Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T04:32:49.151Z Has data issue: false hasContentIssue false

6 - Hemolytic disease of the fetus and newborn

Published online by Cambridge University Press:  10 August 2009

Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Introduction

The fetus has a special immunological relationship with the mother that prevents rejection despite it being an allogeneic tissue [1–4]. If fetal blood cells enter the maternal circulation, the peaceful coexistence may be disrupted. The clinical problem of maternal antibody-mediated fetal red-blood-cell (RBC) destruction was a powerful stimulus to the acquisition of knowledge of the RBC antigen systems [5]. The triumphs of Landsteiner, Wiener, Levine, Darrow, Diamond, Chown, Liley, Clarke, Freda, Bowman and many others were among the great accomplishments of twentieth-century medicine [6]. Additionally, the assessment and management of hemolytic disease of the newborn (HDN) was a stimulus to progress in perinatal care in the second half of the twentieth century, including advances in fetal monitoring, in utero intervention, Cesarian section, neonatal resuscitation, and neonatal intensive care [7, 8]. A study of the interactions of RBC antigens with the maternal immune system and the fetal response to anemia can provide tremendous insight into systems of fundamental importance to neonatal health and disease.

The term “hemolytic disease of the newborn” was chosen to replace the term “erythroblastosis fetalis” when the mechanism of fetal anemia and neonatal jaundice was determined [9]. It was intended to name the maternal antibody-mediated fetal hemolytic disease, which, in these investigators' subjects, was the dominant etiology of fetal hemolysis and is a major cause of HDN worldwide. RhD continues to be the most commonly identified antigenic stimulus to HDN [10]. RhD-negative mothers give birth to RhD-positive fetuses in about 9% of European-ancestry pregnancies.

Type
Chapter
Information
Neonatal Hematology , pp. 91 - 131
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gura, T.How embryos may avoid immune attack. Science 1998; 281: 1122–1124CrossRefGoogle ScholarPubMed
Munn, D. H., Zhou, M., Attwood, J. T., et al.Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281: 1191–1193CrossRefGoogle ScholarPubMed
Barker, C. F., Billingham, R. E.Immunologically privileged sites. Adv Immunol 1977; 25: 1–54Google ScholarPubMed
Mellor, A. L., Munn, D. H.Immunology at the maternal-fetal interface: lessons for T cell tolerance and suppression. Annu Rev Immunol 2000; 18: 367–391CrossRefGoogle Scholar
Garratty, G. E.Hemolytic Disease of the Newborn. Arlington, VA: American Association of Blood Banks, 1984Google Scholar
Zimmerman, D. R.Rh: The Intimate History of a Disease and its Conquest. New York: Macmillan, 1973Google Scholar
Phibbs, R. H., Johnson, P., Kitterman, J. A., Gregory, G. A., Tooley, W. H.Cardiorespiratory status of erythroblastotic infants. 1. Relationship of gestational age, severity of hemolytic diseases, and birth asphyxia to idiopathic respiratory distress syndrome and survival. Pediatrics 1972; 49: 5–14Google Scholar
Nelson, N. M.A decimillennium in neonatology. J Pediatr 2000; 137: 731–735CrossRefGoogle ScholarPubMed
Mollison, P. L. Some aspects of Rh hemolytic disease and its prevention. In Garratty, G., ed. Hemolytic Disease of the Newborn. Arlington, VA: American Association of Blood Banks, 1984: 1–32Google Scholar
Howard, H., Martlew, V., McFadyen, I., et al.Consequences for fetus and neonate of maternal red cell allo-immunisation. Arch Dis Child Fetal Neonatal Ed 1998; 78: F62–F66CrossRefGoogle ScholarPubMed
Bowman, J. M.Treatment options for the fetus with alloimmune hemolytic disease. Transfus Med Rev 1990; 4: 191–207CrossRefGoogle ScholarPubMed
Chavez, G. F., Mulinare, J., Edmonds, L. D.Epidemiology of Rh hemolytic disease of the newborn in the United States. J Am Med Assoc 1991; 265: 3270–3274CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. USNational Vital Statistics Report, Vol. 48, No. 11. Atlanta, GA: Centers for Disease Control and Prevention, 2000
Davey, M. G., Zipursky, A.McMaster conference on prevention of Rh immunization. 28–30 September, 1977. Vox Sang 1979; 36: 50–64CrossRefGoogle Scholar
Urbaniak, S. J.The scientific basis of antenatal prophylaxis. Br J Obstet Gynaecol 1998; 105 (Suppl 18): 11–18CrossRefGoogle ScholarPubMed
Moise, K. J. Jr.Non-anti-D antibodies in red-cell alloimmunization. Eur J Obstet Gynecol Reprod Biol 2000; 92: 75–81CrossRefGoogle ScholarPubMed
Kajii, E., Umenishi, F., Iwamoto, S., Ikemoto, S.Isolation of a new cDNA clone encoding an Rh polypeptide associated with the Rh blood group system. Hum Genet 1993; 91: 157–162CrossRefGoogle Scholar
Matassi, G., Cherif-Zahar, B., Pesole, G., Raynal, V., Cartron, J. P.The members of the RH gene family (RH50 and RH30) followed different evolutionary pathways. J Mol Evol 1999; 48: 151–159CrossRefGoogle ScholarPubMed
Avent, N. D., Reid, M. E.The Rh blood group system: a review. Blood 2000; 95: 375–387Google ScholarPubMed
Southcott, M. J., Tanner, M. J., Anstee, D. J.The expression of human blood group antigens during erythropoiesis in a cell culture system. Blood 1999; 93: 4425–4435Google Scholar
Cartron, J. P., Bailly, P., Van, K. C., et al.Insights into the structure and function of membrane polypeptides carrying blood group antigens. Vox Sang 1998; 74 (Suppl 2): 29–64CrossRefGoogle ScholarPubMed
Bergstrom, H., Nilsson, L. A., Nilsson, L., Ryttinger, L.Demonstration of Rh antigens in a 38-day-old fetus. Am J Obstet Gynecol 1967; 99: 130–133CrossRefGoogle Scholar
Colin, Y., Cherif-Zahar, B., Van, K. C., et al.Genetic basis of the RhD-positive and RhD-negative blood group polymorphism as determined by Southern analysis. Blood 1991; 78: 2747–2752Google ScholarPubMed
Avent, N. D., Martin, P. G., Armstrong-Fisher, S. S., et al.Evidence of genetic diversity underlying Rh D-, weak D (Du), and partial D phenotypes as determined by multiplex polymerase chain reaction analysis of the RhD gene. Blood 1997; 89: 2568–2777Google Scholar
Chang, J. G., Wang, J. C., Yang, T. Y., et al.Human RhDel is caused by a deletion of 1,013 bp between introns 8 and 9 including exon 9 of RHD gene. Blood 1998; 92: 2602–2604Google ScholarPubMed
Daniels, G., Green, C., Smart, E.Differences between RhD-negative Africans and RhD-negative Europeans. Lancet 1997; 350: 862–863CrossRefGoogle ScholarPubMed
Okuda, H., Kawano, M., Iwamoto, S., et al.The RHD gene is highly detectable in RhD-negative Japanese donors. J Clin Invest 1997; 100: 373–399CrossRefGoogle ScholarPubMed
Singleton, B. K., Green, C. A., Avent, N. D., et al.The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in africans with the Rh D-negative blood group phenotype. Blood 2000; 95: 12–18Google Scholar
Sun, C. F., Chou, C. S., Lai, N. C., Wang, W. T.RHD gene polymorphisms among RhD-negative Chinese in Taiwan. Vox Sang 1998; 75: 52–77CrossRefGoogle ScholarPubMed
Scott, M.Rh serology: coordinator's report. Transfus Clin Biol 1996; 3: 333–337CrossRefGoogle ScholarPubMed
Wagner, F. F., Gassner, C., Muller, T. H., et al.Molecular basis of weak D phenotypes. Blood 1999; 93: 385–933Google ScholarPubMed
Gorick, B., McDougall, D. C., Ouwehand, W. H., et al.Quantitation of D sites on selected “weak D” and “partial D” red cells. Vox Sang 1993; 65: 136–140Google ScholarPubMed
Wagner, F. F., Frohmajer, A., Ladewig, B., et al.Weak D alleles express distinct phenotypes. Blood 2000; 95: 2699–2708Google ScholarPubMed
Jones, J., Filbey, D.Selection of monoclonal antibodies for the identification of D variants: ability to detect weak D and to split epD2, epD5 and epD6/7. Vox Sang 1996; 70: 173–179CrossRefGoogle Scholar
Judd, W. J.Practice guidelines for prenatal and perinatal immunohematology, revisited. Transfusion 2001; 41: 1445–1452CrossRefGoogle ScholarPubMed
Lacey, P. A., Caskey, C. R., Werner, D. J., Moulds, J. J.Fatal hemolytic disease of a newborn due to anti-D in an Rh-positive Du variant mother. Transfusion 1983; 23: 91–94CrossRefGoogle Scholar
Simsek, S., Jong, C. A., Cuijpers, H. T., et al.Sequence analysis of cDNA derived from reticulocyte mRNAs coding for Rh polypeptides and demonstration of E/e and C/c polymorphisms. Vox Sang 1994; 67: 203–299CrossRefGoogle Scholar
Smythe, J. S., Avent, N. D., Judson, P. A., et al.Expression of RHD and RHCE gene products using retroviral transduction of K562 cells establishes the molecular basis of Rh blood group antigens. Blood 1996; 87: 2968–2973Google ScholarPubMed
Avent, N. D., Liu, W., Warner, K. M., et al.Immunochemical analysis of the human erythrocyte Rh polypeptides. J Biol Chem 1996; 271: 14233–14239CrossRefGoogle ScholarPubMed
Mouro, I., Colin, Y., Cherif-Zahar, B., Cartron, J. P., Van, K. C.Molecular genetic basis of the human Rhesus blood group system. Nat Genet 1993; 5: 62–65CrossRefGoogle ScholarPubMed
Mouro, I., Colin, Y., Sistonen, P., et al.Molecular basis of the RhCW (Rh8) and RhCX (Rh9) blood group specificities. Blood 1995; 86: 1196–1201Google ScholarPubMed
Marini, A. M., Matassi, G., Raynal, V., et al.The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 2000; 26: 341–344CrossRefGoogle Scholar
Mollison, P. L., Engelfriet, C. P., Contreras, M. Haemolytic disease of the foetus and the newborn. In Blood Transfusion in Clinical Medicine. Oxford, UK: Blackwell Scientific, 1993: 453–591Google Scholar
Sturgeon, P.Hematological observations on the anemia associated with blood type Rhnull. Blood 1970; 36: 310–320Google ScholarPubMed
Cherif-Zahar, B., Mattei, M. G., Van, K. C., et al.Localization of the human Rh blood group gene structure to chromosome region 1p34.3–1p36.1 by in situ hybridization. Hum Genet 1991; 86: 398–400CrossRefGoogle ScholarPubMed
Wagner, F. F., Flegel, W. A.RHD gene deletion occurred in the Rhesus box. Blood 2000; 95: 3662–3668Google ScholarPubMed
Carritt, B., Kemp, T. J., Poulter, M.Evolution of the human RH (rhesus) blood group genes: a 50 year old prediction (partially) fulfilled. Hum Mol Genet 1997; 6: 843–850CrossRefGoogle ScholarPubMed
Hughes-Jones, N. C., Gardner, B., Lincoln, P. J.Observations of the number of available c, D, and E antigen sites on red cells. Vox Sang 1971; 21: 210–216CrossRefGoogle Scholar
Hughes-Jones, N. C.Quantitation and the Rh blood group system. Transfus Med 1991; 1: 69–76CrossRefGoogle ScholarPubMed
Yamamoto, F., Clausen, H., White, T., Marken, J., Hakomori, S.Molecular genetic basis of the histo-blood group ABO system. Nature 1990; 345: 229–233CrossRefGoogle ScholarPubMed
Clausen, H., Hakomori, S.ABH and related histo-blood group antigens: immunochemical differences in carrier isotypes and their distribution. Vox Sang 1989; 56: 1–20CrossRefGoogle ScholarPubMed
Carneiro-Sampaio, M. M., Grumach, A. S., Manissadjian, A.Laboratory screening for the diagnosis of children with primary immunodeficiencies. J Investig Allergol Clin Immunol 1991; 1: 195–200Google Scholar
Coombs, R., Mourant, A., Race, R.Detection of weak and “incomplete” Rh agglutins: new test. Lancet 1945; 2: 15–16CrossRefGoogle Scholar
Lee, S.Molecular basis of Kell blood group phenotypes. Vox Sang 1997; 73: 1–111CrossRefGoogle ScholarPubMed
Babinszki, A., Lapinski, R. H., Berkowitz, R. L.Prognostic factors and management in pregnancies complicated with severe kell alloimmunization: experiences of the last 13 years. Am J Perinatol 1998; 15: 695–7011CrossRefGoogle ScholarPubMed
Bowman, J. M., Pollock, J. M., Manning, F. A., Harman, C. R., Menticoglou, S.Maternal Kell blood group alloimmunization. Obstet Gynecol 1992; 79: 239–444Google ScholarPubMed
Lee, S., Wu, X., Reid, M., Zelinski, T., Redman, C.Molecular basis of the Kell (K1) phenotype. Blood 1995; 85: 912–916Google ScholarPubMed
Lee, S., Wu, X., Son, S., et al.Point mutations characterize KEL10, the KEL3, KEL4, and KEL21 alleles, and the KEL17 and KEL11 alleles. Transfusion 1996; 36: 490–494CrossRefGoogle ScholarPubMed
Vaughan, J. I., Warwick, R., Letsky, E., et al.Erythropoietic suppression in fetal anemia because of Kell alloimmunization. Am J Obstet Gynecol 1994; 171: 247–252CrossRefGoogle ScholarPubMed
Vaughan, J. I., Manning, M., Warwick, R. M., et al.Inhibition of erythroid progenitor cells by anti-Kell antibodies in fetal alloimmune anemia. N Engl J Med 1998; 338: 798–803CrossRefGoogle ScholarPubMed
Weiner, C. P., Widness, J. A.Decreased fetal erythropoiesis and hemolysis in Kell hemolytic anemia. Am J Obstet Gynecol 1996; 174: 547–551CrossRefGoogle ScholarPubMed
Miller, L. H., Mason, S. J., Clyde, D. F., McGinniss, M. H.The resistance factor to Plasmodium vivax in blacks: the Duffy-blood-group genotype, FyFy. N Engl J Med 1976; 295: 302–304CrossRefGoogle Scholar
Sim, B. K., Chitnis, C. E., Wasniowska, K., Hadley, T. J., Miller, L. H.Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 1994; 264: 1941–1944CrossRefGoogle ScholarPubMed
Hadley, T. J., Peiper, S. C.From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 1997; 89: 3077–3091Google ScholarPubMed
Horuk, R., Chitnis, C. E., Darbonne, W. C., et al.A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 1993; 261: 1182–1184CrossRefGoogle ScholarPubMed
Tournamille, C., Van, K. C., Gane, P., Cartron, J. P., Colin, Y.Molecular basis and PCR-DNA typing of the Fya/fyb blood group polymorphism. Hum Genet 1995; 95: 407–410CrossRefGoogle ScholarPubMed
Weatherall, D. J.Host genetics and infectious disease. Parasitology 1996; 112 (Suppl): S23–S29Google ScholarPubMed
Tournamille, C., Colin, Y., Cartron, J. P., Van, K. C.Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 1995; 10: 224–228CrossRefGoogle ScholarPubMed
Chaudhuri, A., Polyakova, J., Zbrzezna, V., Pogo, A. O.The coding sequence of Duffy blood group gene in humans and simians: restriction fragment length polymorphism, antibody and malarial parasite specificities, and expression in nonerythroid tissues in Duffy-negative individuals. Blood 1995; 85: 615–621Google ScholarPubMed
Peiper, S. C., Wang, Z. X., Neote, K., et al.The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J Exp Med 1995; 181: 1311–1317CrossRefGoogle ScholarPubMed
Weinstein, L., Taylor, E. S.Hemolytic disease of the neonate secondary to anti-Fya. Am J Obstet Gynecol 1975; 121: 643–645CrossRefGoogle ScholarPubMed
Goodrick, M. J., Hadley, A. G., Poole, G.Haemolytic disease of the fetus and newborn due to anti-Fy(a) and the potential clinical value of Duffy genotyping in pregnancies at risk. Transfus Med 1997; 7: 301–304CrossRefGoogle ScholarPubMed
Vescio, L. A., Farina, D., Rogido, M., Sola, A.Hemolytic disease of the newborn caused by anti-Fyb. Transfusion 1987; 27: 366CrossRefGoogle ScholarPubMed
Buchanan, D. I., Sinclair, M., Sanger, R., Gavin, J., Teesdale, P.An Alberta Cree Indian with a rare Duffy antibody, anti-Fy 3. Vox Sang 1976; 30: 114–121CrossRefGoogle ScholarPubMed
Olives, B., Mattei, M. G., Huet, M., et al.Kidd blood group and urea transport function of human erythrocytes are carried by the same protein. J Biol Chem 1995; 270: 15607–15610CrossRefGoogle ScholarPubMed
Xu, Y., Olives, B., Bailly, P., et al.Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int 1997; 51: 138–146CrossRefGoogle ScholarPubMed
Olives, B., Merriman, M., Bailly, P., et al.The molecular basis of the Kidd blood group polymorphism and its lack of association with type 1 diabetes susceptibility. Hum Mol Genet 1997; 6: 1017–1020CrossRefGoogle ScholarPubMed
Woodfield, D. G., Douglas, R., Smith, J., et al.The Jk(a−b−) phenotype in New Zealand Polynesians. Transfusion 1982; 22: 276–278CrossRefGoogle ScholarPubMed
Dorner, I., Moore, J. A., Chaplin, H. Jr.Combined maternal erythrocyte autosensitization and materno-fetal Jk incompatibility. Transfusion 1974; 14: 212–219CrossRefGoogle ScholarPubMed
Merlob, P., Litwin, A., Reisner, S. H., Cohen, I. J., Zaizov, R.Hemolytic disease of the newborn caused by anti-Jkb. Pediatr Hematol Oncol 1987; 4: 357–360CrossRefGoogle ScholarPubMed
Pierce, S. R., Hardman, J. T., Steele, S., Beck, M. L.Hemolytic disease of the newborn associated with anti-Jk3. Transfusion 1980; 20: 189–191CrossRefGoogle ScholarPubMed
Tomita, M., Furthmayr, H., Marchesi, V. T.Primary structure of human erythrocyte glycophorin A: isolation and characterization of peptides and complete amino acid sequence. Biochemistry 1978; 17: 4756–4770CrossRefGoogle ScholarPubMed
Dahr, W., Beyreuther, K., Steinbach, H., Gielen, W., Kruger, J.Structure of the Ss blood group antigens, II: a methionine/threonine polymorphism within the N-terminal sequence of the Ss glycoprotein. Hoppe Seylers Z Physiol Chem 1980; 361: 895–906CrossRefGoogle Scholar
Dahr, W., Beyreuther, K., Kordowicz, M., Kruger, J.N-terminal amino acid sequence of sialoglycoprotein D (glycophorin C) from human erythrocyte membranes. Eur J Biochem 1982; 125: 57–62CrossRefGoogle ScholarPubMed
Chasis, J. A., Mohandas, N.Red blood cell glycophorins. Blood 1992; 80: 1869–1879Google ScholarPubMed
Duguid, J. K., Bromilow, I. M., Entwistle, G. D., Wilkinson, R.Haemolytic disease of the newborn due to anti-M. Vox Sang 1995; 68: 195–196CrossRefGoogle ScholarPubMed
Li, T. C., Bromham, D. R., Balmer, B. M.Fetomaternal macrotransfusion in the Yorkshire region. 1. Prevalence and obstetric factors. Br J Obstet Gynaecol 1988; 95: 1144–1151CrossRefGoogle ScholarPubMed
Telischi, M., Behzad, O., Issitt, P. D., Pavone, B. G.Hemolytic disease of the newborn due to anti-N. Vox Sang 1976; 31: 109–116CrossRefGoogle ScholarPubMed
Mayne, K. M., Bowell, P. J., Green, S. J., Entwistle, C. C.The significance of anti-S sensitization in pregnancy. Clin Lab Haematol 1990; 12: 105–107CrossRefGoogle ScholarPubMed
Smith, G., Knott, P., Rissik, J., Fuente, J., Win, N.Anti-U and haemolytic disease of the fetus and newborn. Br J Obstet Gynaecol 1998; 105: 1318–1321CrossRefGoogle ScholarPubMed
Bowman, J. M., Pollock, J. M.Reversal of Rh alloimmunization: fact or fancy?Vox Sang 1984; 47: 209–215Google ScholarPubMed
Silva, M., Contreras, M., Mollison, P. L.Failure of passively administered anti-Rh to prevent secondary Rh responses. Vox Sang 1985; 48: 178–180CrossRefGoogle ScholarPubMed
Linet, M. S., Ries, L. A., Smith, M. A., Tarone, R. E., Devesa, S. S.Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst 1999; 91: 1051–1058CrossRefGoogle ScholarPubMed
Hoeltge, G. A., Domen, R. E., Rybicki, L. A., Schaffer, P. A.Multiple red cell transfusions and alloimmunization: experience with 6996 antibodies detected in a total of 159,262 patients from 1985 to 1993. Arch Pathol Lab Med 1995; 119: 42–45Google Scholar
Wenk, R. E., Goldstein, P., Felix, J. K.Alloimmunization by hr′(c), hemolytic disease of newborns, and perinatal management. Obstet Gynecol 1986; 67: 623–626CrossRefGoogle Scholar
Hardy, J., Napier, J. A.Red cell antibodies detected in antenatal tests on rhesus positive women in South and Mid Wales, 1948–1978. Br J Obstet Gynaecol 1981; 88: 91–100CrossRefGoogle ScholarPubMed
McKenna, D. S., Nagaraja, H. N., O'Shaughnessy, R.Management of pregnancies complicated by anti-Kell isoimmunization. Obstet Gynecol 1999; 93: 667–673Google ScholarPubMed
Clarke, C. A.Preventing rhesus babies: the Liverpool research and follow up. Arch Dis Child 1989; 64: 1734–1740CrossRefGoogle ScholarPubMed
Bowman, J. M., Pollock, J. M., Penston, L. E.Fetomaternal transplacental hemorrhage during pregnancy and after delivery. Vox Sang 1986; 51: 117–121CrossRefGoogle ScholarPubMed
Cohen, F., Zuelzer, W. W.Mechanisms of isoimmunization. II. Transplacental passage and postnatal survival of fetal erythrocytes in heterospecific pregnancies. Blood 1967; 30: 796–804Google ScholarPubMed
Huchet, J., Defossez, Y., Brossard, Y.Detection of transplacental hemorrhage during the last trimester of pregnancy. Transfusion 1988; 28: 506CrossRefGoogle ScholarPubMed
DiGuiseppi, C. Screening for D (Rh) incompatibility. In U.S. Preventive Services Task Force. Guide to Clinical Preventive Services, 2nd edn. Alexandria, VA: International Medical Publishing, 1996: 425–432Google Scholar
Ness, P. M., Baldwin, M. L., Niebyl, J. R.Clinical high-risk designation does not predict excess fetal-maternal hemorrhage. Am J Obstet Gynecol 1987; 156: 154–158CrossRefGoogle Scholar
Feldman, N., Skoll, A., Sibai, B.The incidence of significant fetomaternal hemorrhage in patients undergoing cesarean section. Am J Obstet Gynecol 1990; 163: 855–858CrossRefGoogle ScholarPubMed
Cartron, J. P., Rouillac, C., Van, K. C., Mouro, I., Colin, Y.Tentative model for the mapping of D epitopes on the RhD polypeptide. Transfus Clin Biol 1996; 3: 497–503CrossRefGoogle ScholarPubMed
Pollack, W., Ascari, W. Q., Kochesky, R. J., et al.Studies on Rh prophylaxis. 1. Relationship between doses of anti-Rh and size of antigenic stimulus. Transfusion 1971; 11: 333–339CrossRefGoogle ScholarPubMed
Hilden, J. O., Gottvall, T., Lindblom, B.HLA phenotypes and severe Rh(D) immunization. Tissue Antigens 1995; 46: 313–315CrossRefGoogle ScholarPubMed
Mollison, P. L., Engelfriet, C. P., Contreras, M. Immunology of red cells. In Blood Transfusion in Clinical Medicine. Oxford, UK: Blackwell Scientific, 1993: 76–147Google Scholar
Winters, J. L., Pineda, A. A., Gorden, L. D., et al.RBC alloantibody specificity and antigen potency in Olmsted County, Minnesota. Transfusion 2001; 41: 1413–1420CrossRefGoogle ScholarPubMed
Scott, M. L., Voak, D., Jones, J. W., et al.A structural model for 30 Rh D epitopes based on serological and DNA sequence data from partial D phenotypes. Transfus Clin Biol 1996; 3: 391–396CrossRefGoogle ScholarPubMed
Roit, I. M., Delves, P. J. The production of effectors. In Roitt's Essential Immunology. Oxford, UK: Blackwell Science, 2001: 177–199Google Scholar
Jakobowicz, R., Williams, L., Silberman, F.Immunization of Rh-negative volunteers by repeated injections of very small amounts of Rh-positive blood. Vox Sang 1972; 23: 376–381CrossRefGoogle ScholarPubMed
Bowman, J. M., Chown, B., Lewis, M., Pollock, J. M.Rh isoimmunization during pregnancy: antenatal prophylaxis. Can Med Assoc J 1978; 118: 623–627Google ScholarPubMed
Tovey, L. A., Townley, A., Stevenson, B. J., Taverner, J.The Yorkshire antenatal anti-D immunoglobulin trial in primigravidae. Lancet 1983; 2: 244–246CrossRefGoogle ScholarPubMed
Woodrow, J. C.Rh immunisation and its prevention. Ser Haematol 1970; 3: 1–151Google ScholarPubMed
Mollison, P. L., Engelfriet, C. P., Contreras, M. The Rh blood group system (and LW). In Blood Transfusion in Clinical Medicine. Oxford, UK: Blackwell Scientific, 1993: 204–245Google Scholar
Goldblatt, D.Recent developments in bacterial conjugate vaccines. J Med Microbiol 1998; 47: 563–567CrossRefGoogle ScholarPubMed
Goldblatt, D.Conjugate vaccines. Clin Exp Immunol 2000; 119: 1–3CrossRefGoogle ScholarPubMed
Buckley, R. H. The child with suspected immunodeficiency. In Behrman, R. E., Kliegman, R. M., Jenson, H. B., eds. Nelson Textbook of Pediatrics. Philadelphia: W. B. Saunders, 2000: 588–590Google Scholar
Kay, L. A.Cellular basis of immune response to antigens of ABO blood-group system: capacity to provide help during response to T-cell-dependent ABO-system antigens is restricted to individuals of blood group O. Lancet 1984; 2: 1369–1371CrossRefGoogle ScholarPubMed
Levine, P.Serological factors as possible causes in spontaneous abortions. J Hered 1943; 34: 71–80CrossRefGoogle Scholar
Nevanlinna, H. R., Vainio, T.The influence of mother-child ABO incompatibility on Rh immunization. Vox Sang 1956; 1: 26CrossRefGoogle Scholar
Clarke, C. A., Finn, R., McConnell, R. B., Sheppard, P. M.The protection afforded by ABO incompatibility against erythroblastosis due to rhesus anti-D. Int Arch Allergy Appl Immunol 1958; 13: 380Google Scholar
Murray, S., Knox, E. G., Walker, W.Rhesus haemolytic disease of the newborn and the ABO bloodgroups. Vox Sang 2001; 10: 6CrossRefGoogle Scholar
Ascari, W. Q., Levine, P., Pollack, W.Incidence of maternal Rh immunization by ABO compatible and incompatible pregnancies. Br Med J 1969; 1: 399–401CrossRefGoogle ScholarPubMed
Zimmerman, D. R. Clues in passing. In Rh: The Intimate History of a Disease and its Conquest. New York: Macmillan, 1973: 57–72Google Scholar
Bowman, J. M. Alloimmune hemolytic disease of the fetus and newborn. In Lee, G. R., Foerster, J., Lukens, J., et al., eds. Wintrobe's Clinical Hematology. Baltimore, MD: Williams & Wilkins, 1999: 1210–1232Google Scholar
Meulen, F. W., Hart, M., Fleer, A., et al.The role of adherence to human mononuclear phagocytes in the destruction of red cells sensitized with non-complement binding IgG antibodies. Br J Haematol 1978; 38: 541–549CrossRefGoogle ScholarPubMed
Devey, M. E., Voak, D.A critical study of the IgG subclasses of Rh anti-D antibodies formed in pregnancy and in immunized volunteers. Immunology 1974; 27: 1073–1079Google ScholarPubMed
Wiener, E., Jolliffe, V. M., Scott, H. C., et al.Differences between the activities of human monoclonal IgG1 and IgG3 anti-D antibodies of the Rh blood group system in their abilities to mediate effector functions of monocytes. Immunology 1988; 65: 159–163Google ScholarPubMed
Simister, N. E., Story, C. M.Human placental Fc receptors and the transmission of antibodies from mother to fetus. J Reprod Immunol 1997; 37: 1–23CrossRefGoogle ScholarPubMed
Palfi, M., Selbing, A.Placental transport of maternal immunoglobulin G. Am J Reprod Immunol 1998; 39: 24–26CrossRefGoogle ScholarPubMed
Lubenko, A., Contreras, M., Rodeck, C. H., et al.Transplacental IgG subclass concentrations in pregnancies at risk of haemolytic disease of the newborn. Vox Sang 1994; 67: 291–298CrossRefGoogle ScholarPubMed
Dooren, M. C., Engelfriet, C. P.Protection against Rh D-haemolytic disease of the newborn by a diminished transport of maternal IgG to the fetus. Vox Sang 1993; 65: 59–61CrossRefGoogle ScholarPubMed
Wagner, T., Berer, A., Lanzer, G., Geissler, K.Kell is not restricted to the erythropoietic lineage but is also expressed on myeloid progenitor cells. Br J Haematol 2000; 110: 409–411CrossRefGoogle Scholar
Mollison, P. L., Engelfriet, C. P., Contreras, M. ABO, Lewis, Ii and P groups. In Blood Transfusion in Clinical Medicine. Oxford, UK: Blackwell Scientific, 1993: 148–203Google Scholar
Sylvestre, D., Clynes, R., Ma, M., et al.Immunoglobulin G-mediated inflammatory responses develop normally in complement-deficient mice. J Exp Med 1996; 184: 2385–2392CrossRefGoogle ScholarPubMed
Clynes, R., Ravetch, J. V.Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 1995; 3: 21–26CrossRefGoogle ScholarPubMed
Engelfriet, C. P., Overbeeke, M. A., Dooren, M. C., Ouwehand, W. H., dem Borne, A. E.Bioassays to determine the clinical significance of red cell alloantibodies based on Fc receptor-induced destruction of red cells sensitized by IgG. Transfusion 1994; 34: 617–626CrossRefGoogle ScholarPubMed
Hadley, A. G., Kumpel, B. M.Phagocytosis by human monocytes of red cells sensitized with monoclonal IgG1 and IgG3 anti-D. Vox Sang 1989; 57: 150–151Google ScholarPubMed
Sherer, D. M., Abramowicz, J. S., Ryan, R. M., et al.Severe fetal hydrops resulting from ABO incompatibility. Obstet Gynecol 1991; 78: 897–899Google ScholarPubMed
Merlob, P., Litwin, A., Lazar, L., Zaizov, R.Neonatal ABO incompatibility: complicated by hemoglobinuria and acute renal failure. Clin Pediatr (Phila) 1990; 29: 219–222CrossRefGoogle ScholarPubMed
Angella, J. J., Prieto, E. N., Fogel, B. J.Hemoglobinuria associated with hemolytic disease of the newborn infant. J Pediatr 1967; 71: 530–533CrossRefGoogle ScholarPubMed
Dooren, M. C., Kamp, I., Kanhai, H. H., et al.Evidence for the protective effect of maternal FcR-blocking IgG alloantibodies HLA-DR in Rh D-haemolytic disease of the newborn. Vox Sang 1993; 65: 55–58CrossRefGoogle ScholarPubMed
Dooren, M. C., Kuijpers, R. W., Joekes, E. C., et al.Protection against immune haemolytic disease of newborn infants by maternal monocyte-reactive IgG alloantibodies (anti-HLA-DR). Lancet 1992; 339: 1067–1070CrossRefGoogle Scholar
Eichler, H., Zieger, W., Neppert, J., et al.Mild course of fetal RhD haemolytic disease due to maternal alloimmunisation to paternal HLA class I and II antigens. Vox Sang 1995; 68: 243–247CrossRefGoogle Scholar
Neppert, J., Witzleben-Schurholz, E., Zupanska, B., et al.High incidence of maternal HLA A, B and C antibodies associated with a mild course of haemolytic disease of the newborn: Group for the Study of Protective Maternal HLA Antibodies in the Clinical Course of HDN. Eur J Haematol 1999; 63: 120–155CrossRefGoogle Scholar
Whitecar, P. W., Farb, R., Subramanyam, L., et al.Paternal leukocyte alloimmunization as a treatment for hemolytic disease of the newborn in a rabbit model. Am J Obstet Gynecol 2002; 187: 977–980CrossRefGoogle Scholar
Clarke, C. A., Donohoe, W. T. A., Finn, R., et al.Prevention of Rh-haemolytic disease: final results of the “high-risk” clinical trial: a combined study from centres in England and Baltimore. Br Med J 1971; 2: 607–609CrossRefGoogle Scholar
Pollack, W., Gorman, J. G., Freda, V. J., et al.Results of clinical trials of RhoGAM in women. Transfusion 1968; 8: 151–153CrossRefGoogle ScholarPubMed
Prevention of Rh-haemolytic disease: results of the clinical trial: a combined study from centres in England and Baltimore. Br Med J 1966; 2: 907–914CrossRef
Clarke, C. A.Prevention of RH haemolytic disease: a method based on the post-delivery injection of the mother with anti-D antibody. Vox Sang 1966; 11: 641–655CrossRefGoogle Scholar
Kumpel, B. M., Elson, C. J.Mechanism of anti-D-mediated immune suppression: a paradox awaiting resolution?Trends Immunol 2001; 22: 26–31CrossRefGoogle ScholarPubMed
Pollack, W. Mode of action of passive RHIG. In Garratty, G., ed. Hemolytic Disease of the Newborn. Arlington, VA: American Association of Blood Banks, 1984: 53–66
Urbaniak, S. J., Greiss, M. A.RhD haemolytic disease of the fetus and the newborn. Blood Rev 2000; 14: 44–61CrossRefGoogle ScholarPubMed
Heyman, B.Fc-dependent IgG-mediated suppression of the antibody response: fact or artefact?Scand J Immunol 1990; 31: 601–607CrossRefGoogle ScholarPubMed
Lubenko, A., Williams, M., Johnson, A., et al.Monitoring the clearance of fetal RhD-positive red cells in FMH following RhD immunoglobulin administration. Transfus Med 1999; 9: 331–335CrossRefGoogle ScholarPubMed
Contreras, M., Silva, M.The prevention and management of haemolytic disease of the newborn. J R Soc Med 1994; 87: 256–288Google ScholarPubMed
Clarke, C. A., Mollison, P. L.Deaths from Rh haemolytic disease of the fetus and newborn, 1977–87. J R Coll Phys Lond 1989; 23: 181–184Google Scholar
Walker, R. H. Relevancy in the selection of serologic tests for the obstetric patient. In Garratty, G., ed. Hemolytic Disease of the Newborn. Arlington, VA: American Association of Blood Banks, 1984: 173–200Google Scholar
Joseph, K. S., Kramer, M. S.The decline in Rh hemolytic disease: should Rh prophylaxis get all the credit?Am J Publ Health 1998; 88: 209–215CrossRefGoogle ScholarPubMed
Trolle, B.Prenatal Rh-immune prophylaxis with 300 micrograms immune globulin anti-D in the 28th week of pregnancy. Acta Obstet Gynecol Scand 1989; 68: 45–47CrossRefGoogle ScholarPubMed
Queenan, J. T., Gadow, E. C., Lopes, A. C.Role of spontaneous abortion in Rh immunization. Am J Obstet Gynecol 1971; 110: 128–130CrossRefGoogle ScholarPubMed
Queenan, J. T., Kubarych, S. F., Shah, S., Holland, B.Role of induced abortion in rhesus immunisation. Lancet 1971; 1: 815–817CrossRefGoogle ScholarPubMed
Brandenburg, H., Jahoda, M. G., Pijpers, L., Wladimiroff, J. W.Rhesus sensitization after midtrimester genetic amniocentesis. Am J Med Genet 1989; 32: 225–226CrossRefGoogle ScholarPubMed
Tabsh, K. M., Lebherz, T. B., Crandall, B. F.Risks of prophylactic anti-D immunoglobulin after second-trimester amniocentesis. Am J Obstet Gynecol 1984; 149: 225–226CrossRefGoogle ScholarPubMed
Daffos, F., Capella-Pavlovsky, M., Forestier, F.Fetal blood sampling during pregnancy with use of a needle guided by ultrasound: a study of 606 consecutive cases. Am J Obstet Gynecol 1985; 153: 655–660CrossRefGoogle ScholarPubMed
Bowman, J. M., Pollock, J. M., Peterson, L. E., et al.Fetomaternal hemorrhage following funipuncture: increase in severity of maternal red-cell alloimmunization. Obstet Gynecol 1994; 84: 839–843Google ScholarPubMed
Blakemore, K. J., Baumgarten, A., Schoenfeld-Dimaio, M., et al.Rise in maternal serum alpha-fetoprotein concentration after chorionic villus sampling and the possibility of isoimmunization. Am J Obstet Gynecol 1986; 155: 988–993CrossRefGoogle ScholarPubMed
Jansen, M. W., Brandenburg, H., Wildschut, H. I., et al.The effect of chorionic villus sampling on the number of fetal cells isolated from maternal blood and on maternal serum alpha-fetoprotein levels. Prenat Diagn 1997; 17: 953–9593.0.CO;2-E>CrossRefGoogle ScholarPubMed
Rose, P. G., Strohm, P. L., Zuspan, F. P.Fetomaternal hemorrhage following trauma. Am J Obstet Gynecol 1985; 153: 844–847CrossRefGoogle ScholarPubMed
An assessment of the hazards of amniocentesis. Report to the Medical Research Council by their Working Party on Amniocentesis. Br J Obstet Gynaecol 1978; 85 (Suppl 2): 1–41
Simonovits, I., Timar, I., Bajtai, G.Rate of Rh immunization after induced abortion. Vox Sang 1980; 38: 161–164CrossRefGoogle ScholarPubMed
ACOG practice bulletin. Prevention of Rh D alloimmunization. Int J Gynaecol Obstet 1999; 66: 63–70CrossRef
Judd, W. J., Luban, N. L., Ness, P. M., et al.Prenatal and perinatal immunohematology: recommendations for serologic management of the fetus, newborn infant, and obstetric patient. Transfusion 1990; 30: 175–183CrossRefGoogle ScholarPubMed
Statement from the consensus conference on anti-D prophylaxis. 7 and 8 April 1997. The Royal College of Physicians of Edinburgh. The Royal College of Obstetricians and Gynaecologists, UK. Vox Sang 1998; 74: 127–128
Maayan-Metzger, A., Schwartz, T., Sulkes, J., Merlob, P.Maternal anti-D prophylaxis during pregnancy does not cause neonatal haemolysis. Arch Dis Child Fetal Neonatal Ed 2001; 84: F60–F62CrossRefGoogle Scholar
Zipursky, A.The universal prevention of Rh immunization. Clin Obstet Gynecol 1971; 14: 869–884CrossRefGoogle ScholarPubMed
Zipursky, A., Hull, A., White, F. D., Israels, L. G.Foetal erythrocytes in the maternal circulation. Lancet 1959; i: 451–452CrossRefGoogle Scholar
Davis, B. H., Olsen, S., Bigelow, N. C., Chen, J. C.Detection of fetal red cells in fetomaternal hemorrhage using a fetal hemoglobin monoclonal antibody by flow cytometry. Transfusion 1998; 38: 749–756CrossRefGoogle ScholarPubMed
Taylor, J. F.Sensitization of Rh-negative daughters by their Rh-positive mothers. N Engl J Med 1967; 276: 547–551CrossRefGoogle ScholarPubMed
Lo, Y. M. D., Lau, T. K., Chan, L. Y. S., Leung, T. N., Chang, A. M. Z.Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem 2000; 46: 1301–1309Google ScholarPubMed
Zipursky, A., Bowman, J. M. Isoimmune hemolytic diseases. In Nathan, D. G., Oski, F. A., eds. Hematology of Infancy and Childhood. Philadelphia, PA: W. B. Saunders, 1993: 44–73Google Scholar
Veyver, I., Chong, S. S., Cota, J., et al.Single-cell analysis of the RhD blood type for use in preimplantation diagnosis in the prevention of severe hemolytic disease of the newborn. Am J Obstet Gynecol 1995; 172: 533–540CrossRefGoogle ScholarPubMed
Moise, K. J. Jr, Perkins, J. T., Sosler, S. D., et al.The predictive value of maternal serum testing for detection of fetal anemia in red blood cell alloimmunization. Am J Obstet Gynecol 1995; 172: 1003–1009CrossRefGoogle ScholarPubMed
Avent, N. D.Antenatal genotyping of the blood groups of the fetus. Vox Sang 1998; 74 (Suppl 2): 365–374CrossRefGoogle ScholarPubMed
Canadian Collaborative CVS-Amniocentesis Clinical Trial Group. Multicentre randomised clinical trial of chorion villus sampling and amniocentesis: first report. Lancet 1989; 1: 1–6
Rhoads, G. G., Jackson, L. G., Schlesselman, S. E., et al.The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N Engl J Med 1989; 320: 609–617CrossRefGoogle ScholarPubMed
Veyver, I., Moise, K. J. Jr.Fetal RhD typing by polymerase chain reaction in pregnancies complicated by rhesus alloimmunization. Obstet Gynecol 1996; 88: 1061–1067Google ScholarPubMed
Bianchi, D. W., Flint, A. F., Pizzimenti, M. F., Knoll, J. H. M., Latt, S. A.Isolation of Fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci USA 1990; 87: 3279–3283CrossRefGoogle ScholarPubMed
Geifman-Holtzman, O., Bernstein, I. M., Berry, S. M., et al.Fetal RhD genotyping in fetal cells flow sorted from maternal blood. Am J Obstet Gynecol 1996; 174: 818–822CrossRefGoogle ScholarPubMed
Hamada, H., Arinami, T., Kubo, T., Hamaguchi, H., Iwasaki, H.Fetal nucleated cells in maternal peripheral blood: frequency and relationship to gestational age. Hum Genet 1993; 91: 427–432CrossRefGoogle ScholarPubMed
Lo, Y. M., Morey, A. L., Wainscoat, J. S., Fleming, K. A.Culture of fetal erythroid cells from maternal peripheral blood. Lancet 1994; 344: 264–265CrossRefGoogle ScholarPubMed
Ganshirt, D., Garritsen, H., Miny, P., Holzgreve, W.Fetal cells in maternal circulation throughout gestation. Lancet 1994; 343: 1038–1039CrossRefGoogle ScholarPubMed
Sohda, S., Arinami, T., Hamada, H., et al.The proportion of fetal nucleated red blood cells in maternal blood: estimation by FACS analysis. Prenat Diagn 1997; 17: 743–7523.0.CO;2-3>CrossRefGoogle ScholarPubMed
Pertl, B., Bianchi, D. W.Fetal DNA in maternal plasma: emerging clinical applications. Obstet Gynecol 2001; 98: 483–490Google ScholarPubMed
Veyver, I., Yankowitz, J., Subramanian, S. B., Dorman, K. F., Moise, K. J. Jr.Discordance between fetal RhD typing using molecular methods and neonatal typing with serology. Gynecol Obstet Invest 1999; 48: 229–231CrossRefGoogle Scholar
Moise, K. J. Jr.Changing trends in the management of red blood cell alloimmunization in pregnancy. Arch Pathol Lab Med 1994; 118: 421–428Google ScholarPubMed
Grannum, P. A., Copel, J. A.Prevention of Rh isoimmunization and treatment of the compromised fetus. Semin Perinatol 1988; 12: 324–335Google ScholarPubMed
Spinnato, J. A.Hemolytic disease of the fetus. Am J Obstet Gynecol 1992; 166: 1589–1590CrossRefGoogle ScholarPubMed
Meade, D., Stewart, J., Moore, B. P.Automation in the blood transfusion laboratory. II. ABO grouping, Rh and Kell typing, antibody screening, and VD testing of blood donations in the autoanalyzer. Can Med Assoc J 1969; 101: 35–39Google ScholarPubMed
Cramer, A. D., Dimmette, R. M., Stubbs, J. T.A clinical study of the autoanalyzer method for prenatal antibody evaluation and screening. Am J Clin Pathol 1970; 53: 355–363CrossRefGoogle ScholarPubMed
Morley, G., Gibson, M., Eltringham, D.Use of discriminant analysis in relating maternal anti-D levels to the severity of haemolytic disease of the newborn. Vox Sang 1977; 32: 90–98CrossRefGoogle ScholarPubMed
Marsh, W. L.Scoring of hemagglutination reactions. Transfusion 1972; 12: 352–353CrossRefGoogle ScholarPubMed
Hilden, J. O., Backteman, K., Nilsson, J., Ernerudh, J.Flow-cytometric quantitation of anti-D antibodies. Vox Sang 1997; 72: 172–176CrossRefGoogle ScholarPubMed
Austin, E. B., McIntosh, Y., Hodson, C., Lee, D.Anti-D quantification by flow cytometry: an alternative to the AutoAnalyser?Transfus Med 1995; 5: 203–208CrossRefGoogle ScholarPubMed
Austin, E. B., McIntosh, Y.Anti-D quantification by flow cytometry: a comparison of five methods. Transfusion 2000; 40: 77–83CrossRefGoogle ScholarPubMed
Thomas, N. C., Shirey, R. S., Blakemore, K., Kickler, T. S.A quantitative assay for subclassing IgG alloantibodies implicated in hemolytic disease of the newborn. Vox Sang 1995; 69: 120–125CrossRefGoogle ScholarPubMed
Kumpel, B. M.A simple non-isotopic method for the quantitation of red cell-bound immunoglobulin. Vox Sang 1990; 59: 34–38CrossRefGoogle ScholarPubMed
Kumpel, B. M.Quantification of anti-D and fetomaternal hemorrhage by flow cytometry. Transfusion 2000; 40: 6–9CrossRefGoogle ScholarPubMed
Downing, I., Bromilow, I. M., Templeton, J. G., Fraser, R. H.A retrospective study of red cell maternal antibodies by chemiluminescence. Vox Sang 1996; 71: 226–232CrossRefGoogle ScholarPubMed
Hadley, A. G., Wilkes, A., Goodrick, J., et al.The ability of the chemiluminescence test to predict clinical outcome and the necessity for amniocenteses in pregnancies at risk of haemolytic disease of the newborn. Br J Obstet Gynaecol 1998; 105: 231–234CrossRefGoogle ScholarPubMed
Urbaniak, S. J., Greiss, M. A., Crawford, R. J., Fergusson, M. J.Prediction of the outcome of rhesus haemolytic disease of the newborn: additional information using an ADCC assay. Vox Sang 1984; 46: 323–329CrossRefGoogle ScholarPubMed
Gallagher, M. T., Branch, D. R., Mison, A., Petz, L. D.Evaluation of reticuloendothelial function in autoimmune hemolytic anemia using an in vitro assay of monocyte-macrophage interaction with erythrocytes. Exp Hematol 1983; 11: 82–89Google Scholar
Laboratory procedures for the prediction of the severity of haemolytic disease of the newborn. Vox Sang 1995; 69: 61–69CrossRef
Oepkes, D., Kamp, I. L., Simon, M. J., et al.Clinical value of an antibody-dependent cell-mediated cytotoxicity assay in the management of Rh D alloimmunization. Am J Obstet Gynecol 2001; 184: 1015–1020CrossRefGoogle ScholarPubMed
Chitkara, U., Wilkins, I., Lynch, L., Mehalek, K., Berkowitz, R. L.The role of sonography in assessing severity of fetal anemia in Rh- and Kell-isoimmunized pregnancies. Obstet Gynecol 1988; 71: 393–398Google ScholarPubMed
Menticoglou, S. M., Harman, C. R., Manning, F. A., Bowman, J. M.Intraperitoneal fetal transfusion: paralysis inhibits red cell absorption. Fetal Ther 1987; 2: 154–159CrossRefGoogle ScholarPubMed
Harman, C. R., Bowman, J. M., Manning, F. A., Menticoglou, S. M.Intrauterine transfusion: intraperitoneal versus intravascular approach: a case–control comparison. Am J Obstet Gynecol 1990; 162: 1053–1059CrossRefGoogle ScholarPubMed
Schumacher, B., Moise, K. J. Jr.Fetal transfusion for red blood cell alloimmunization in pregnancy. Obstet Gynecol 1996; 88: 137–150CrossRefGoogle ScholarPubMed
Ghidini, A., Sepulveda, W., Lockwood, C. J., Romero, R.Complications of fetal blood sampling. Am J Obstet Gynecol 1993; 168: 1339–1344CrossRefGoogle ScholarPubMed
Weiner, C. P., Okamura, K.Diagnostic fetal blood sampling-technique related losses. Fetal Diagn Ther 1996; 11: 169–175CrossRefGoogle ScholarPubMed
Antsaklis, A., Daskalakis, G., Papantoniou, N., Michalas, S.Fetal blood sampling: indication-related losses. Prenat Diagn 1998; 18: 934–9403.0.CO;2-D>CrossRefGoogle ScholarPubMed
Mari, G., Deter, R. L., Carpenter, R. L., et al.Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med 2000; 342: 9–14CrossRefGoogle Scholar
Mari, G., Zimmerman, R., Oz, U.Noninvasive diagnosis of fetal anemia by doppler ultrasonography. N Engl J Med 2000; 343: 66–68Google Scholar
Mari, G., Zimmerman, R., Oz, U.Noninvasive diagnosis of fetal anemia by doppler ultrasonography: reply. N Engl J Med 2000; 343: 66–68Google Scholar
Cheong, Y. C., Goodrick, J., Kyle, P. M., Soothill, P.Management of anti-Rhesus-D antibodies in pregnancy: a review from 1994 to 1998. Fetal Diagn Ther 2001; 16: 294–298CrossRefGoogle ScholarPubMed
Oepkes, D.Invasive versus non-invasive testing in red-cell alloimmunized pregnancies. Eur J Obstet Gynecol Reprod Biol 2000; 92: 83–89CrossRefGoogle ScholarPubMed
Liley, A. W.Liquor amnii analysis in the management of pregnancy complicated by Rhesus sensitization. Am J Obstet Gynecol 1961; 82: 1359CrossRefGoogle Scholar
Queenan, J. T., Tomai, T. P., Ural, S. H., King, J. C.Deviation in amniotic fluid optical density at a wavelength of 450 nm in Rh-immunized pregnancies from 14 to 40 weeks' gestation: a proposal for clinical management. Am J Obstet Gynecol 1993; 168: 1370–1376CrossRefGoogle Scholar
Spinnato, J. A., Clark, A. L., Ralston, K. K., Greenwell, E. R., Goldsmith, L. J.Hemolytic disease of the fetus: a comparison of the Queenan and extended Liley methods. Obstet Gynecol 1998; 92: 441–445Google ScholarPubMed
Chown, B., Bowman, W. D.The place of very early delivery in the prevention of foetal death from erythroblastosis. Pediatr Clin North Am 1958; 5: 279–285CrossRefGoogle Scholar
Bowman, J. M., Pollock, J. M.Amniotic fluid spectrophotometry and early deleivery in the management of erythroblastosis fetalis. Pediatrics 1965; 35: 815–835Google ScholarPubMed
Liley, A. W.Intrauterine transfusion of fetus in haemolytic disease. Br Med J 1963; 2: 1107–1109CrossRefGoogle ScholarPubMed
Rodeck, C. H., Kemp, J. R., Holman, C. A., et al.Direct intravascular fetal blood transfusion by fetoscopy in severe Rhesus isoimmunisation. Lancet 1981; 1: 625–627CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists. Management of isoimmunization in pregnancy. American College of Obstetricians and Gynecologists Technical Bulletin No. 79. Washington, DC: ACOG, 1984
Scott, J. R., Kochenour, N. K., Larkin, R. M., Scott, M. J.Changes in the management of severely Rh-immunized patients. Am J Obstet Gynecol 1984; 149: 336–341CrossRefGoogle ScholarPubMed
Nicolaides, K. H., Rodeck, C. H., Mibashan, R. S., Kemp, J. R.Have Liley charts outlived their usefulness?Am J Obstet Gynecol 1986; 155: 90–94CrossRefGoogle ScholarPubMed
Mackenzie, I. Z., Bowell, P. J., Castle, B. M., Selinger, M., Ferguson, J. F.Serial fetal blood sampling for the management of pregnancies complicated by severe rhesus (D) isoimmunization. Br J Obstet Gynaecol 1988; 95: 753–758CrossRefGoogle ScholarPubMed
Weiner, C. P., Williamson, R. A., Wenstrom, K. D., et al.Management of fetal hemolytic disease by cordocentesis. I. Prediction of fetal anemia. Am J Obstet Gynecol 1991; 165: 546–553CrossRefGoogle ScholarPubMed
Weiner, C. P., Williamson, R. A., Wenstrom, K. D., et al.Management of fetal hemolytic disease by cordocentesis. II. Outcome of treatment. Am J Obstet Gynecol 1991; 165: 1302–1307CrossRefGoogle ScholarPubMed
Detti, L., Oz, U., Guney, I., et al.Doppler ultrasound velocimetry for timing the second intrauterine transfusion in fetuses with anemia from red cell alloimmunization. Am J Obstet Gynecol 2001; 185: 1048–1051CrossRefGoogle ScholarPubMed
Naiman, J. L., Punnett, H. H., Lischner, H. W., Destine, M. L., Arey, J. B.Possible graft-versus-host reaction after intrauterine transfusion for Rh erythroblastosis fetalis. N Engl J Med 1969; 281: 697–701CrossRefGoogle ScholarPubMed
Parkman, R., Mosier, D., Umansky, I., et al.Graft-versus-host disease after intrauterine and exchange transfusions for hemolytic disease of the newborn. N Engl J Med 1974; 290: 359–363CrossRefGoogle ScholarPubMed
Kulovich, M. V., Gluck, L.The lung profile. II. Complicated pregnancy. Am J Obstet Gynecol 1979; 135: 64–70Google ScholarPubMed
Kulovich, M. V., Hallman, M. B., Gluck, L.The lung profile. I. Normal pregnancy. Am J Obstet Gynecol 1979; 135: 57–63Google ScholarPubMed
Siami, G. A., Siami, F. S.The current status of therapeutic apheresis devices in the United States. Int J Artif Organs 2002; 25: 499–502CrossRefGoogle ScholarPubMed
Kazatchkine, M. D., Kaveri, S. V.Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001; 345: 747–755CrossRefGoogle ScholarPubMed
Graham-Pole, J., Barr, W., Willoughby, M. L.Continuous-flow plasmapheresis in management of severe rhesus disease. Br Med J 1977; 1: 1185–1188CrossRefGoogle ScholarPubMed
Angela, E., Robinson, E., Tovey, L. A.Intensive plasma exchange in the management of severe Rh disease. Br J Haematol 1980; 45: 621–631CrossRefGoogle ScholarPubMed
Berlin, G., Selbing, A., Ryden, G.Rhesus haemolytic disease treated with high-dose intravenous immunoglobulin. Lancet 1985; 1: 1153CrossRefGoogle ScholarPubMed
Margulies, M., Voto, L. S., Mathet, E., Margulies, M.High-dose intravenous IgG for the treatment of severe rhesus alloimmunization. Vox Sang 1991; 61: 181–189CrossRefGoogle ScholarPubMed
Voto, L. S., Mathet, E. R., Zapaterio, J. L., et al.High-dose gammaglobulin (IVIG) followed by intrauterine transfusions (IUTs): a new alternative for the treatment of severe fetal hemolytic disease. J Perinat Med 1997; 25: 85–88CrossRefGoogle ScholarPubMed
Moise, K. J. Jr.Management of rhesus alloimmunization in pregnancy. Obstet Gynecol 2002; 100: 600–611Google ScholarPubMed
Bowman, J. M. Hemolytic disease (erythroblastosis fetalis). In Creasy, R. K., Resnik, R., eds. Maternal-Fetal Medicine. Philadelphia, PA: W. B. Saunders Co., 1999: 736–767Google Scholar
Gluck, L., Kulovich, M. V., Borer, R. C. Jr, et al.Diagnosis of the respiratory distress syndrome by amniocentesis. 1971. Am J Obstet Gynecol 1995; 173: 629CrossRefGoogle ScholarPubMed
Liggins, G. C., Howie, R. N.A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50: 515–525Google ScholarPubMed
Baud, O., Foix-L'Helias, L., Kaminski, M., et al.Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. N Engl J Med 1999; 341: 1190–1196CrossRefGoogle ScholarPubMed
Ringer, S. A., Stark, A. R.Management of neonatal emergencies in the delivery room. Clin Perinatol 1989; 16: 23–41CrossRefGoogle ScholarPubMed
Stephenson, T., Zuccollo, J., Mohajer, M.Diagnosis and management of non-immune hydrops in the newborn. Arch Dis Child Fetal Neonatal Ed 1994; 70: F151–F154CrossRefGoogle ScholarPubMed
Allen, F. H., Diamond, L. K.Erythroblastosis Fetalis, Including Exchange Transfusion Technique. Boston, MA: Little, Brown, and Company, 1958Google Scholar
Maisels, M. J., Gifford, M.Normal serum bilirubin levels in the newborn and the effect of breast-feeding. Pediatrics 1986; 78: 837–843Google ScholarPubMed
Burchell, B., Nebert, D. W., Nelson, D. R., et al.The UDP glucuronosyltransferase gene superfamily: suggested nomenclature based on evolutionary divergence. DNA Cell Biol 1991; 10: 487–494CrossRefGoogle ScholarPubMed
Gourley, G. R. Pathophysiology of breast milk jaundice. In Polin, R. A., Fox, W. W., eds. Fetal and Neonatal Physiology. Philadelphia: Saunders, 1998: 1499–1505Google Scholar
Dennery, P. A., Seidman, D. S., Stevenson, D. K.Neonatal hyperbilirubinemia. N Engl J Med 2001; 344: 581CrossRefGoogle ScholarPubMed
Slusher, T. M., Vreman, H. J., McLaren, D. W., et al.Glucose-6-phosphate dehydrogenase deficiency and carboxyhemoglobin concentrations associated with bilirubin-related morbidity and death in Nigerian infants. J Pediatr 1995; 126: 102–108CrossRefGoogle ScholarPubMed
Pinto, L., Iolascon, A., Miraglia, del Giudicea E., et al.The Italian pediatric survey on hereditary spherocytosis. Int J Pediatr Hematol Oncol 1995; 2: 43–47Google Scholar
Delhommeau, F., Cynober, T., Schischmanoff, P. O., et al.Natural history of hereditary spherocytosis during the first year of life. Blood 2000; 95: 393Google ScholarPubMed
Alonso, E. M., Whitington, P. F., Whitington, S. H., Rivard, W. A., Given, G.Enterohepatic circulation of nonconjugated bilirubin in rats fed with human milk. J Pediatr 1991; 118: 425–430CrossRefGoogle ScholarPubMed
Tan, K. L.Decreased response to phototherapy for neonatal jaundice in breast-fed infants. Arch Pediatr Adolesc Med 1998; 152: 1187–1190CrossRefGoogle ScholarPubMed
Gartner, L. M.Breastfeeding and jaundice. J Perinatol 2001; 21 (Suppl 1): S25–S29CrossRefGoogle ScholarPubMed
Kadakol, A., Ghosh, S. S., Sappal, B. S., et al.Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler–Najjar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat 2000; 16: 297–3063.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Crigler, J. F., Najjar, V. A.Congenital familial non-hemolytic jaundice with kernicterus. Pediatrics 1952; 10: 169–180Google ScholarPubMed
Seppen, J., Bosma, P. J., Goldhoorn, B. G., et al.Discrimination between Crigler–Najjar type I and II by expression of mutant bilirubin uridine diphosphate-glucuronosyltransferase. J Clin Invest 1994; 94: 2385–2391CrossRefGoogle ScholarPubMed
Sugatani, J., Kojima, H., Ueda, A., et al.The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology 2001; 33: 1232–1238CrossRefGoogle ScholarPubMed
Bosma, P. J., Chowdhury, J. R., Bakker, C., et al.The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med 1995; 333: 1171–1175CrossRefGoogle ScholarPubMed
Beutler, E., Gelbart, T., Demina, A.Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism?Proc Natl Acad Sci USA 1998; 95: 8170–8174CrossRefGoogle ScholarPubMed
Monaghan, G., Foster, B., Jurima-Romet, M., Hume, R., Burchell, B.UGT1*1 genotyping in a Canadian Inuit population. Pharmacogenetics 1997; 7: 153–156CrossRefGoogle Scholar
Kaplan, M., Renbaum, P., Levy-Lahad, E., et al.Gilbert syndrome and glucose-6-phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci USA 1997; 94: 12128–12132CrossRefGoogle ScholarPubMed
Trioche, P., Chalas, J., Francoual, J., et al.Jaundice with hypertrophic pyloric stenosis as an early manifestation of Gilbert syndrome. Arch Dis Child 1999; 81: 301–303CrossRefGoogle ScholarPubMed
Maruo, Y., Nishizawa, K., Sato, H., Sawa, H., Shimada, M.Prolonged unconjugated hyperbilirubinemia associated with breast milk and mutations of the bilirubin uridine diphosphate-glucuronosyltransferase gene. Pediatrics 2000; 106: E59CrossRefGoogle ScholarPubMed
Hsieh, S. Y., Wu, Y. H., Lin, D. Y., et al.Correlation of mutational analysis to clinical features in Taiwanese patients with Gilbert's syndrome. Am J Gastroenterol 2001; 96: 1188–1193CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Provisional Committee for Quality Improvement and Subcommittee on Hyperbilirubinemia. Practice parameter: management of hyperbilirubinemia in the healthy term newborn. Pediatrics 1994; 94: 558–565
Bhutani, V. K., Johnson, L., Sivieri, E. M.Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 1999; 103: 6–14CrossRefGoogle ScholarPubMed
American Academy of Pediatrics, Subcommittee on Hyperbilirubinemia. Clinical Practice Guideline. Management of hyperbilirubinemia in the newborn infants 35 or more weeks of gestation. Pediatrics 2004; 114: 297–301CrossRef
Watchko, J. F., Claassen, D.Kernicterus in premature infants: current prevalence and relationship to NICHD Phototherapy Study exchange criteria. Pediatrics 1994; 93: 996–999Google ScholarPubMed
Johnson, L., Brown, A. K.A pilot registry for acute and chronic kernicterus in term and near-term infants. Pediatrics 1999; 104 (Suppl 3): 736Google Scholar
Allen, F. H., Diamond, L. K., Vaughn, V. C. I.Erythroblastosis fetalis. VI. Prevention of kernicterus. Am J Dis Child 1950; 80: 779–783Google ScholarPubMed
Hsia, D. Y. Y., Allen, F. H., Gellis, S. S., et al.Erythroblastosis fetalis: studies on serum bilirubin in relation to kernicterus. N Engl J Med 1952; 247: 668CrossRefGoogle ScholarPubMed
Cashore, W. J., Oh, W., Brodersen, R.Reserve albumin and bilirubin toxicity index in infant serum. Acta Paediatr Scand 1983; 72: 415–419CrossRefGoogle ScholarPubMed
Gartner, L. M., Snyder, R. N., Chabon, R. S., Bernstein, J.Kernicterus: high incidence in premature infants with low serum bilirubin concentrations. Pediatrics 1970; 45: 906–917Google ScholarPubMed
Brown, A. K., Kim, M. H., Wu, P. Y., Bryla, D. A.Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics 1985; 75: 393–400Google ScholarPubMed
Cashore, W. J., Stern, L.The management of hyperbilirubinemia. Clin Perinatol 1984; 11: 339–357CrossRefGoogle ScholarPubMed
Lucey, J. F.Bilirubin and brain damage: a real mess. Pediatrics 1982; 69: 381–382Google Scholar
Saade, G. R., Moise, K. J., Belfort, M. A., Hesketh, D. E., Carpenter, R. J.Fetal and neonatal hematologic parameters in red cell alloimmunization: predicting the need for late neonatal transfusions. Fetal Diagn Ther 1993; 8: 161–164CrossRefGoogle ScholarPubMed
Al-Alaiyan, S., al Omran, A.Late hyporegenerative anemia in neonates with rhesus hemolytic disease. J Perinat Med 1999; 27: 112–115CrossRefGoogle ScholarPubMed
Millard, D. D., Gidding, S. S., Socol, M. L., et al.Effects of intravascular, intrauterine transfusion on prenatal and postnatal hemolysis and erythropoiesis in severe fetal isoimmunization. J Pediatr 1990; 117: 447–454CrossRefGoogle ScholarPubMed
Ovali, F., Samanci, N., Dagoglu, T.Management of late anemia in Rhesus hemolytic disease: use of recombinant human erythropoietin (a pilot study). Pediatr Res 1996; 39: 831–834CrossRefGoogle Scholar
Dhodapkar, K. M., Blei, F.Treatment of hemolytic disease of the newborn caused by anti-Kell antibody with recombinant erythropoietin. J Pediatr Hematol Oncol 2001; 23: 69–70CrossRefGoogle ScholarPubMed
Alpay, F., Sarici, S. U., Okutan, V., et al.High-dose intravenous immunoglobulin therapy in neonatal immune haemolytic jaundice. Acta Paediatr 1999; 88: 216–219CrossRefGoogle ScholarPubMed
Dagoglu, T., Ovali, F., Samanci, N., Bengisu, E.High-dose intravenous immunoglobulin therapy for rhesus haemolytic disease. J Int Med Res 1995; 23: 264–271CrossRefGoogle ScholarPubMed
Rubo, J., Albrecht, K., Lasch, P., et al.High-dose intravenous immune globulin therapy for hyperbilirubinemia caused by Rh hemolytic disease. J Pediatr 1992; 121: 93–97CrossRefGoogle ScholarPubMed
Alcock, G. S., Liley, H.Immunoglobulin infusion for isoimmune haemolytic jaundice in neonates. Cochrane Database Syst Rev 2002; (3): CD003313CrossRefGoogle ScholarPubMed
Chamberlain, D., Hislop, A., Hey, E., Reid, L.Pulmonary hypoplasia in babies with severe rhesus isoimmunisation: a quantitative study. J Pathol 1977; 122: 43–52CrossRefGoogle ScholarPubMed
Turner, J. H., Hutchinson, D. L., Hayashi, T. T., Petricciani, J. C., Germanowski, J.Fetal and maternal risks associated with intrauterine transfusion procedures. Am J Obstet Gynecol 1975; 123: 251–256CrossRefGoogle ScholarPubMed
Doyle, L. W., Kelly, E. A., Rickards, A. L., Ford, G. W., Callanan, C.Sensorineural outcome at 2 years for survivors of erythroblastosis treated with fetal intravascular transfusions. Obstet Gynecol 1993; 81: 931–935Google ScholarPubMed
Hudon, L., Moise, K. J. Jr, Hegemier, S. E., et al.Long-term neurodevelopmental outcome after intrauterine transfusion for the treatment of fetal hemolytic disease. Am J Obstet Gynecol 1998; 179: 858–863CrossRefGoogle ScholarPubMed
Janssens, H., Haan, M., Kamp, I., et al.Outcome for children treated with fetal intravascular transfusions because of severe blood group antagonism. J Pediatr 1997; 131: 373–380CrossRefGoogle ScholarPubMed
U.S. Census Bureau. Total Fertility Rate, Historical (1917–1996) and forecasted. http://elsa.berkeley.edu/~burch/web/figureslee.pdf
Geifman-Holtzman, O., Wojtowycz, M., Kosmas, E., Artal, R.Female alloimmunization with antibodies known to cause hemolytic disease. Obstet Gynecol 1997; 89: 272–275CrossRefGoogle ScholarPubMed
Ulm, B., Svolba, G., Ulm, M. R., Bernaschek, G., Panzer, S.Male fetuses are particularly affected by maternal alloimmunization to D antigen. Transfusion 1999; 39: 169–173CrossRefGoogle ScholarPubMed
Bowell, P. J., Allen, D. L., Entwistle, C. C.Blood group antibody screening tests during pregnancy. Br J Obstet Gynaecol 1986; 93: 1038–1043CrossRefGoogle ScholarPubMed
Tovey, L. A.Haemolytic disease of the newborn: the changing scene. Br J Obstet Gynaecol 1986; 93: 960–966CrossRefGoogle ScholarPubMed
Filbey, D., Hanson, U., Wesstrom, G.The prevalence of red cell antibodies in pregnancy correlated to the outcome of the newborn: a 12 year study in central Sweden. Acta Obstet Gynecol Scand 1995; 74: 687–692CrossRefGoogle ScholarPubMed
Moran, P., Robson, S. C., Reid, M. M.Anti-E in pregnancy. Br J Obstet Gynaecol 2000; 107: 1436–1438CrossRefGoogle ScholarPubMed
Kozlowski, C. L., Lee, D., Shwe, K. H., Love, E. M.Quantification of anti-c in haemolytic disease of the newborn. Transfus Med 1995; 5: 37–42CrossRefGoogle ScholarPubMed
Bowell, P. J., Brown, S. E., Dike, A. E., Inskip, M. J.The significance of anti-c alloimmunization in pregnancy. Br J Obstet Gynaecol 1986; 93: 1044–1048CrossRefGoogle ScholarPubMed
Babinszki, A., Berkowitz, R. L.Haemolytic disease of the newborn caused by anti-c, anti-E and anti-Fya antibodies: report of five cases. Prenat Diagn 1999; 19: 533–5363.0.CO;2-5>CrossRefGoogle ScholarPubMed
Bowman, J. M., Pollock, J. M., Manning, F. A., Harman, C. R.Severe anti-C hemolytic disease of the newborn. Am J Obstet Gynecol 1992; 166: 1239–1243CrossRefGoogle ScholarPubMed
Moncharmont, P., Juron-Dupraz, F., Rigal, D., Vignal, M., Meyer, F.Haemolytic disease of two newborns in a Rhesus anti-e alloimmunized woman. Haematologia 1990; 23: 97–100Google Scholar
Poulter, M., Kemp, T. J., Carritt, B.DNA-based rhesus typing: simultaneous determination of RHC and RhD status using the polymerase chain reaction. Vox Sang 1996; 70: 164–168CrossRefGoogle ScholarPubMed
Faas, B. H., Simsek, S., Bleeker, P. M., et al.Rh E/e genotyping by allele-specific primer amplification. Blood 1995; 85: 829–832Google ScholarPubMed
Ogawa, M., MacEachern, M. D., Avila, L.Human marrow erythropoiesis in culture. II. Heterogeneity in the morphology, time course of colony formation, and sedimentation velocities of the colony-forming cells. Am J Hematol 1977; 3: 29–36CrossRefGoogle ScholarPubMed
Anonymous. Dangers of anti-Kell in pregnancy. Lancet 1991; 337: 1319–1320CrossRef
Constantine, G.Anti-Kell in pregnancy. Lancet 1991; 338: 1988CrossRefGoogle ScholarPubMed
Zimmerman, R., Carpenter, R. J. Jr, Durig, P., Mari, G.Longitudinal measurement of peak systolic velocity in the fetal middle cerebral artery for monitoring pregnancies complicated by red cell alloimmunisation: a prospective multicentre trial with intention-to-treat. Br J Obstet Gynaecol 2002; 109: 746–752CrossRefGoogle ScholarPubMed
Mayne, K. M., Bowell, P. J., Pratt, G. A.The significance of anti-Kell sensitization in pregnancy. Clin Lab Haematol 1990; 12: 379–385CrossRefGoogle ScholarPubMed
Redman, C. M., Marsh, W. L.The Kell blood group system and the McLeod phenotype. Semin Hematol 1993; 30: 209–218Google ScholarPubMed
Bowman, J. M., Harman, F. A., Manning, C. R., Pollock, J. M.Erythroblastosis fetalis produced by anti-k. Vox Sang 1989; 56: 187–189CrossRefGoogle ScholarPubMed
Duguid, J. K., Bromilow, I. M.Haemolytic disease of the newborn due to anti-k. Vox Sang 1990; 58: 69CrossRefGoogle ScholarPubMed
Moncharmont, P., Juron-Dupraz, F., Doillon, M., Vignal, M., Debeaux, P.A case of hemolytic disease of the newborn infant due to anti-K (Cellano). Acta Haematol 1991; 85: 45–46CrossRefGoogle Scholar
Spence, W. C., Potter, P., Maddalena, A., Demers, D. B., Bick, D. P.DNA-based prenatal determination of the RhEe genotype. Obstet Gynecol 1995; 86: 670–672Google ScholarPubMed
Gorlin, J. B., Kelly, L.Alloimmunisation via previous transfusion places female Kpb-negative recipients at risk for having children with clinically significant hemolytic disease of the newborn. Vox Sang 1994; 66: 46–48Google ScholarPubMed
Gordon, M. C., Kennedy, M. S., O'Shaughnessy, R. W., Waheed, A.Severe hemolytic disease of the newborn due to anti-Js(b). Vox Sang 1995; 69: 140–141Google Scholar
Lowe, R. F., Musengezi, A. T., Moores, P.Severe hemolytic disease of the newborn associated with anti-JSb. Transfusion 1978; 18: 466–468CrossRefGoogle ScholarPubMed
Ozolek, J. A., Watchko, J. F., Mimouni, F.Prevalence and lack of clinical significance of blood group incompatibility in mothers with blood type A or B. J Pediatr 1994; 125: 87–91CrossRefGoogle ScholarPubMed
Kirkman, H. N. Jr.Further evidence for a racial difference in frequency of ABO hemolytic disease. J Pediatr 1977; 90: 717–721CrossRefGoogle ScholarPubMed
Dufour, D. R., Monoghan, W. P.ABO hemolytic disease of the newborn: a retrospective analysis of 254 cases. Am J Clin Pathol 1980; 73: 369–373CrossRefGoogle ScholarPubMed
Guaran, R. L., Drew, J. H., Watkins, A. M.Jaundice: clinical practice in 88,000 liveborn infants. Aust NZ J Obstet Gynaecol 1992; 32: 186–192CrossRefGoogle ScholarPubMed
Gilja, B. K., Shah, V. P.Hydrops fetalis due to ABO incompatibility. Clin Pediatr (Phila) 1988; 27: 210–212CrossRefGoogle ScholarPubMed
Stiller, R. J., Herzlinger, R., Siegel, S., Whetham, J. C.Fetal ascites associated with ABO incompatibility: case report and review of the literature. Am J Obstet Gynecol 1996; 175: 1371–1372CrossRefGoogle ScholarPubMed
Miller, D. F., Petrie, S. J.Fetal erythroblastosis fetalis secondary to ABO incompatibility. Obstet Gynecol 1963; 22: 773–777Google ScholarPubMed
Ukita, M., Takahashi, A., Nunotani, T., et al.IgG subclasses of anti-A and anti-B antibodies bound to the cord red cells in ABO incompatible pregnancies. Vox Sang 1989; 56: 181–186CrossRefGoogle ScholarPubMed
Brouwers, H. A., Overbeeke, M. A., Ertbruggen, I., et al.What is the best predictor of the severity of ABO-haemolytic disease of the newborn?Lancet 1988; 2: 641–644CrossRefGoogle ScholarPubMed
Peevy, K. J., Wiseman, H. J.ABO hemolytic disease of the newborn: evaluation of management and identification of racial and antigenic factors. Pediatrics 1978; 61: 475–478CrossRefGoogle ScholarPubMed
Osborn, L. M., Lenarsky, C., Oakes, R. C., Reiff, M. I.Phototherapy in full-term infants with hemolytic disease secondary to ABO incompatibility. Pediatrics 1984; 74: 371–374Google ScholarPubMed
Bowden, J. B., Hebert, A. A., Rapini, R. P.Dermal hematopoiesis in neonates: report of five cases. J Am Acad Dermatol 1989; 20: 1104–1110CrossRefGoogle ScholarPubMed
Waldron, P., Alarcón, P.ABO hemolytic disease of the newborn: a unique constellation of findings in siblings and review of protective mechanisms in the fetal-maternal system. Am J Perinatol 1999; 16: 391–398CrossRefGoogle ScholarPubMed
Cariani, L., Romano, E. L., Martinez, N., et al.ABO-haemolytic disease of the newborn (ABO-HDN): factors influencing its severity and incidence in Venezuela. J Trop Pediatr 1995; 41: 14–21CrossRefGoogle ScholarPubMed
Sosler, S. D., Perkins, J. T., Fong, K., Saporito, C.The prevalence of immunization to Duffy antigens in a population of known racial distribution. Transfusion 1989; 29: 505–507CrossRefGoogle Scholar
Shah, V. P., Gilja, B. K.Hemolytic disease of newborn due to anti-Duffy (Fya). N Y State J Med 1983; 83: 244–245Google Scholar
Mallinson, G., Soo, K. S., Schall, T. J., Pisacka, M., Anstee, D. J.Mutations in the erythrocyte chemokine receptor (Duffy) gene: the molecular basis of the Fya/Fyb antigens and identification of a deletion in the Duffy gene of an apparently healthy individual with the Fy(a−b−) phenotype. Br J Haematol 1995; 90: 823–829CrossRefGoogle ScholarPubMed
Young-Owens, A., Kennedy, M., Rose, R. L., Boyle, J., O'Shaughnessy, R.Anti-M isoimmunization: management and outcome at the Ohio State University from 1969 to 1995. Obstet Gynecol 1997; 90: 962–966CrossRefGoogle ScholarPubMed
Bowman, J. M.Treatment options for the fetus with alloimmune hemolytic disease. Transfus Med Rev 1990; 4: 191–207CrossRefGoogle ScholarPubMed
Feldman, R., Luhby, A. L., Gromisch, D. S.Erythroblastosis fetalis due to anti-S antibody. J Pediatr 1973; 82: 88–91CrossRefGoogle ScholarPubMed
Drachmann, O., Hansen, K. B.Haemolytic disease of the newborn due to anti-s. Scand J Haematol 1969; 6: 93–98CrossRefGoogle ScholarPubMed
Parsh, B. S.Hemolytic disease of the newborn due to anti S antibodies. J Natl Med Assoc 2000; 92: 91–93Google ScholarPubMed
Reed, W., Lane, P. A., Lorey, F., et al.Sickle-cell disease not identified by newborn screening because of prior transfusion. J Pediatr 2000; 136: 248–250CrossRefGoogle Scholar
Donovan, L. M., Tripp, K. L., Zuckerman, J. E., Konugres, A. A.Hemolytic disease of the newborn due to anti-Js a. Transfusion 1973; 13: 153CrossRefGoogle ScholarPubMed
Purohit, D. M., Taylor, H. L., Spivey, M. A.Hemolytic disease of the newborn due to anti-Jsb. Am J Obstet Gynecol 1978; 131: 755–756CrossRefGoogle ScholarPubMed
Beaulieu, M.-D. Screening for D (Rh) sensitization in pregnancy. In Canadian Task Force on the Periodic Health Examination. The Canadian Guide to Clinical Preventive Health Care. Ottawa: Canada Communication Group, 1994: 116–124Google Scholar
Baptista-González, H. A., Rosenfeld-Mann, F., Leiss-Márquez, T.Prevención de la isoinmunización materna al RhD, con g-globulina anti-D. Salud Publica Mex 2001; 43: 52–58CrossRefGoogle Scholar
Joint Working Group of the British Blood Transfusion Society and the RCOG. Recommendations for the use of anti-D immunoglobulin for Rh prophylaxis. Transfus Med 1999; 9: 93–97
ACOG Practice Bulletin. Prevention of Rh D alloimmunization. Int J Gynecol Obstet 1999; 66: 63–70CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×