from Section II - A Metabolism-Based Approach to Movement Disorders and Inherited Metabolic Disorders
Published online by Cambridge University Press: 24 September 2020
Copper is one of the six transition metals that have important biochemical roles in humans, particularly in catalysis and electron transport [1, 2]. Because it can exist in two redox states (Cu2+/Cu+), it can participate in redox reactions involving transfer of an electron, but if it builds up it can also generate potentially toxic reactive oxygen species by Fenton chemistry. Examples of copper in redox enzymes include: complex IV of the mitochondrial respiratory chain, copper–zinc superoxide dismutase, ceruloplasmin (ferroxidase), lysyl oxidase, dopamine beta-hydroxylase, and tyrosinase.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.