Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T19:55:27.551Z Has data issue: false hasContentIssue false

12 - Triangulated motives over noetherian separated schemes

Published online by Cambridge University Press:  07 October 2011

Florian Ivorra
Affiliation:
Université Rennes
Raf Cluckers
Affiliation:
Université de Lille
Johannes Nicaise
Affiliation:
Katholieke Universiteit Leuven, Belgium
Julien Sebag
Affiliation:
Université de Rennes I, France
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Balmer, Paul, and Schlichting, Marco. 2001. Idempotent completion of triangulated categories. J. Algebra, 236(2), 819–834.CrossRefGoogle Scholar
[2] Brown, Kenneth S., and Gersten, Stephen M. 1973. Algebraic K-theory as generalized sheaf cohomology. Pages 266–292. Lecture Notes in Math., Vol. 341 of: Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Berlin: Springer.Google Scholar
[3] Fulton, William. 1998. Intersection theory. Second edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2. Berlin: Springer-Verlag.Google Scholar
[4] Grothendieck, A. 1957. Sur quelques points d'algèbre homologique. Tôhoku Math. J. (2), 9, 119–221.Google Scholar
[5] Grothendieck, A. 1960-1967. Éléments de géométrie algébrique. (EGA). Inst. Hautes Études Sci. Publ. Math.
[6] Grothendieck, A. 1971. Revêtements étales et groupe fondamental. Berlin: Springer-Verlag. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud, Lecture Notes in Mathematics, Vol. 224.Google Scholar
[7] Ivorra, Florian. 2007. Réalisation -Adique des Motifs Triangulés Géométriques I. Documenta. Math., 12, 607–671.Google Scholar
[8] Kato, Kazuya, and Saito, Shuji. 1986. Global class field theory of arithmetic schemes. Pages 255–331 of: Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983). Contemp. Math., vol. 55. Providence, RI: Amer. Math. Soc.CrossRefGoogle Scholar
[9] Levine, Marc. 1998. Mixed motives. Mathematical Surveys and Monographs, vol. 57. Providence, RI: American Mathematical Society.Google Scholar
[10] Matsumura, Hideyuki. 1989. Commutative ring theory. Second edn. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge: Cambridge University Press. Translated from the Japanese by M. Reid.Google Scholar
[11] Mazza, Carlo, Voevodsky, Vladimir, and Weibel, Charles. 2006. Lecture notes on motivic cohomology. Clay Mathematics Monographs, vol. 2. Providence, RI: American Mathematical Society.Google Scholar
[12] Nisnevich, Ye. A. 1989. The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. Pages 241–342 of: Algebraic K-theory: connections with geometry and topology (Lake Louise, AB, 1987). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 279. Dordrecht: Kluwer Acad. Publ.CrossRefGoogle Scholar
[13] Raynaud, Michel, and Gruson, Laurent. 1971. Critères de platitude et de projectivité. Techniques de “platification” d'un module. Invent. Math., 13, 1–89.CrossRefGoogle Scholar
[14] Serre, Jean-Pierre. 1965. Algèbre locale. Multiplicités. Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11. Berlin: Springer-Verlag.Google Scholar
[15] Suslin, Andrei, and Voevodsky, Vladimir. 2000a. Bloch-Kato conjecture and motivic cohomology with finite coefficients. Pages 117–189 of: The arithmetic and geometry of algebraic cycles (Banff, AB, 1998). NATO Sci. Ser. C Math. Phys. Sci., vol. 548. Dordrecht: Kluwer Acad. Publ.CrossRefGoogle Scholar
[16] Suslin, Andrei, and Voevodsky, Vladimir. 2000b. Relative cycles and Chow sheaves. Pages 10–86 of: Cycles, transfers, and motivic homology theories. Ann. of Math. Stud., vol. 143. Princeton, NJ: Princeton Univ. Press.Google Scholar
[17] Voevodsky, Vladimir. 2000a. Cohomological theory of presheaves with transfers. Pages 87–137 of: Cycles, transfers, and motivic homology theories. Ann. of Math. Stud., vol. 143. Princeton, NJ: Princeton Univ. Press.Google Scholar
[18] Voevodsky, Vladimir. 2000b (September). Homotopy theory of simplicial sheaves in completely decomposable topologies. www.math.uiuc.edu/K-theory/0443.
[19] Voevodsky, Vladimir. 2000c. Triangulated categories of motives over a field. Pages 188–238 of: Cycles, transfers, and motivic homology theories. Ann. of Math. Stud., vol. 143. Princeton, NJ: Princeton Univ. Press.Google Scholar
[20] Voevodsky, Vladimir. 2000d (September). Unstable motivic homo-topy categories in Nisnevich and cdh-topology. www.math.uiuc.edu/K-theory/0444.
[21] Voevodsky, Vladimir. 2002a (January). Cancellation Theorem. www. math.uiuc.edu/K-theory/0541.
[22] Voevodsky, Vladimir. 2002b. Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Int. Math. Res. Not., 351–355.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×