular genetics. Pediatr Blood Cancer 2008;50(6):1263–5.Google Scholar
Germeshausen, M, Ballmaier, M, Welte, K. Implications of mutations in hematopoietic growth factor receptor genes in congenital cytopenias. Ann N Y Acad Sci 2001;938:305–20; discussion 20–1.Google Scholar
King, S, Germeshausen, M, Strauss, G, Welte, K, Ballmaier, M. Congenital amegakaryocytic thrombocytopenia: A retrospective clinical analysis of 20 patients. Br J Haematol 2005;131(5):636–44.Google Scholar
Eshuis-Peters, E, Versluys, AB, Stokman, MF, et al. Congenital amegakaryocytic thrombocytopenia Type II presenting with multiple central nervous system anomalies. Neuropediatrics 2016;47(2):128–31.Google Scholar
Martinón-Torres, N, Vázquez-Donsión, M, Loidi, L, Couselo, JM. CAMT in a female with developmental delay, facial malformations and central nervous system anomalies. Pediatr Blood Cancer 2011;56(3):452–3.Google Scholar
Bör, Ö, Turhan, AB, Yarar, C. Congenital amegakaryocytic thrombocytopenia with severe neurological findings. Blood Coagul Fibrinolysis 2016;27(8):936–9.Google Scholar
Mukai, HY, Kojima, H, Todokoro, K, et al. Serum thrombopoietin (TPO) levels in patients with amegakaryocytic thrombocytopenia are much higher than those with immune thrombocytopenic purpura. Thromb Haemost 1996;76(5):675–8.Google Scholar
Porcelijn, L, Folman, CC, Bossers, B, et al. The diagnostic value of thrombopoietin level measurements in thrombocytopenia. Thromb Haemost 1998;79(6):1101–5.Google Scholar
Pecci, A, Ragab, I, Bozzi, V, et al. Thrombopoietin mutation in congenital amegakaryocytic thrombocytopenia treatable with romiplostim. EMBO Mol Med 2018;10(1):6375.Google Scholar
Dasouki, MJ, Rafi, SK, Olm-Shipman, AJ, et al. Exome sequencing reveals a thrombopoietin ligand mutation in a Micronesian family with autosomal recessive aplastic anemia. Blood 2013;122(20):3440–9.Google Scholar
Greenhalgh, KL, Howell, RT, Bottani, A, et al. Thrombocytopenia-absent radius syndrome: A clinical genetic study. J Med Genet 2002;39(12):876–81.Google Scholar
Hall, JG. Thrombocytopenia and absent radius (TAR) syndrome. J Med Genet 1987;24(2):7983.Google Scholar
Hedberg, VA, Lipton, JM. Thrombocytopenia with absent radii. A review of 100 cases. Am J Pediatr Hematol Oncol 1988;10(1):5164.Google Scholar
Sultan, Y, Scrobohaci, ML, Rendu, F, Caen, JP. Abnormal platelet function, population, and survival-time in a boy with congenital absent radii and thrombocytopenia. Lancet 1972;2(7778):653.Google Scholar
Day, HJ, Holmsen, H. Platelet adenine nucleotide “storage pool deficiency” in thrombocytopenic absent radii syndrome. JAMA 1972;221(9):1053–4.Google Scholar
Digilio, MC, Giannotti, A, Marino, B, et al. Radial aplasia and chromosome 22q11 deletion. J Med Genet 1997;34(11):942–4.Google Scholar
Klopocki, E, Schulze, H, Strauss, G, et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet 2007;80(2):232–40.Google Scholar
Albers, CA, Paul, DS, Schulze, H, et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012;44(4):435–9, S12.Google Scholar
Albers, CA, Newbury-Ecob, R, Ouwehand, WH, Ghevaert, C. New insights into the genetic basis of TAR (thrombocytopenia-absent radii) syndrome. Curr Opin Genet Dev 2013;23(3):316–23.Google Scholar
Fadoo, Z, Naqvi, SM. Acute myeloid leukemia in a patient with thrombocytopenia with absent radii syndrome. J Pediatr Hematol Oncol 2002;24(2):134–5.Google Scholar
Rao, VS, Shenoi, UD, Krishnamurthy, PN. Acute myeloid leukemia in TAR syndrome. Indian J Pediatr 1997;64(4):563–5.Google Scholar
Kataoka, K, Sato, T, Yoshimi, A, et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med 2011;208(12):2403–16.Google Scholar
Kustikova, OS, Schwarzer, A, Stahlhut, M, et al. Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells. Leukemia 2013;27(5):1127–38.Google Scholar
Wieser, R. The oncogene and developmental regulator EVI1: Expression, biochemical properties, and biological functions. Gene 2007;396(2):346–57.Google Scholar
Germeshausen, M, Ancliff, P, Estrada, J, et al. MECOM-associated syndrome: A heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv 2018;2(6):586–96.Google Scholar
Niihori, T, Ouchi-Uchiyama, M, Sasahara, Y, Kaneko, T, Hashii, Y, Irie, M, et al. Mutations in MECOM, encoding oncoprotein EVI1, cause radioulnar synostosis with amegakaryocytic thrombocytopenia. Am J Hum Genet 2015;97(6):848–54.Google Scholar
Thompson, AA, Nguyen, LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 2000;26(4):397–8.Google Scholar
Walne, A, Tummala, H, Ellison, A, et al. Expanding the phenotypic and genetic spectrum of radioulnar synostosis associated hematological disease. Haematologica 2018;103(7):e284-e7.Google Scholar
Song, WJ, Sullivan, M G, Legare, RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999;23(2):166–75.Google Scholar
Noris, P, Favier, R, Alessi, MC, et al. ANKRD26-related thrombocytopenia and myeloid malignancies. Blood 2013;122(11):1987–9.Google Scholar
Zhang, MY, Churpek, JE, Keel, SB, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet 2015;47(2):180–5.Google Scholar
Noetzli, L, Lo, RW, Lee-Sherick, AB, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet 2015;47(5):535–8.Google Scholar
Latger-Cannard, V, Philippe, C, Bouquet, A, et al. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J Rare Dis 2016;11:49.Google Scholar
Feurstein, S, Godley, LA. Germline ETV6 mutations and predisposition to hematological malignancies. Int J Hematol 2017;106(2):189–95.Google Scholar
Melazzini, F, Zaninetti, C, Balduini, CL. Bleeding is not the main clinical issue in many patients with inherited thrombocytopaenias. Haemophilia 2017;23(5):673–81.Google Scholar
Hock, H, Shimamura, A. ETV6 in hematopoiesis and leukemia predisposition. Semin Hematol 2017;54(2):98104.Google Scholar
Godley, LA, Shimamura, A. Genetic predisposition to hematologic malignancies: Management and surveillance. Blood 2017;130(4):424–32.Google Scholar
Li, R, Emsley, J. The organizing principle of the platelet glycoprotein Ib-IX-V complex. J Thromb Haemost 2013;11(4):605–14.Google Scholar
Berndt, MC, Andrews, RK. Bernard–Soulier syndrome. Haematologica 2011;96(3):355–9.Google Scholar
Kunishima, S, Naoe, T, Kamiya, T, Saito, H. Novel heterozygous missense mutation in the platelet glycoprotein Ib beta gene associated with isolated giant platelet disorder. Am J Hematol 2001;68(4):249–55.Google Scholar
Ali, S, Shetty, S, Ghosh, K. A novel mutation in GP1 BA gene leads to mono-allelic Bernard–Soulier syndrome form of macrothrombocytopenia. Blood Coagul Fibrinolysis 2017;28(1):94–5.Google Scholar
Poon, MC, d’Oiron, R. Alloimmunization in congenital deficiencies of platelet surface glycoproteins: Focus on Glanzmann’s thrombasthenia and Bernard–Soulier’s syndrome. Semin Thromb Hemost 2018;44(6):604–14.Google Scholar
Ozelo, MC, Svirin, P, Larina, L. Use of recombinant factor VIIa in the management of severe bleeding episodes in patients with Bernard-Soulier syndrome. Ann Hematol 2005;84(12):816–22.Google Scholar
Hacihanefioglu, A, Tarkun, P, Gonullu, E. Use of recombinant factor VIIa in the management and prophylaxis of bleeding episodes in two patients with Bernard-Soulier syndrome. Thromb Res 2007;120(3):455–7.Google Scholar
Lee, A, Poon, MC. Inherited platelet functional disorders: General principles and practical aspects of management. Transfus Apher Sci 2018;57(4):494501.Google Scholar
Balduini, CL, Pecci, A, Savoia, A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol 2011;154(2):161–74.Google Scholar
Seri, M, Pecci, A, Di Bari, F, et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 2003;82(3):203–15.Google Scholar
Verver, E, Pecci, A, De Rocco, D, et al. R705 H mutation of MYH9 is associated with MYH9-related disease and not only with non-syndromic deafness DFNA17. Clin Genet 2015;88(1):85–9.Google Scholar
Pecci, A, Klersy, C, Gresele, P, et al. MYH9-related disease: A novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2014;35(2):236–47.Google Scholar
Harrison, P, Cramer, EM. Platelet alpha-granules. Blood Rev 1993;7(1):5262.Google Scholar
Gunay-Aygun, M, Falik-Zaccai, TC, Vilboux, T, et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet 2011;43(8):732–4.Google Scholar
Albers, CA, Cvejic, A, Favier, R, et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 2011;43(8):735–7.Google Scholar
Kahr, WH, Hinckley, J, Li, L, et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011;43(8):738–40.Google Scholar
Tubman, VN, Levine, JE, Campagna, DR, et al. X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation. Blood 2007;109(8):3297–9.Google Scholar
Wijgaerts, A, Wittevrongel, C, Thys, C, et al. The transcription factor GATA1 regulates NBEAL2 expression through a long-distance enhancer. Haematologica 2017;102(4):695706.Google Scholar
Larocca, LM, Heller, PG, Podda, G, et al. Megakaryocytic emperipolesis and platelet function abnormalities in five patients with gray platelet syndrome. Platelets 2015;26(8):751–7.Google Scholar
Nurden, AT, Nurden, P. The gray platelet syndrome: Clinical spectrum of the disease. Blood Rev 2007;21(1):2136.Google Scholar
Khincha, PP, Savage, SA. Neonatal manifestations of inherited bone marrow failure syndromes. Semin Fetal Neonatal Med 2016;21(1):5765.Google Scholar
Savage, SA, Walsh, MF. Myelodysplastic syndrome, acute myeloid leukemia, and cancer surveillance in Fanconi anemia. Hematol Oncol Clin North Am 2018;32(4):657–68.Google Scholar
Kutler, DI, Auerbach, AD. Fanconi anemia in Ashkenazi Jews. Fam Cancer 2004;3(3–4):241–8.Google Scholar
Callén, E, Casado, JA, Tischkowitz, MD, et al. A common founder mutation in FANCA underlies the world’s highest prevalence of Fanconi anemia in Gypsy families from Spain. Blood 2005;105(5):1946–9.Google Scholar
Feben, C, Kromberg, J, Wainwright, R, et al. Hematological consequences of a FANCG founder mutation in Black South African patients with Fanconi anemia. Blood Cells Mol Dis 2015;54(3):270–4.Google Scholar
Meetei, AR, Levitus, M, Xue, Y, et al. X-linked inheritance of Fanconi anemia complementation group B. Nat Genet 2004;36(11):1219–24.Google Scholar
Peffault de Latour, R, Soulier, J. How I treat MDS and AML in Fanconi anemia. Blood 2016;127(24):2971–9.Google Scholar
Savage, SA, Alter, BP. Dyskeratosis congenita. Hematol Oncol Clin North Am 2009;23(2):215–31.Google Scholar
Agarwal, S. Evaluation and management of hematopoietic failure in dyskeratosis congenita. Hematol Oncol Clin North Am 2018;32(4):669–85.Google Scholar
Glousker, G, Touzot, F, Revy, P, Tzfati, Y, Savage, SA. Unraveling the pathogenesis of Hoyeraal–Hreidarsson syndrome, a complex telomere biology disorder. Br J Haematol 2015;170(4):457–71.Google Scholar
Vogiatzi, P, Perdigones, N, Mason, PJ, Wilson, DB, Bessler, M. A family with Hoyeraal–Hreidarsson syndrome and four variants in two genes of the telomerase core complex. Pediatr Blood Cancer 2013;60(6):E46.Google Scholar
Hreidarsson, S, Kristjansson, K, Johannesson, G, Johannsson, JH. A syndrome of progressive pancytopenia with microcephaly, cerebellar hypoplasia and growth failure. Acta Paediatr Scand 1988;77(5):773–5.Google Scholar
Knight, SW, Heiss, NS, Vulliamy, TJ, et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal–Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br J Haematol 1999;107(2):335–9.Google Scholar
Revesz, T, Fletcher, S, al-Gazali, LI, DeBuse, P. Bilateral retinopathy, aplastic anaemia, and central nervous system abnormalities: A new syndrome?J Med Genet 1992;29(9):673–5.Google Scholar
Savage, SA, Alter, BP. The role of telomere biology in bone marrow failure and other disorders. Mech Ageing Dev 2008;129(1–2):3547.Google Scholar
Ozdemir, MA, Karakukcu, M, Kose, M, Kumandas, S, Gumus, H. The longest surviving child with Hoyeraal–Hreidarsson syndrome. Haematologica 2004;89(9):ECR38.Google Scholar
Favier, R, Douay, L, Esteva, B, et al. A novel genetic thrombocytopenia (Paris-Trousseau) associated with platelet inclusions, dysmegakaryopoiesis and chromosome deletion AT 11q23. C R Acad Sci III 1993;316(7):698701.Google Scholar
Breton-Gorius, J, Favier, R, Guichard, J, et al. A new congenital dysmegakaryopoietic thrombocytopenia (Paris-Trousseau) associated with giant platelet alpha-granules and chromosome 11 deletion at 11q23. Blood 1995;85(7):1805–14.Google Scholar
Favier, R, Akshoomoff, N, Mattson, S, Grossfeld, P. Jacobsen syndrome: Advances in our knowledge of phenotype and genotype. Am J Med Genet C Semin Med Genet 2015;169(3):239–50.Google Scholar
Grossfeld, PD, Mattina, T, Lai, Z, et al. The 11q terminal deletion disorder: A prospective study of 110 cases. Am J Med Genet A 2004;129A(1):5161.Google Scholar
Hart, A, Melet, F, Grossfeld, P, et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 2000;13(2):167–77.Google Scholar
Raslova, H, Komura, E, Le Couédic, JP, et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 2004;114(1):7784.Google Scholar
Favier, R, Jondeau, K, Boutard, P, et al. Paris-Trousseau syndrome: Clinical, hematological, molecular data of ten new cases. Thromb Haemost 2003;90(5):893–7.Google Scholar
Stockley, J, Morgan, NV, Bem, D, et al. Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects. Blood 2013;122(25):4090–3.Google Scholar
Saultier, P, Vidal, L, Canault, M, et al. Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants: Ultrastructural and pathogenic features. Haematologica 2017;102(6):1006–16.Google Scholar
White, JG. Platelet storage pool deficiency in Jacobsen syndrome. Platelets 2007;18(7):522–7.Google Scholar
Roberts, AE, Allanson, JE, Tartaglia, M, Gelb, BD. Noonan syndrome. Lancet 2013;381(9863):333–42.Google Scholar
Tajan, M, de Rocca Serra, A, Valet, P, Edouard, T, Yart, A. SHP2 sails from physiology to pathology. Eur J Med Genet 2015;58(10):509–25.Google Scholar
Nunes, P, Aguilar, S, Prado, SN, et al. Severe congenital thrombocytopaenia: First clinical manifestation of Noonan syndrome. BMJ Case Rep 2012;2012:bcr1020114940.Google Scholar
Christensen, RD, Yaish, HM, Leon, EL, Sola-Visner, MC, Agrawal, PB. A de novo T73I mutation in PTPN11 in a neonate with severe and prolonged congenital thrombocytopenia and Noonan syndrome. Neonatology 2013;104(1):15.Google Scholar
Artoni, A, Selicorni, A, Passamonti, SM, et al. Hemostatic abnormalities in Noonan syndrome. Pediatrics 2014;133(5):e1299–304.Google Scholar
Strullu, M, Caye, A, Lachenaud, J, et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet 2014;51(10):689–97.Google Scholar
Kratz, CP, Franke, L, Peters, H, et al. Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. Br J Cancer 2015;112(8):1392–7.Google Scholar
Sullivan, KE. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol Rev 2019;287(1):186201.Google Scholar
Kato, T, Kosaka, K, Kimura, M, et al. Thrombocytopenia in patients with 22q11.2 deletion syndrome and its association with glycoprotein Ib-beta. Genet Med 2003;5(2):113–19.Google Scholar
Liang, HP, Morel-Kopp, MC, Curtin, J, et al. Heterozygous loss of platelet glycoprotein (GP) Ib-V-IX variably affects platelet function in velocardiofacial syndrome (VCFS) patients. Thromb Haemost 2007;98(6):1298–308.Google Scholar
Kunishima, S, Imai, T, Kobayashi, R, et al. Bernard-Soulier syndrome caused by a hemizygous GPIbβ mutation and 22q11.2 deletion. Pediatr Int 2013;55(4):434–7.Google Scholar
DePiero, AD, Lourie, EM, Berman, BW, et al. Recurrent immune cytopenias in two patients with DiGeorge/velocardiofacial syndrome. J Pediatr 1997;131(3):484–6.Google Scholar
Wiedmeier, SE, Henry, E, Christensen, RD. Hematological abnormalities during the first week of life among neonates with trisomy 18 and trisomy 13: Data from a multi-hospital healthcare system. Am J Med Genet A 2008;146A(3):312–20.Google Scholar
Roth, P, Sklower Brooks, S, Potaznik, D, Cooma, R, Sahdev, S. Neonatal Gaucher disease presenting as persistent thrombocytopenia. J Perinatol 2005;25(5):356–8.Google Scholar
Fairley, C, Zimran, A, Phillips, M, et al. Phenotypic heterogeneity of N370S homozygotes with type I Gaucher disease: An analysis of 798 patients from the ICGG Gaucher Registry. J Inherit Metab Dis 2008;31(6):738–44.Google Scholar
Finsterer, J. Hematological manifestations of primary mitochondrial disorders. Acta Haematol 2007;118(2):8898.Google Scholar
Bastida, JM, Benito, R, Janusz, K, et al. Two novel variants of the ABCG5 gene cause xanthelasmas and macrothrombocytopenia: A brief review of hematologic abnormalities of sitosterolemia. J Thromb Haemost 2017;15(9):1859–66.Google Scholar
Bastida, JM, Giros, ML, Benito, R, et al. Sitosterolemia: Diagnosis, metabolic and hematological abnormalities, cardiovascular disease and management. Curr Med Chem 2019;26(37):6766–75.Google Scholar
Yoo, EG. Sitosterolemia: A review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab 2016;21(1):714.Google Scholar
Stewart, GW, Makris, M. Mediterranean macrothrombocytopenia and phytosterolaemia/sitosterolaemia. Haematologica 2008;93(2):e29.Google Scholar
Park, JH, Chung, IH, Kim, DH, et al. Sitosterolemia presenting with severe hypercholesterolemia and intertriginous xanthomas in a breastfed infant: Case report and brief review. J Clin Endocrinol Metab 2014;99(5):1512–18.Google Scholar
Proud, L, Ritchey, AK. Management of type 2b von Willebrand disease in the neonatal period. Pediatr Blood Cancer 2017;64(1):103–5.Google Scholar
Kruse-Jarres, R, Johnsen, JM. How I treat type 2B von Willebrand disease. Blood 2018;131(12):1292–300.Google Scholar
Othman, M. Platelet-type von Willebrand disease: A rare, often misdiagnosed and underdiagnosed bleeding disorder. Semin Thromb Hemost 2011;37(5):464–9.Google Scholar
Lotta, LA, Garagiola, I, Palla, R, Cairo, A, Peyvandi, F. ADAMTS13 mutations and polymorphisms in congenital thrombotic thrombocytopenic purpura. Hum Mutat 2010;31(1):11–19.Google Scholar
Krogh, AS, Waage, A, Quist-Paulsen, P. Congenital thrombotic thrombocytopenic purpura. Tidsskr Nor Laegeforen 2016;136(17):1452–7.Google Scholar
Taylor, A, Vendramin, C, Oosterholt, S, Della Pasqua, O, Scully, M. Pharmacokinetics of plasma infusion in congenital thrombotic thrombocytopenic purpura. J Thromb Haemost 2019; 17:8898.Google Scholar
Plautz, WE, Raval, JS, Dyer, MR, et al. ADAMTS13: Origins, applications, and prospects. Transfusion 2018;58(10):2453–62.Google Scholar
Ferrer, M, Tao, J, Iruín, G, et al. Truncation of glycoprotein (GP) IIIa (616–762) prevents complex formation with GPIIb: Novel mutation in exon 11 of GPIIIa associated with thrombasthenia. Blood 1998;92(12):4712–20.Google Scholar
Poncz, M, Rifat, S, Coller, BS, et al. Glanzmann thrombasthenia secondary to a Gly273–>Asp mutation adjacent to the first calcium-binding domain of platelet glycoprotein IIb. J Clin Invest 1994;93(1):172–9.Google Scholar
Nurden, AT. Acquired antibodies to αIIbβ3 in Glanzmann thrombasthenia: From transfusion and pregnancy to bone marrow transplants and beyond. Transfus Med Rev 2018;S0887 -7963(18)30037-3.Google Scholar
Barg, AA, Hauschner, H, Luboshitz, J, et al. From thrombasthenia to next generation thrombocytopenia: Neonatal alloimmune thrombocytopenia induced by maternal Glanzmann thrombasthenia. Pediatr Blood Cancer 2018;65(12):e27376.Google Scholar
Wang, Q, Cao, L, Sheng, G, et al. Application of high-throughput sequencing in the diagnosis of inherited thrombocytopenia. Clin Appl Thromb Hemost 2018:24(9 Suppl):94S103S.Google Scholar
Bastida, JM, Lozano, ML, Benito, R, et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2018;103(1):148–62.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×