Published online by Cambridge University Press: 05 September 2016
Before a scholar can begin case-study research to test, refine, or interpret a regression analysis, a surprisingly complex prior challenge needs to be addressed: selecting cases for in-depth analysis from the comparatively large data set necessary for regression. Seawright and Gerring (2008) have proposed a set of systematic case-selection rules as a solution to this challenge. Yet the question remains, which of the several available methods should be used in a given project? Several scholars arguing in favor of deliberate case selection have focused on three of these alternatives: typical cases, deviant cases, and extreme cases on the dependent variable. Others have argued for random sampling (Fearon and Laitin 2008: 764–66) or deliberate sampling intended to represent the full range of variation in the data (King et al. 1994: 139–46).
I argue that the existing advice is incomplete or misleading when the goal of case-study research is discovery. I develop this argument by showing that, across a wide range of goals, the alternatives with the best chances of facilitating discovery are either deviant-case selection or the rarely discussed alternative of selecting extreme cases on the main independent variable. This argument is developed with reference to a variety of discovery-related goals: searching for sources of measurement error in the dependent or key independent variables; testing for or trying to discover an omitted variable, which may or may not be correlated with the independent variable of interest; exploring hypotheses about causal pathways; finding a case with a causal effect close to the population mean; and discovering substantive sources of causal heterogeneity.
Unlike much existing research on qualitative and case-study methods, this discussion is not driven by reference to examples of excellent research. In many other kinds of qualitative research practices, the analyst's judgment is a central ingredient in the application of the research tool; consequently, there is a great deal to learn from studying how judgment was employed in notably successful applications of the research tools in question. By contrast, systematic case selection is an algorithmic process: it takes a certain kind of information as an input, and then follows logical or mathematical rules to convert that input into a case. Because systematic case-selection rules reduce scholars’ reliance on judgment, the statistical properties of case-selection algorithms are more important than notably successful examples of their application.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.