Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T11:37:32.061Z Has data issue: false hasContentIssue false

Chapter 11 - Pediatric Multiple Sclerosis

Published online by Cambridge University Press:  10 February 2021

Carlos A. Perez
Affiliation:
University of Texas, Houston
Andrew Smith
Affiliation:
OhioHealth Riverside Methodist Hospital in Columbus, Ohio, USA
Flavia Nelson
Affiliation:
University of Minnesota, Minneapolis
Get access

Summary

Recognition and diagnosis of pediatric multiple sclerosis (MS) can be challenging given the broad differential of possible MS mimics and acquired demyelinating syndrome (ADS) phenotypes. It is not uncommon for clinicians to consider alternative diagnoses rather than MS in children with acute neurologic symptoms and white matter lesions on MRI, such as leukodystrophies, vasculopathies, mitochondrial defects, or other metabolic or inflammatory disorders. Once a diagnosis is made, the current lack of understanding regarding the safety and generalizability of use of disease-modifying therapy (DMT) in children can pose additional challenges to treating children and adolescents. In this chapter, we discuss the clinical presentation, diagnostic evaluation, and treatment approach to pediatric-onset MS, paying special attention to the areas in which pediatric disease may differ from adult-onset MS.

Type
Chapter
Information
Multiple Sclerosis
A Practical Manual for Hospital and Outpatient Care
, pp. 193 - 210
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Narula, S, Banwell, B. Pediatric demyelination. Continuum (Minneap Minn). 2016;22(3):897915. doi:10.1212/CON.0000000000000326Google Scholar
Ge, Y. Multiple sclerosis: the role of MR imaging. Am J Neuroradiol. 2006;27(6):1165–76. doi:27/6/1165 [pii]Google ScholarPubMed
Rostásy, K, Bajer-Kornek, B. Paediatric multiple sclerosis and other acute demyelinating diseases. Curr Opin Neurol. 2018;31(3):244–8. doi:10.1097/WCO.0000000000000562Google Scholar
Wang, CX, Greenberg, BM. Pediatric multiple sclerosis. Neurol Clin. 2018;36:135149.CrossRefGoogle ScholarPubMed
Polman, CH, Reingold, SC, Banwell, B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292302. doi:10.1002/ana.22366Google Scholar
Cappa, R, Theroux, L, Brenton, JN. Pediatric multiple sclerosis: genes, environment, and a comprehensive therapeutic approach. Pediatr Neurol. 2017;75:1728. doi:10.1016/j.pediatrneurol.2017.07.005CrossRefGoogle Scholar
Brownlee, WJ, Hardy, TA, Fazekas, F, Miller, DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389:1336–46. doi:10.1016/S0140-6736(16)30959-XGoogle Scholar
Milo, R, Miller, A. Revised diagnostic criteria of multiple sclerosis. Autoimmun Rev. 2014;13(4-5):518–24. doi:10.1016/j.autrev.2014.01.012Google Scholar
Weber, MS, Derfuss, T, Metz, I, Brück, W. Therapeutic advances in neurological disorders. Ther Adv Neurol Disord. 2018;11:115. doi:10.1177/1756285609104792Google Scholar
Balashov, K. Imaging of central nervous system demyelinating disorders. Continuum (Minneap Minn). 2016;22(5):1613–35. doi:10.1212/CON.0000000000000373Google ScholarPubMed
Yamamoto, E, Ginsberg, M, Rensel, M, Moodley, M. Pediatric-onset multiple sclerosis: a single center study. J Child Neurol. 2018;33(1):98105. doi:10.1177/0883073817739789Google Scholar
Tremlett, H, Zhao, Y, Rieckmann, P, Hutchinson, M. New perspectives in the natural history of multiple sclerosis. Neurology. 2010;74(24):2004–15. doi:10.1212/WNL.0b013e3181e3973fCrossRefGoogle ScholarPubMed
Thompson, AJ, Baranzini, SE, Geurts, J, et al. Multiple sclerosis. Lancet Neurol. 2018;391:1622–36. doi:10.1016/B978-0-7234-3748-2.00015-3Google Scholar
Eriksson, M, Andersen, O, Runmarker, B. Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler. 2003;9:260–74.Google Scholar
Hollenbach, JA, Oksenberg, JR. The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun. 2015;64:1325. doi:10.1016/j.clinbiochem.2015.06.023.Gut-LiverCrossRefGoogle ScholarPubMed
Okuda, DT, Mowry, EM, Beheshtian, A, et al. Incidental MRI anomalies suggestive of multiple sclerosis. Neurology. 2009;72(9):800–5. doi:10.1212/01.wnl.0000335764.14513.1aCrossRefGoogle ScholarPubMed
Olek, MJ. Differential diagnosis, clinical features, and prognosis of multiple sclerosis. Curr Clin Neurol Mult Scler. 2005:15–53.CrossRefGoogle Scholar
Gabelic, T, Ramasamy, DP, Hagemeier, J, et al. Prevalence of radiologically isolated syndrome and white matter signal abnormalities in healthy relatives of patients with multiple sclerosis. Am J Neuroradiol. 2014;35(1):106–12.CrossRefGoogle ScholarPubMed
Hintzen, RQ. Pediatric acquired CNS demyelinating syndromes. Neurology. 2016;87: s67–73. doi:10.1212/WNL.0000000000002881Google Scholar
Absoud, M, Greenberg, BM, Lim, M, et al. Pediatric transverse myelitis. Neurology. 2016;87(9):S46–52. doi:10.1212/WNL.0000000000002820CrossRefGoogle ScholarPubMed
Reich, DS, Lucchinetti, CF, Calabresi, PA. Multiple sclerosis. N Engl J Med. 2018;378(2):169–80. doi:10.1056/NEJMra1401483Google Scholar
Marcus, JF, Waubant, EL. Updates on clinically isolated syndrome and diagnostic criteria for multiple sclerosis. Neurohospitalist. 2013;3(2):6580. doi:10.1177/1941874412457183CrossRefGoogle ScholarPubMed
Cross, AH, Naismith, RT. Established and novel disease-modifying treatments in multiple sclerosis. J Intern Med. 2014;275(4):350–63. doi:10.1111/joim.12203Google Scholar
Neuteboom, R, Wilbur, C, Van Pelt, D, et al. The spectrum of inflammatory acquired demyelinating syndromes in children. Semin Pediatr Neurol. 2017;24(3):189200. doi:10.1016/j.spen.2017.08.007Google Scholar
Baumann, M, Grams, A, Djurdjevic, T, et al. MRI of the first event in pediatric acquired demyelinating syndromes with antibodies to myelin oligodendrocyte glycoprotein. J Neurol. 2018;265(4):845–55. doi:10.1007/s00415-018-8781-3CrossRefGoogle ScholarPubMed
Fernandez-Carbonell, C, Vargas-Lowy, D, Musallam, A, et al. Clinical and MRI phenotype of children with MOG antibodies. Mult Scler J. 2016;22(2):174184.Google Scholar
Tardieu, M, Banwell, B, Wolinsky, JS, et al. Consensus definitions for pediatric MS and other demyelinating disorders in childhood. Neurology. 2016;87(9):S811. doi:10.1212/WNL.0000000000002877Google Scholar
Sorte, DE, Poretti, A, Newsome, SD, et al. Longitudinally extensive myelopathy in children. Pediatr Radiol. 2015;45(2):244–57. doi:10.1007/s00247-014-3225-4Google Scholar
Narula, S, Banwell, B. Pediatric demyelination. Contin Lifelong Learn Neurol. 2016;22(3):897915. doi:10.1212/CON.0000000000000326Google Scholar
Peschl, P, Bradl, M, Höftberger, R, et al. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol. 2017;8:529. doi:10.3389/fimmu.2017.00529Google Scholar
Zhou, L, Huang, Y, Li, H, et al. MOG-antibody associated demyelinating disease of the CNS: a clinical and pathological study in Chinese Han patients. J Neuroimmunol. 2017;305:1928. doi:10.1016/j.jneuroim.2017.01.007Google Scholar
Venkateswaran, S, Banwell, B. Clinical trials in pediatric multiple sclerosis: overcoming the challenges. Clin Investig (Lond). 2013;3:4956.Google Scholar
Yeh, EA. Fatigue in childhood multiple sclerosis. Dev Med Child Neurol. 2016;58(3):218. doi:10.1111/dmcn.13055Google Scholar
Sarioglu, B, Serdaroglu, G, Tutuncuoglu, S, Ozer, EA. The use of botulinum toxin type A treatment in children with spasticity. Pediatr Neurol. 2003;29(4):299301. doi:10.1016/S0887-8994(03)00269-8Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×