Published online by Cambridge University Press: 05 October 2023
This chapter explains the hard-sphere model of particle-particle collision. This model exploits impulse equations that directly relate the pre-collisional and post-collisional velocities of the particles. Thus, this model does not track the deformation history that was done in the prior chapters. As a result, we obtain ready analytical solutions so that the computational time is short. First, the chapter shows a standard hard-sphere model for a “mechanical” collision of two bodies. Different strategies are presented, such as the so-called two- and three-parameter hard-sphere model. Later, an extension of these models is shown that also accounts for adhesive interactions. Although, due to its simplicity, the hard-sphere model may not account for various physical phenomena between colliding particles, it may still be used in many applications. In this chapter, the reader is again provided with a computer code.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.