Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T15:15:25.615Z Has data issue: false hasContentIssue false

Orientation Effects in QSO Spectra

from IV - X-rays and Accretion Disks

Published online by Cambridge University Press:  04 August 2010

Paul J. Francis
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ 85721, USA.
Andrew Robinson
Affiliation:
University of Cambridge
Roberto Juan Terlevich
Affiliation:
Royal Greenwich Observatory, Cambridge
Get access

Summary

Abstract

Virtually all accretion disk models predict that QSOs observed from nearly edge-on should show extremely high equivalent-width emission lines. These are not seen. Either accretion disks must be significantly non-planar, or most edge-on QSOs must be concealed by an obscuring torus.

Model

If the UV-optical continuum emission of QSOs comes from an accretion disk, it will be emitted anisotropically. If in addition the line radiation is either isotropic, or anisotropic in a different way from the continuum radiation, then identical QSOs observed from different orientations will show different emission-line equivalent widths.

I assume that all QSOs have the same intrinsic line-to-continuum flux ratio, and that the line radiation is isotropic. Any magnitude-limited sample is strongly biased towards face-on QSOs, and this bias is taken into account using luminosity function information. A wide variety of both thick and thin disk models have been used.

Results

A typical predicted equivalent-width distribution is compared with an observed distribution in the figure. Both are taken from. Two discrepancies are evident. Firstly, the observed distribution has a broader, smoother peak than the prediction. This can easily be explained if there is an intrinsic dispersion in QSO equivalent-widths. Secondly, the model has a tail of very high equivalent-width QSOs not seen in the observations. This tail is significant at the 99% confidence level, for most accretion disk models, and for Lyman-α, C III] and Mg II as well as C IV.

Type
Chapter
Information
The Nature of Compact Objects in Active Galactic Nuclei
Proceedings of the 33rd Herstmonceux Conference, held in Cambridge, July 6-22, 1992
, pp. 354 - 355
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×