Published online by Cambridge University Press: 05 June 2014
The need to recognize motion-blurred faces is vital for a wide variety of security applications ranging from maritime surveillance to road traffic policing. While much of the theory in the analysis of motion-blurred images focuses on restoration of the blurred image, we argue that this is an unnecessary and expensive step for face recognition. Instead, we adopt a direct approach based on the set-theoretic characterization of the space of motion-blurred images of a single sharp image. This set lacks the nice property of convexity that was exploited in a recent paper to achieve competitive results in real-world datasets (Vageeswaran, Mitra & Chellappa 2013). Keeping this non-convexity in mind, we propose a bank of classifiers (BoC) approach for directly recognizing motion-blurred face images. We divide the parameter space of motion blur into many different bins in such a way that the set of blurred images within each bin is a convex set. In each such bin, we learn support vector machine (SVM) classifiers that separate the convex sets associated with each person in the gallery database. Our experiments on synthetic and real datasets provide compelling evidence that this approach is a viable solution for recognition of motion-blurred face images.
Introduction
A system that can recognize motion-blurred faces can be of vital use in a wide variety of security applications, ranging from maritime surveillance to road traffic policing. Figure 12.1 shows two possible maritime surveillance scenarios: shore-to-ship (the camera is mounted on-shore and the subjects are in the ship), and ship-to-shore (the camera is on the ship and the subjects are moving on-shore).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.