Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T06:36:33.808Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 December 2020

Peter D. Clift
Affiliation:
Louisiana State University
Jade d'Alpoim Guedes
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achuthavarier, D., Krishnamurthy, V., Kirtman, B. P., Huang, B. H., 2012. Role of the Indian Ocean in the ENSO-Indian summer monsoon teleconnection in the NCEP Climate Forecast System. Journal of Climate, 25: 24902508.Google Scholar
Achyuthan, H., Quade, J., Roe, L., Placzek, C., 2007. Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India. Quaternary International, 162–163: 5060.CrossRefGoogle Scholar
Acosta, R. P., Huber, M., 2017. The neglected Indo‐Gangetic Plains low‐level jet and its importance for moisture transport and precipitation during the peak summer monsoon. Geophys. Res. Lett., 44: 86018610. DOI:10.1002/2017GL074440.Google Scholar
Adams, J., 1997. Global Land Environments since the Last Interglacial. Oak Ridge National Laboratory, TN, USA, p. 20.Google Scholar
Ahmad, N., Sufi, A., Hussain, T., 1993. Water Resources of Pakistan. Publisher Shahzad Nazir, Gulberg, Lahore, Pakistan.Google Scholar
Ahmed, M. F., Rogers, J. D., Ismail, E. H., 2018. Knickpoints along the upper Indus River, Pakistan: an exploratory survey of geomorphic processes. Swiss Journal of Geosciences, 111(1): 191204. DOI:10.1007/s00015-017-0290-3.Google Scholar
Ahn, S.-M., 2010. The emergence of rice agriculture in Korea: archaeobotanical perspectives. Archaeological and Anthropological Sciences, 2(2): 8998.Google Scholar
Alam, U. Z., 2002. Questioning the water wars rationale: a case study of the Indus Waters Treaty. Geographical Journal, 168(4): 341353. DOI:10.1111/j.0016-7398.2002.00060.x.Google Scholar
Alfieri, L., Feyen, L., Salamon, P., Thielen, J., Bianchi, A., Dottori, F., Burek, P., 2016. Modelling the socio-economic impact of river floods in Europe. Natural Hazards and Earth System Sciences, 16(6): 14011411. DOI:10.5194/nhess-16-1401-2016.CrossRefGoogle Scholar
Alizai, A., Carter, A., Clift, P. D., VanLaningham, S., Williams, J. C., Kumar, R., 2011a. Sediment provenance, reworking and transport processes in the Indus River by U-Pb dating of detrital zircon grains. Global and Planetary Change, 76: 3355. DOI:10.1016/j.gloplacha.2010.11.008.CrossRefGoogle Scholar
Alizai, A., Clift, P. D., Giosan, L., VanLaningham, S., Hinton, R., Tabrez, A. R., Danish, M., EIMF, 2011b. Pb isotopic variability in the modern and Holocene Indus River system measured by Ion Microprobe in detrital K-feldspar grains. Geochimica et Cosmochimica Acta, 75: 47714795. DOI:10.1016/j.gca.2011.05.039.CrossRefGoogle Scholar
Alizai, A., Hillier, S., Clift, P. D., Giosan, L., 2012. Clay mineral variations in Holocene terrestrial sediments from the Indus Basin; a response to SW Asian Monsoon variability. Quaternary Research, 77(3): 368381. DOI:10.1016/j.yqres.2012.01.008.Google Scholar
Allaby, M., Garratt, R., 2003. Facts on File Dangerous Weather Series: Floods. Facts on File, New York, p. 142.Google Scholar
Allan, R., Lindesay, J., Parker, D., 1996. El Nino: Southern Oscillation and Climatic Variability. CSIRO Publishing, Canberra, p. 416.Google Scholar
Alley, K. D., 2010. The Goddess Ganga: Her Power, Mythos, and Worldly Challenges. Goddesses in World Culture. Praeger, Santa Barbara, California, USA, pp. 3348.Google Scholar
An, C.-B., Feng, Z., Tang, L., 2004. Environmental change and cultural response between 8000 and 4000 cal. yr BP in the western Loess Plateau, northwest China. Journal of Quaternary Science, 19: 529535.Google Scholar
An, Z., 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 19: 171187.Google Scholar
An, Z. S., Wu, X. H., Wang, P. X., Wang, S. M., Dong, G. R., Sun, X. J., Zhang, D. E., Lu, Y. C., Zheng, S. H., Zhao, S. L., 1991. Changes in the monsoon and associated environmental changes in China since the last interglacial. In: Liu, T. S. (ed.), Loess, Environment and Global Change. Science Press, Beijing, pp. 129.Google Scholar
Anderson, E. N., 1988. The Food of China. Yale University Press, New Haven.Google Scholar
Annamalai, H., Hamilton, K., Sperber, K. R., 2007. The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. Journal of Climate, 20: 10711092.Google Scholar
Annamalai, H., Liu, P., 2005. Response of the Asian summer monsoon to changes in El Niño properties. Quarterly Journal of the Royal Meteorological Society, 131: 805831.CrossRefGoogle Scholar
Annamalai, H., Sperber, K. R., 2016. South Asian summer monsoon variability in a changing climate. In: de Carvalho, L. M. V., Jones, C. (eds.), The Monsoons and Climate Change: Observations and Modeling. Springer International Publishing, Cham, pp.2546.Google Scholar
Anshari, G., Kershaw, A. P., van der Kaars, S., 2001. A late Pleistocene and Holocene pollen and charcoal record from peat swamp forest, Lake Sentarum Wildlife Reserve, West Kalimantan, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 171(3–4): 213228.Google Scholar
Arimoto, R., 2001. Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth-Science Reviews, 54(1–3): 2942.CrossRefGoogle Scholar
Arnold, D., 1999. Hunger in the garden of plenty: the Bengal famine of 1770. In: Johns, A. (ed.), Dreadful Visitations: Confronting Natural Catastrophe in the Age of Enlightenment. Routledge, New York, pp. 81111.Google Scholar
Ashraf, M., Majeed, A., 2006. Water Requirements of Major Crops for Different Agro-Climatic Zones of Balochistan. IUCN, Water programme, Balochistan Programme Office, Karachi.Google Scholar
Ashton, B., Hill, K., Piazza, A., Zeitz, R., 1992. Famine in China, 1958–61. In: Poston, D. L., Yaukey, D. (eds.), The Population of Modern China. Springer US, Boston, MA, pp.225271.Google Scholar
Auffhammer, M., Ramanathan, V., Vincent, J. R., 2012. Climate change, the monsoon, and rice yield in India. Climatic Change, 111(2): 411424. DOI:10.1007/s10584-011-0208-4.Google Scholar
Awan, T. H., Chauhan, B. S., Cruz, P. C. S., 2014. Growth plasticity of Junglerice (Echinochloa colona) for resource use when grown with different rice (Oryza sativa) planting densities and nitrogen rates in dry-seeded conditions. Weed Science, 62(4): 571587.Google Scholar
Azad, S., Rajeevan, M., 2016. Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming. Scientific Reports, 6: 20145.CrossRefGoogle ScholarPubMed
Bae, C. J., Kim, J. C., 2010. The late Paleolithic-Neolithic transition in Korea: current archaeological and radiocarbon perspectives. Radiocarbon, 52(2): 493499. DOI:10.1017/S0033822200045525.Google Scholar
Bailey, I. W., Sinnott, E. W., 1916. The climatic distribution of certain types of angiosperm leaves. American Journal of Botany, 3(1): 2439. DOI:10.2307/2435109.Google Scholar
Balaguru, K., Taraphdar, S., Leung, L. R., Foltz, G. R., 2014. Increase in the intensity of postmonsoon Bay of Bengal tropical cyclones. Geophysical Research Letters, 41(10): 35943601. DOI:10.1002/2014gl060197.Google Scholar
Balla, K., Karsai, I., Bónis, P., Kiss, T., Berki, Z., Horváth, Á., Mayer, M., Bencze, S., Veisz, O., 2019. Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS ONE, 14(9): e0222639. DOI:10.1371/journal.pone.0222639.CrossRefGoogle Scholar
Baltensperger, D. D., 2002. Progress with Proso, Pearl and other millets. In: Janick, J., Whipkey, A. (eds.), Trends in New Crops and New Uses. ASHS Press, Alexanderia, USA, pp. 100103.Google Scholar
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., Cooke, R. M., 2019. Ice sheet contributions to future sea-level rise from structured expert judgment. Proceedings of the National Academy of Sciences, 116(23): 1119511200. DOI:10.1073/pnas.1817205116.Google Scholar
Bamberg, A., Rosenthal, Y., Paul, A., Heslop, D., Mulitza, S., Rühlemann, C., Schulz, M., 2010. Reduced North Atlantic Central Water formation in response to early Holocene ice sheet melting. Geophysical Research Letters, 37(L17705). DOI:10.1029/2010GL043878.CrossRefGoogle Scholar
Bandyopadhyay, J., 2013. Securing the Himalayas as the water tower of Asia: An environmental perspective. Asia Policy, 16: 4550. DOI:10.1353/asp.2013.0042.CrossRefGoogle Scholar
Bannister, D., Herzog, M., Graf, H.-F., Hosking, J.S., Short, C.A., 2017. An assessment of recent and future temperature change over the Sichuan Basin, China, Using CMIP5 Climate Models. Journal of Climate, 30(17): 67016722. DOI:10.1175/JCLI-D-16-0536.1.Google Scholar
Bao, Y., You, Q., 2019. How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau? Climate Dynamics, 53: 353370. DOI:10.1007/s00382-018-4589-1.Google Scholar
Bar-Yosef, O., 2011. Climatic fluctuations and early farming in West and East Asia. Current Anthropology, 52(S4): S175S193.Google Scholar
Barber, D. C., Dyke, A., Hillaire, M. C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., Gagnon, J. M., 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400: 344348.Google Scholar
Barker, R., 2011. The origin and spread of early-ripening champa rice: it’s impact on Song Dynasty China. Rice, 4(3): 184.Google Scholar
Barnes, G., 2015. Archaeology of East Asia. Oxbow books, Oxford.Google Scholar
Barton, C. M., Ullah, I., Bergin, S. M., Mitasova, H., Sarjoughian, H., 2012. Looking for the future in the past: long-term change in socioecological systems. Ecological Modelling, 241: 4253.Google Scholar
Barton, L., Brantingham, P. J., Ji, D. X., 2007. Late Pleistocene climate change and Paleolithic cultural evolution in northern China: implications from the Last Glacial Maximum. In: Madsen, D. B., Gao, X., Chen, F. H. (eds.), Late Quaternary Climate Change and Human Adaptation in Arid China. L. Elsevier, Amsterdam, pp. 105128.Google Scholar
Barton, L., Newsome, S. D., Chen, F. -H., Wang, H., Guilderson, T. P., Bettinger, R. L., 2009. Agricultural origins and the isotopic identity of domestication in Northern China. Proceedings of the National Academy of Sciences, 106(14): 55235528. DOI:10.1073/pnas.0809960106.Google Scholar
Bayly, C. A., 1988. Rulers, Townsmen and Bazaars: North Indian Society in the Age of British Expansion, 1770–1870. CUP Archive, Cambridge.Google Scholar
Becker, J., 1998. Hungry Ghosts: Mao’s Secret Famine. Holt Paperbacks, New York, p. 325.Google Scholar
Beinart, W., Coates, P., 1995. Historical Connections: Environment and History. Routledge, London.Google Scholar
Belcher, W. R., 2003. Fish exploitation of the Indus Valley tradition. In: Weber, S. A., Belcher, W. R. (eds.), In Indus Ethnobiology: New Perspectives from the Field. Lexington Books, Lanham, Maryland, pp. 95174.Google Scholar
Belcher, W. R., Belcher, W. R., 2000. Geologic constraints on the Harappa archaeological site, Punjab Province, Pakistan. Geoarchaeology, 15(7): 679713. DOI:10.1002/1520-6548(200010)15:7<679::aid-gea3>3.0.CO;2-9.Google Scholar
Bellwood, P., 2005. Asian farming diasporas? Agriculture, languages and genes in China and Southeast Asia. In: Stark, M. T. (ed.), Archaeology of Asia. Blackwell, Malden, MA, pp. 96118.Google Scholar
Bestel, S., Crawford, G. W., Liu, L., Shi, J., Song, Y., Chen, X., 2014. The evolution of millet domestication, middle yellow river region, North China: evidence from charred seeds at the late Upper Paleolithic Shizitan Locality 9 site. The Holocene, 24(3): 261265. DOI:10.1177/0959683613518595.Google Scholar
Bettinger, R. L., Barton, L., Morgan, C., 2010. The origins of food production in North China: a different kind of agricultural revolution. Evolutionary Anthropology, 19: 921.CrossRefGoogle Scholar
Bettinger, R.L., Barton, L., Richerson, P.J., Boyd, R., Hui, W., Won, C., 2007. The transition to agriculture in Northwestern China. Developments in Quaternary Sciences, 9: 83101.CrossRefGoogle Scholar
Betzler, C., Eberli, G. P., Kroon, D., Wright, J. D., Swart, P. K., Nath, B. N., Alvarez-Zarikian, C. A., Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozai, S., Inoue, M., Jovane, L., Lanci, L., Laya, J. C., Mee, A. L. H., Lüdmann, T., Nakakuni, M., Niino, K., Petruny, L. M., Pratiwi, S. D., Reijmer, J. J. G., Reolid, J., Slagle, A. L., Sloss, C. R., Su, X., Yao, Z., Young, J. R., 2016. The abrupt onset of the modern South Asian Monsoon winds. Scientific Reports, 6: 29838. DOI:10.1038/srep29838.CrossRefGoogle ScholarPubMed
Bhat, G. S., 2006. The Indian drought of 2002—a sub-seasonal phenomenon? Quarterly Journal of the Royal Meteorological Society, 132(621): 25832602. DOI:10.1256/qj.05.13.Google Scholar
Bi, X., Sheng, G., Liu, X., Li, C., Fu, J., 2005. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Organic Geochemistry, 36(10): 14051417. DOI:10.1016/j.orggeochem.2005.06.001.Google Scholar
Bigg, G. R., Clark, C. D., Hughes, A. L. C., 2008. A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice–volcanic interaction. Earth and Planetary Science Letters, 265(3): 559570. DOI:10.1016/j.epsl.2007.10.052.Google Scholar
Biome 6000 team, 2004. Biome 6000 version 4.2. BIOMES data. www.bridge.bris.ac.uk/resources/Databases/.Google Scholar
Blanford, H.F., 1884. On the connection of the Himalayan snowfall with dry winds and seasons of draughts in India. Proceedings of the Royal Society, London, 37: 322.Google Scholar
Boaretto, E., Wu, X., Yuan, J., Bar-Yosef, O., Chu, V., Pan, Y., Liu, K., Cohen, D., Jiao, T., Li, S., Gu, H., Goldberg, P., Weiner, S., 2009. Radiocarbon dating of charcoal and bone collagen associated with early pottery at Yuchanyan Cave, Hunan Province, China. Proceedings of the National Academy of Sciences, 106(24): 95959600. DOI:10.1073/pnas.0900539106.Google Scholar
Bollasina, M. A., Ming, Y., Ramaswamy, V., 2011. Anthropogenic aerosols and the weakening of the South Asian Summer Monsoon. Science, 334(6055): 502505. DOI:10.1126/science.1204994.Google Scholar
Bookhagen, B., 2010. Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya. Geomatics, Natural Hazards and Risk, 1(1): 3750. DOI:10.1080/19475701003625737.CrossRefGoogle Scholar
Bookhagen, B., Burbank, D. W., 2006. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters, 33:(L08405). DOI:10.1029/2006GL026037.Google Scholar
Boos, W. R., Kuang, Z., 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463: 218222. DOI:10.1038/nature08707.Google Scholar
Bordoni, S., Schneider, T., 2008. Monsoons as eddy-mediated regime transitions of the tropical overturning circulations. Nature Geoscience, 1: 515519.Google Scholar
Bosboom, R. E., Dupont-Nivet, G., Houben, A. J. P., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Zachariasse, W. -J., Guo, Z., Li, C., 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 385398.Google Scholar
Boschat, G., Terray, P., Masson, S., 2012. Robustness of SST teleconnections and precursory patterns associated with the Indian summer monsoon. Climate Dynamics, 38: 21432165.Google Scholar
Bouchery, P. 2010. Irrigation systems and religious interpretation of the local environment among the Hanis in Yunnan. In Lecomte-Tilouine, M. (ed.), Nature, Culture and Religion at the Crossroads of Asia: 318–342. Social Science Press, Delhi.Google Scholar
Bourassa, A. E., Robock, A., Randel, W. J., Deshler, T., Rieger, L. A., Lloyd, N. D., Llewellyn, E. J., Degenstein, D. A., 2012. Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport. Science, 337(6090): 7881. DOI:10.1126/science.1219371.Google Scholar
Bowman, D., 2019. Principles of Alluvial Fan Morphology. Springer, Dordrecht, p. 151.Google Scholar
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J. Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M. F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., Zhao, Y., 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Clim. Past, 3(2): 261277. DOI:10.5194/cp-3–261–2007.Google Scholar
Brantingham, P. J., Kerry, K. W., Krivoshapkin, A. I., Kuzmin, Y. V., 2004. Time-space dynamics in the early upper Paleolithic of Northeast Asia. In: Madsen, D. B. (ed.), Entering America: Northeast Asia and Beringia before the Last Glacial Maximum.The University of Utah Press, Salt Lake City, pp. 255284.Google Scholar
Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., Sarnthein, M., 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature, 320: 129133. DOI:10.1038/320129a0.Google Scholar
Bray, F., 1986. The Rice Economies: Technology and Development in Asian Societies. Basil Blackwell, Oxford.Google Scholar
Bray, F., 1994. The Rice Economies: Technology and Development in Asian Societies. University of California Press, Berkeley, California, p. 254.Google Scholar
Bray, F., Needham, J., 1984. Science and Civilisation in China: Volume 6, Biology and Biological Technology, Part 2, Agriculture. Cambridge University Press, Cambridge.Google Scholar
Brecht, H., Dasgupta, S., Laplante, B., Murray, S., Wheeler, D., 2012. Sea-level rise and storm surges: high stakes for a small number of developing countries. The Journal of Environment & Development, 21(1): 120138. DOI:10.1177/1070496511433601.Google Scholar
Breitenbach, S. F. M., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K., Haug, G. H., 2010. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth and Planetary Science Letters, 292(1): 212220. DOI:10.1016/j.epsl.2010.01.038.CrossRefGoogle Scholar
Briscoe, J., Qamar, U., Contijoch, M., Amir, P., Blackmore, D., 2006. Pakistan’s Water Economy: Running Dry. Oxford University Press, Karachi.Google Scholar
Brown, S., Nicholls, R. J., Lowe, J. A., Hinkel, J., 2016. Spatial variations of sea-level rise and impacts: an application of DIVA. Climatic Change, 134(3): 403416. DOI:10.1007/s10584-013-0925-y.Google Scholar
Brubaker, K. L., Entekhabi, D., Eagleson, P. S., 1993. Estimation of continental precipitation recycling. Journal of Climate, 6: 10771089.Google Scholar
Brumfiel, E., 1992. Distinguished lecture in archaeology: breaking and entering the ecosystem-gender, class, and faction steal the show. American Anthropologist, 94(3): 551568.Google Scholar
Burbank, D. W., Derry, L. A., France-Lanord, C., 1993. Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364: 4850.Google Scholar
Burns, S. J., Fleitmann, D., Matter, A., Neff, U., Mangini, A., 2001. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology (Boulder), 29(7): 623626.Google Scholar
Bush, A. B., 2004. Modelling of late quaternary climate over Asia: a synthesis. Boreas, 33: 155163.Google Scholar
Butler, E. E., Huybers, P., 2013. Adaptation of US maize to temperature variations. Nature Climate Change, 3(1): 68.Google Scholar
Butler, E. E., Huybers, P., 2015. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environmental Research Letters, 10(3): 034009. DOI:10.1088/1748-9326/10/3/034009.Google Scholar
Cai, Y. J., Tan, L., Cheng, H., An, Z., Edwards, R. L., Kelly, M. J., Kong, X., Wang, X., 2010. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth and Planetary Science Letters, 291: 2131. DOI:10.1016/j.epsl.2009.12.039.Google Scholar
Camoin, G. F., Montaggioni, L. F., Braithwaite, C. J. R., 2004. Late glacial to post glacial sea levels in the western Indian Ocean. Marine Geology, 206(1–4): 119146. DOI:10.1016/j.margeo.2004.02.003.Google Scholar
Cao, S., Liu, X., Er, H., 2010a. Dujiangyan irrigation system – a world cultural heritage corresponding to concepts of modern hydraulic science. Journal of Hydro-Environment Research, 4(1): 313. DOI:10.1016/j.jher.2009.09.003.Google Scholar
Cao, X., Xu, Q., Jing, Z., Tang, J., Li, Y., Tian, F., 2010b. Holocene climate change and human impacts implied from the pollen records in Anyang, central China. Quaternary International, 227: 39.Google Scholar
Cao, Z. H., Ding, J. L., Hu, Z. Y., Knicker, H., Kagel-Knabner, I., Yang, L. Z., Yin, R., Lin, X. G., Dong, Y. H., 2006. Ancient paddy soils from the Neolithic age in China’s Yangtze River Delta. Naturwissenschaften, 93(5): 232236.Google Scholar
Cappucci, M., Freedman, A., 2019. From Tropical Storm to Category 5 in 18 Hours: Super Typhoon Hagibis Intensifies at One of the Fastest Rates on Record, Washington Post, Washington DC.Google Scholar
Cardenas, A., 1983. A pheno-climatological assessment of millets and other cereal grains in tropical cropping patterns, University of Nebraska, Master of Science. Department of Horticulture.Google Scholar
Casazza, M., Lega, M., Liu, G., Ulgiati, S., Endreny, T. A., 2018. Aerosol pollution, including eroded soils, intensifies cloud growth, precipitation, and soil erosion: A review. Journal of Cleaner Production, 189: 135144. DOI:10.1016/j.jclepro.2018.04.004.Google Scholar
Castillo, C., 2011. Rice in Thailand: the archaeobotanical contribution. Rice, 4(3): 114120. DOI:10.1007/s12284-011-9070-2.Google Scholar
Castillo, C., Fuller, D. Q., 2010. Still too fragmentary and dependent upon chance? Advances in the study of early Southeast Asian archaeobotany. In: Bellina, Bacus, Pryce, Weissman Christie (eds.), 50 Years of Archaeology in Southeast Asia. River Books, London, pp. 91111.Google Scholar
Castillo, C. C., Bellina, B., Fuller, D. Q., 2016. Rice, beans and trade crops on the early maritime Silk Route in Southeast Asia. Antiquity, 90(353): 12551269. DOI:10.15184/aqy.2016.175.Google Scholar
Castillo, C. C., Fuller, D. Q., Piper, P. J., Bellwood, P., Oxenham, M., 2018. Hunter-gatherer specialization in the late Neolithic of southern Vietnam – The case of Rach Nui. Quaternary International, 489: 6379. DOI:10.1016/j.quaint.2016.11.034.Google Scholar
Chakraborty, T., Kar, R., Ghosh, P., Basu, S., 2010. Kosi megafan: historical records, geomorphology and the recent avulsion of the Kosi River. Quaternary International, 227(2): 143160.Google Scholar
Charles, C. D., Hunter, D. E., Fairbanks, R. G., 1997. Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science, 277: 925928.CrossRefGoogle Scholar
Chauhan, O. S., Vogelsang, E., Basavaiah, N., Kader, U. S. A., 2010. Reconstruction of the variability of SW monsoon during the past 3 Ka from the continental margin of the South Eastern Arabian Sea. Journal of Quaternary Science, 25(5): 798807.CrossRefGoogle Scholar
Chen, F., Xu, Q., Chen, J., Birks, H. J. B., Liu, J., Zhang, S., Jin, L., An, C., Telford, R. J., Cao, X., 2015a. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports, 5: 11186.Google Scholar
Chen, F. H., Dong, G. H., Zhang, D. J., Liu, X. Y., Jia, X., An, C. B., Ma, M. M., Xie, Y. W., Barton, L., Ren, X. Y., Zhao, Z. J., Wu, X. H., Jones, M. K., 2015b. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 349(6219): 248250.Google Scholar
Chen, F. H., Shi, Q., Wang, J.M., 1999. Environmental changes documented by sedimentation of Lake Yiema in arid China since the Late Glaciation. Journal of Paleolimnology, 22: 159169.Google Scholar
Chen, J., Rao, Z., Liu, J., Huang, W., Feng, S., Dong, G., Hu, Y., Xu, Q., Chen, F., 2016a. On the timing of the East Asian summer monsoon maximum during the Holocene—Does the speleothem oxygen isotope record reflect monsoon rainfall variability? Science China Earth Sciences, 59(12): 23282338. DOI:10.1007/s11430-015–5500-5.Google Scholar
Chen, S., Kung, J. K.-s., 2011. The Malthusian Quagmire: maize and population growth in China, 1500–1900. Hong Kong University of Science and Technology, working paper. https://pdfs.semanticscholar.org/46e6/c9e14a5182a8da14841c7f0f6cd02253b3b4.pdf.Google Scholar
Chen, S., Yu, P. -L., 2017. Intensified foraging and the roots of farming in China. Journal of Anthropological Research, 73(3): 381412. DOI:10.1086/692660.Google Scholar
Chen, T., Xia, G., Liu, T., Chen, W., Chi, D., 2016b. Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Liaoning Province, China. Sustainability, 8(10): 1069. DOI:10.3390/su8101069.Google Scholar
Chen, X., Tung, K. -K., 2014. Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345(6199): 897903 DOI:10.1126/science.1254937.Google Scholar
Chen, X., Zhang, X., Church, J. A., Watson, C. S., King, M. A., Monselesan, D., Legresy, B., Harig, C., 2017. The increasing rate of global mean sea-level rise during 1993–2014. Nature Climate Change, 7: 492. DOI:10.1038/nclimate3325.CrossRefGoogle Scholar
Chen, Y., Li, W., Deng, H., Fang, G., Li, Z., 2016c. Changes in Central Asia’s water tower: past, present and future. Scientific Reports, 6: 35458. DOI:10.1038/srep35458.Google Scholar
Chen, Y., Syvitski, J. P., Gao, S., Overeem, I., Kettner, A. J., 2012. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China. Ambio, 41(7): 682698.Google Scholar
Chen, Z., Li, J., Shen, H., Zhanghua, W., 2001. Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology, 41(2): 7791. DOI:10.1016/S0169-555X(01)00106-4.Google Scholar
Cheng, R., Dong, Z., 2010. Breeding and production of foxtail millet in China. In: He, Z., Bonjean, A.P.A. (eds.), Cereals in China. International Maize and Wheat Improvement Center, Mexico, pp. 8797.Google Scholar
Chi, Z., 2002. The discovery of early pottery in China. Documenta Praehistorica, 29: 2935.Google Scholar
Chou, C., Neelin, J. D., Chen, C. A., Tu, J. Y., 2009. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. Journal of Climate, 99: 19822005.Google Scholar
Chun, C. K., 1961. Agrarian policy of the Chinese Communist Party. Indian Journal of Agricultural Economics, 16(902–2016-66960): 7980.Google Scholar
Clark, J. A., Lingle, C. S., 1977. Future sea-level changes due to West Antarctic ice sheet fluctuations. Nature, 269(5625): 206.Google Scholar
Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525528. DOI:10.1130/G21265.1.Google Scholar
Clarke, G., Leverington, D., Teller, J., Dyke, A., 2004. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quaternary Science Reviews, 23: 389407.CrossRefGoogle Scholar
Clemens, S. C., Holbourn, A., Kubota, Y., Lee, K. E., Liu, Z., Chen, G., Nelson, A., Fox-Kemper, B., 2018. Precession-band variance missing from East Asian monsoon runoff. Nature Communications, 9(1): 3364. DOI:10.1038/s41467-018-05814-0.Google Scholar
Clemens, S. C., Murray, D. W., Prell, W. L., 1996. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science, 274(5289): 943948.Google Scholar
Clemens, S. C., Prell, W. L., 2003. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Marine Geology, 201: 3551.Google Scholar
Clemens, S. C., Prell, W. L., Sun, Y., 2010. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem ∂18O. Paleoceanography, 25(PA4207). DOI:10.1029/2010PA001926.Google Scholar
Clift, P. D., Webb, A. G., 2018. A history of the Asian monsoon and its interactions with solid Earth tectonics in Cenozoic South Asia. In: Searle, M.P., Treloar, P.J. (eds.), Himalayan Tectonics: A Modern Synthesis. Special Publications, Geological Society, London, 631652.Google Scholar
Clift, P. D., Carter, A., Giosan, L., Durcan, J., Tabrez, A. R., Alizai, A., Van Laningham, S., Duller, G. A. T., Macklin, M. G., Fuller, D. Q., Danish, M., 2012. U-Pb zircon dating evidence for a Pleistocene Sarasvati River and Capture of the Yamuna River. Geology, 40(3): 212215. DOI:10.1130/G32840.1.Google Scholar
Clift, P. D., Giosan, L., Henstock, T., Tabrez, A. R., 2014. Sediment storage and reworking on the shelf and in the Canyon of the Indus River-Fan System since the last glacial maximum. Basin Research, 26: 183202. DOI:10.1111/bre.12041.CrossRefGoogle Scholar
Clift, P. D., Hodges, K., Heslop, D., Hannigan, R., Hoang, L. V., Calves, G., 2008. Greater Himalayan exhumation triggered by Early Miocene monsoon intensification. Nature Geoscience, 1: 875880. DOI:10.1038/ngeo351.Google Scholar
Cobo Castillo, C., 2018. The archaeobotany of Khao Sek. Archaeological Research in Asia, 13: 7477. DOI:10.1016/j.ara.2017.05.002.Google Scholar
Coggan, M., 2008. Death toll rises from Indian floods. Australian Broadcasting Corporation, www.abc.net.au/news/2008–08-29/death-toll-rises-from-indian-floods/493582.Google Scholar
Cojean, R., Caï, Y. J., 2011. Analysis and modeling of slope stability in the Three-Gorges Dam reservoir (China) – The case of Huangtupo landslide. Journal of Mountain Science, 8(2): 166. DOI:10.1007/s11629-011–2100-0.Google Scholar
Colin, C., Siani, G., Sicre, M. -A., Liu, Z., 2010. Impact of the East Asian monsoon rainfall changes on the erosion of the Mekong River basin over the past 25,000 yr. Marine Geology, 271(1–2): 8492. DOI:10.1016/j.margeo.2010.01.013.Google Scholar
Colinet, G., Koulos, K., Bozhi, W., Yongmei, L., Lacroix, D., Youbo, S., Chapelle, J., Fullen, M. A., Hocking, T., Bock, L., 2011. Agro-pedological assessment of the traditional Yuanyang rice terraces of Yunnan Province, China. Journal of Resources and Ecology, 2(4): 353362Google Scholar
Condon, E., Hillmann, P., King, J., Lang, K., Patz, A., 2009. Resource disputes in South Asia: Water scarcity and the potential for interstate conflict, Workshop in International Public Affairs, p. 1. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.2127&rep=rep1&type=pdf.Google Scholar
Coningham, R., Young, R., 2015. The Archaeology of South Asia: From the Indus to Asoka, c.6500 BCE–200 CE. Cambridge World Archaeology. Cambridge University Press, Cambridge.Google Scholar
Conklin, H., 2008. Ethnoecological approach to shifting agriculture, ethnoecology and the defense of swidden agriculture. Transactions of the New York Academy of Sciences, 17: 133142. DOI:10.1111/j.2164-0947.1954.tb00402.xGoogle Scholar
Conklin, H.C., 1969. An ethnoecological approach to shifting agriculture. In: Vayda, A.P. (ed.), Environment and Cultural Behavior. The Natural History Press, New York, pp. 221233.Google Scholar
Constantini, L., 1984. The beginning of agriculture in the Kachi Plain: the evidence of Mehrgarh. In: Allchin, B. (ed.), South Asian Archaeology. Cambridge University Press, Cambridge, pp. 2933.Google Scholar
Contreras, D., 2015. Correlation is not enough. Building better arguments in the archaeology of human environment interactions. In: Contreras, D. (ed.), The Archaeology of Human Environment Interactions. The Natural History Press, New York, pp. 322.Google Scholar
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., Wright, W. E., 2010. Asian monsoon failure and megadrought during the last millennium. Science, 328(5977): 486489. DOI:10.1126/science.1185188.Google Scholar
Cosmo, N. D., Hessl, A., Leland, C., Byambasuren, O., 2018. Environmental stress and steppe nomads: rethinking the history of the Uyghur Empire (744–840) with paleoclimate data. Journal of Interdisciplinary History, 48(4): 439463. DOI:10.1162/JINH_a_01194.Google Scholar
Courty, M. A., 1995. Late Quaternary environmental change and natural constraints to ancient landuse (Northwest India). In: Johnson, E. (ed.), Ancient Peoples and Landscapes. Museum of Texas Tech University, Lubbok TX, pp. 106126.Google Scholar
Craft, C., Clough, J., Ehman, J., Joye, S., Park, R., Pennings, S., Guo, H., Machmuller, M., 2009. Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 7(2): 7378.Google Scholar
Crawford, G., 2012. Early rice exploitation in the lower Yangzi valley: What are we missing? The Holocene, 22(6): 613621. DOI:10.1177/0959683611424177.Google Scholar
Crawford, G., Chen, X., Wang, J., 2006. 山东济南长清地月庄遗址发现的后李文化时期的碳化稻 Shandong Jinan Changqing Diqu Yuezhuang Yizhi Faxian de Houli Wenhua Shiqi de Tanhuadao (Discovery of fossilized crops from the Houli site of Yuezhuang in the Jinan Region of Shandong). Dongfang Kaogu, 3: 247251.Google Scholar
Crawford, G., Lee, G. A., 2003. Agricultural origins in the Korean Peninsula. Antiquity, 77(295): 8795.CrossRefGoogle Scholar
Crawford, G., Underhill, A. P., Zhao, Z., Lee, G. A., Feinman, G., Nicholas, L., Luan, F., Yu, H., Fang, H., Cai, F., 2005. Late Neolithic plant remains from Northern China: Preliminary results from Liangchengzhen, Shandong. Current Anthropology, 46(2): 309317.Google Scholar
Crawford, G. W., 1992. The transitions to agriculture in Japan. In Gebauer, Anne E., Price, T Douglas (eds.), Transitions to Agriculture in Prehistory. Prehistory Press, Madison, WI, pp. 117132.Google Scholar
Crawford, G. W., 2011. Advances in understanding early agriculture in Japan. Current Anthropology, 52(S4): S331S345. DOI:10.1086/658369.Google Scholar
Crosby, A. W. J., 2003. The Columbian Exchange: Biological and Cultural Consequences of 1492. Praeger, Westport, CT.Google Scholar
Crowley, T. J., Berner, R. A., 2001. CO2 and climate change. Science, 292: 870872. DOI:10.1126/science.1061664.Google Scholar
Crutzen, P. J., 2002. Geology of mankind. Nature, 415(6867): 23. DOI:10.1038/415023a.Google Scholar
Crutzen, P. J., Stoermer, E. F., 2000. The ‘Anthropocene’. Global Change Newsletter, 41: 1718.Google Scholar
Cui, L., Ge, Z., Yuan, L., Zhang, L., 2015. Vulnerability assessment of the coastal wetlands in the Yangtze Estuary, China to sea-level rise. Estuarine, Coastal and Shelf Science, 156: 4251. DOI:10.1016/j.ecss.2014.06.015.Google Scholar
Cui, X., Graf, H. -F., Langmann, B., Chen, W., Huang, R., 2007. Hydrological impacts of deforestation on the Southeast Tibetan Plateau. Earth Interactions, 11(15): 118. DOI:10.1175/ei223.1.Google Scholar
Currie, B. S., Rowley, D. B., Tabor, N. J., 2005. Middle Miocene paleoaltimetry of southern Tibet: implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology (Boulder), 33(3): 181184.Google Scholar
Currie, R. I., Fisher, A. E., Hargreaves, P. M., 1973. Arabian Sea upwelling. In: Zeitschel, B., Golach, S. A. (eds.), The Biology of the Indian Ocean. Springer, New York, pp. 3752.Google Scholar
Curry, W. B., Ostermann, D. R., Guptha, M. V. S., Itekkot, V., 1992. Foraminiferal production and monsoonal upwelling in the Arabian Sea; evidence from sediment traps. In: Summerhayes, C. P., Prell, W. L., Emeis, K. C. (eds.), Upwelling Systems: Evolution since the Early Miocene. Special Publication. Geological Society, London, pp. 93106.Google Scholar
d’Alpoim Guedes, J., 2011. Millets, rice, social complexity, and the spread of agriculture to the Chengdu Plain and Southwest China. Rice, 4(3–4): 104113. 10.1007/s12284-011–9071-1.Google Scholar
d’Alpoim Guedes, J., 2015. Rethinking the spread of agriculture to the Tibetan Plateau. The Holocene, 25(9): 14981510.Google Scholar
d’Alpoim Guedes, J., 2016. Model building, model testing, and the spread of agriculture to the Tibetan Plateau. Archaeological Research in Asia, 5(2016): 1623.Google Scholar
d’Alpoim Guedes, J, Jin, G, Bocinsky, RK 2015. The impact of climate on the spread of rice to North-Eastern China: A new look at the data from Shandong Province. PLOS ONE, 10(6): e0130430. https://doi.org/10.1371/journal.pone.0130430.Google Scholar
d’Alpoim Guedes, J., Lu, H., Hein, A., Schmidt, A. H., 2015. Early evidence for the use of wheat and barley as staple crops on the margins of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 112(18): 56255630.Google Scholar
d’Alpoim Guedes, J., Ming, J., He, K., Xiaohong, W.,Jiang, Z., 2013. Site of Baodun yields the earliest evidence for the spread of rice and foxtail millet agriculture to Southwest China. Antiquity, 87: 758771.Google Scholar
d’Alpoim Guedes, J., Austermann, J., Mitrovica, J. X., 2016a. Changing sea level during Meltwater Pulse 1 A and lost foraging opportunities for East Asian Hunter-Gatherers. Geoarchaeology, 31(4): 255266. DOI 10.1002/gea.21542.Google Scholar
d’Alpoim Guedes, J., Bocinsky, R. K., 2018. Climate change stimulated agricultural innovation and exchange across Asia. Science Advances, 4(10): eaar4491. DOI:10.1126/sciadv.aar4491.Google Scholar
d’Alpoim Guedes, J., Butler, E., 2014. Modeling constraints on the spread of agriculture to Southwest China with thermal niche models. Quaternary International, 349(2014): 2941.Google Scholar
d’Alpoim Guedes, J., Jin, G., Bocinsky, R. K., 2015. The impact of climate on the spread of rice agriculture to North-Eastern China: An example from Shandong. PLOS-One, 10(6): e0130430.Google Scholar
d’Alpoim Guedes, J., Lu, H., Li, Y., Spengler, R. N., Wu, X., Aldenderfer, M. S., 2014. Moving agriculture onto the Tibetan plateau: The archaeobotanical evidence. Archaeological and Anthropological Sciences, 6(3): 255269.Google Scholar
d’Alpoim Guedes, J., Manning, S. W., Bocinsky, R. K., 2016b. A 5,500-year model of changing crop niches on the Tibetan Plateau. Current Anthropology, 57(4): 517522. 10.1086/687255.Google Scholar
d’Alpoim Guedes, J. A., Crabtree, S. A., Bocinsky, R. K., Kohler, T. A., 2016c. Twenty-first century approaches to ancient problems: Climate and society. Proceedings of the National Academy of Sciences, 113(51): 1448314491. 10.1073/pnas.1616188113.Google Scholar
Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3: 5258. DOI:10.1038/nclimate1633.Google Scholar
Dai, A., Rasmussen, R. M., Liu, C., Ikeda, K., Prein, A. F., 2017. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dynamics, 55: 343368.Google Scholar
Dai, A., Wigley, T. M. L., Boville, B. A., Kiehl, J. T., Buja, L. E., 2001. Climates of the twentieth and twenty-first centuries simulated by the NCAR Climate System Model. Journal of Climate, 14: 485519.Google Scholar
Dai, Z., Liu, J. T., 2013. Impacts of large dams on downstream fluvial sedimentation: an example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). Journal of Hydrology, 480: 1018.Google Scholar
Dal Martello, R., Min, R., Stevens, C., Higham, C., Higham, T., Qin, L., Fuller, D. Q., 2018. Early agriculture at the crossroads of China and Southeast Asia: Archaeobotanical evidence and radiocarbon dates from Baiyangcun, Yunnan. Journal of Archaeological Science: Reports, 20: 711721.Google Scholar
Dales, G. F., 1964. The mythical massacre at Mohenjo-daro. Expedition, 6: 3643.Google Scholar
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., Riva, R., 2017. Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences, 114(23): 59465951. DOI:10.1073/pnas.1616007114.Google Scholar
Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., Yan, J., 2007. The Impact of Sea Level Rise on Developing Countries: A Comparative Analysis, The World Bank, New York.Google Scholar
Dash, S. K., Kulkarni, M. A., Mohanty, U. C., Prasad, K., 2009. Changes in the characteristics of rain events in India. Journal of Geophysical Research, Atmospheres, 114(D10109), DOI:10.1029/2008JD010572.Google Scholar
Dash, S. K., Sharma, N., Pattnayak, K. C., Gao, X. J., Shi, Y., 2012. Temperature and precipitation changes in the north-east India and their future projections. Global and Planetary Change, 98–99: 3144. DOI:10.1016/j.gloplacha.2012.07.006.Google Scholar
Davies, H. R., 1909. Yun-nan, the Link between India and the Yangtze. Cambridge University Press, London, UK.Google Scholar
Davis, M., 2001. Late Victorian Holocausts: El Niño Famines and the Making of the Third World. Verso, London.Google Scholar
Day, J. W., Ramachandran, R., Giosan, L., Syvitski, J., Kemp, G. P., 2019. Delta Winners and Losers in the Anthropocene, Coasts and Estuaries. Elsevier, Dordrecht, pp. 149165.Google Scholar
de Boer, H. J., Lammertsma, E. I., Wagner-Cremer, F., Dilcher, D. L., Wassen, M. J., Dekker, S. C., 2011. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proceedings of the National Academy of Sciences, 108(10): 40414046. DOI:10.1073/pnas.1100555108.Google Scholar
de Vries, B., 2006. In search of sustainability: What can we learn from the past? In: Hornborg, A., Crumley, C.L. (eds.), The World System and the Earth System: Global Socioenvironmental Challenge and Sustainability Since the Neolithic. Left Coast Press, Walnut Creek, CA, pp. 243257.Google Scholar
Debroy, B., Debroy, D., 2011. The Holy Vedas: Rigveda, Yajurveda, Samaveda, Atharvaveda. BR Publishing Corporation, Delhi.Google Scholar
DeConto, R. M., Pollard, D., 2016. Contribution of Antarctica to past and future sea-level rise. Nature, 531: 591. DOI:10.1038/nature17145.Google Scholar
Demske, D., Tarasov, P. E., Wünnemann, B., Riedel, F., 2009. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeography, Palaeoclimatology, Palaeoecology, 279(3–4): 172185.Google Scholar
Deng, Z., Qin, L., Gao, Y., Weisskopf, A. R., Zhang, C., Fuller, D. Q., 2015. From early domesticated rice of the Middle Yangtze Basin to millet, rice and wheat agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700–500 BC). PLOS ONE, 10(10): e0139885. DOI:10.1371/journal.pone.0139885.Google Scholar
Denton, G. H., Broecker, W. S., 2008. Wobbly ocean conveyor circulation during the Holocene? Quaternary Science Reviews, 27(21): 19391950. DOI:10.1016/j.quascirev.2008.08.008.Google Scholar
Dercourt, J., Ricou, L. E., Vrielynck, B., 1993. Atlas Tethys, Paleoenvironmental Maps. Gauthier-Villars, Paris, 307 pp.Google Scholar
Derry, L. A., France-Lanord, C., 1996. Neogene Himalayan weathering history and river 87Sr/86Sr; impact on the marine Sr record. Earth and Planetary Science Letters, 142: 5974.Google Scholar
Diamond, J., 2005. Collapse: How Societies Choose to Fail or Succeed. Penguin, New York, p. 592.Google Scholar
Diao, X., 2017. Production and genetic improvement of minor cereals in China. The Crop Journal, 5(2): 103114. DOI:10.1016/j.cj.2016.06.004.Google Scholar
Dillon, S. L., Shapter, F. M., Henry, R. J., Cordeiro, G., Izquierdo, L., Lee, L. S., 2007. Domestication to crop improvement: Genetic resources for sorghum and saccharum (Andropogoneae). Annals of Botany, 100(5): 975989. DOI:10.1093/aob/mcm192.Google Scholar
Dixit, Y., Hodell, D. A., Giesche, A., Tandon, S. K., Gázquez, F., Saini, H. S., Skinner, L. C., Mujtaba, S. A. I., Pawar, V., Singh, R. N., Petrie, C. A., 2018. Intensified summer monsoon and the urbanization of Indus Civilization in northwest India. Scientific Reports, 8(1): 4225. DOI:10.1038/s41598-018-22504-5.Google Scholar
Dixit, Y., Hodell, D. A., Petrie, C. A., 2014. Abrupt weakening of the summer monsoon in northwest India ∼4100 yr ago. Geology, 42: 339342. DOI:10.1130/G35236.1.CrossRefGoogle Scholar
Dong, G., Yang, Y., Zhao, Y., Zhou, A., Zhang, X., Li, X., Chen, F., 2012. Human settlement and human–environment interactions during the historical period in Zhuanglang County, western Loess Plateau, China. Quaternary International, 281: 7883. DOI:10.1016/j.quaint.2012.05.006.Google Scholar
Donner, L., Schubert, W., Somerville, R. (eds.), 2011. The Development of Atmospheric General Circulation Models: Complexity, Synthesis and Computation. Cambridge University Press, Cambridge.Google Scholar
Doose-Rolinski, H., Rogalla, U., Scheeder, G., Lückge, A., von Rad, U., 2001. High-resolution temperature and evaporation changes during the late Holocene in the northeastern Arabian Sea. Paleoceanography, 16(4): 358367.Google Scholar
Dore, J., 1959. Response of rice to small differences in length of day. Nature, 183: 413414.Google Scholar
Dreybrodt, W., Scholz, D., 2011. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite. Geochimica et Cosmochimica Acta, 75(3): 734752. DOI:10.1016/j.gca.2010.11.002.Google Scholar
Drumond, A., Nieto, R., Gimeno, L., 2011. Sources of moisture for China and their variations during drier and wetter conditions in 2000–2004: a Lagrangian approach. Climate Research, 50(2–3): 215225.Google Scholar
Duan, K., Yao, T., Thompson, L.G., 2004. Low-frequency of southern Asian monsoon variability using a 295-year record from the Dasuopu ice core in the central Himalayas. Geophysical Research Letters, 31(16): n/a-n/a. 10.1029/2004GL020015.Google Scholar
Dubbert, M., Werner, C., 2019. Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces. New Phytologist, 221(4): 17541763. DOI:10.1111/nph.15547.Google Scholar
Durcan, J. A., Thomas, D. S. G., Gupta, S., Pawar, V., Singh, R. N., Petrie, C. A., 2019. Holocene landscape dynamics in the Ghaggar-Hakra palaeochannel region at the northern edge of the Thar Desert, northwest India. Quaternary International, 501: 317327. DOI:10.1016/j.quaint.2017.10.012.Google Scholar
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high-resolution, absolute-dated holocene and deglacial asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1–2): 7186. DOI:10.1016/j.epsl.2005.01.036.Google Scholar
Eagle, R. A., Risi, C., Mitchell, J. L., Eiler, J. M., Seibt, U., Neelin, J. D., Li, G., Tripati, A. K., 2013. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Sciences, 110(22): 88138818. DOI:10.1073/pnas.1213366110.Google Scholar
East, A. E., Clift, P. D., Carter, A., Alizai, A., VanLaningham, S., 2015. Fluvial–Eolian interactions in sediment routing and sedimentary signal buffering: An example from the Indus Basin and Thar Desert. Journal of Sedimentary Research, 85: 715728. DOI:10.2110/jsr.2015.42.Google Scholar
Edmond, J. M., Huh, Y., 1997. Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman, W.F. (ed.), Tectonic Climate and Climate Change. Plenum Press, New York, pp.330353.Google Scholar
Eglinton, G., Hamilton, R. J., 1967. Leaf epicuticular waxes. Science, 156: 13221334. DOI:10.1126/science.156.3780.1322.Google Scholar
Eglinton, T. I., Eglinton, G., 2008. Molecular proxies for paleoclimatology. Earth Planetary Science Letters, 275(1–16): 116. DOI:10.1016/j.epsl.2008.07.012.Google Scholar
Ehhalt, D. H., 1974. The atmospheric cycle of methane. Tellus, 26: 5870.Google Scholar
Ehleringer, J. R., Rundel., P. W., 1989. Stable isotopes: History, units, and instrumentation. In: Rundel, P. W., Ehleringer, J. R., Nagy, K. A. (eds.), Stable Isotopes in Ecological Research. Springer Verlag, New York.Google Scholar
Ehrlich, P. R., 1968. The Population Bomb. Ballantine Books, New York, 201 pp.Google Scholar
Eiler, J. M., 2007. “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262(3): 309327. DOI:10.1016/j.epsl.2007.08.020.Google Scholar
Ellison, C. R. W., Chapman, M. R., Hall, I. R., 2006. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science, 312(5782): 19291932. DOI:10.1126/science.1127213.Google Scholar
Elston, R. G., Guanghui, D., Dongju, Z., 2011. Late Pleistocene intensification technologies in Northern China. Quaternary International, 242(2): 401415. DOI:10.1016/j.quaint.2011.02.045.Google Scholar
Emanuel, K., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051): 686688. DOI:10.1038/nature03906.Google Scholar
Emanuel, K., DesAutels, C., Holloway, C., Korty, R., 2004. Environmental control of tropical cyclone intensity. Journal of the Atmospheric Sciences, 61(7): 843858.Google Scholar
Emanuel, K. A., 1987. The dependence of hurricane intensity on climate. Nature, 326(6112): 483485. DOI:10.1038/326483a0.Google Scholar
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M. -J., van Angelen, J. H., van den Broeke, M. R., 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41(3): 866872. 10.1002/2013GL059010.Google Scholar
Enzel, Y., Ely, L. L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S. N., Baker, V. R., Sandle, A., 1999. High-resolution Holocene environmental changes in the Thar Desert, northwestern India. Science, 284: 125128.Google Scholar
Erickson, C. L., 1999. Neo-environmental determinism and agrarian ‘collapse’in Andean prehistory. Antiquity, 73(281): 634642.Google Scholar
Evan, A. T., Camargo, S. J., 2011. A climatology of Arabian Sea cyclonic storms. Journal of Climate, 24: 140158.Google Scholar
Evan, A. T., Kossin, J. P., Chung, C. E., Ramanathan, V., 2011. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature, 479: 9498. DOI:10.1038/nature10552.Google Scholar
Eyshi Rezaei, E., Gaiser, T., Siebert, S., Sultan, B., Ewert, F., 2014. Combined impacts of climate and nutrient fertilization on yields of pearl millet in Niger. European Journal of Agronomy, 55: 7788. DOI:10.1016/j.eja.2014.02.001.Google Scholar
Fagan, B., 2004. The Long Summer: How Climate Changed Civilization. Basic Books, New York.Google Scholar
Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on Younger Dryas event and deep-ocean circulation. Nature, 342: 637642.Google Scholar
Fan, J., Leung, L. R., Li, Z., Morrison, H., Chen, H., Zhou, Y., Qian, Y., Wang, Y., 2012a. Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. Journal of Geophysical Research: Atmospheres, 117(D16). DOI:10.1029/2011JD016537.Google Scholar
Fan, L., Lu, C., Yang, B., Chen, Z., 2012b. Long-term trends of precipitation in the North China Plain. Journal of Geographical Sciences, 22(6): 9891001. 10.1007/s11442-012–0978-2.Google Scholar
FAO, IFAD, UNICEF, WFP, WHO, 2017. The State of Food Security and Nutrition in the World 2017. Building resilience for peace and food security, Rome.Google Scholar
Farquhar, G. D., Ehleringer, J. R., Hubick, K. T., 1989. Carbon isotope discrimination and photosynthesis. Annual Reviews of Plant Physiology and Molecular Biology, 40: 503537. DOI:10.1146/annurev.pp.40.060189.002443.Google Scholar
Feakins, S. J., deMenocal, P. B., Eglinton, T. I., 2005. Biomarker records of late Neogene changes in northeast African vegetation. Geology, 33(12): 977980. DOI:10.1130/G21814.1.Google Scholar
Feakins, S. J., Sessions, A. L., 2010. Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochimica et Cosmochimica Acta, 74(7): 21282141. DOI:10.1016/j.gca.2010.01.016.Google Scholar
Feng, Z. -D., An, C. B., Wang, H. B., 2006. Holocene climatic and environmental changes in the arid and semi-arid areas of China: a review. The Holocene, 16: 119130. DOI:10.1191/0959683606hl912xx.Google Scholar
Fick, S. E., Hijmans, R. J., 2017 Fick et al. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12): 43024315. DOI:10.1002/joc.5086.Google Scholar
Fisher, M. H., 2016. Mughal Empire, The Ashgate Research Companion to Modern Imperial Histories. Routledge, Abingdon, UK, pp.181206.Google Scholar
Flad, R., Chen, P., 2006. The archaeology of the Sichuan Basin and surrounding areas during the Neolithic period. In: Li, S., von Falkenhausen, L. (eds.), Salt Archaeology in China: Ancient Salt Production and Landscape Archaeology in the Upper Yangtse Basin: Preliminary Studies. Kexue Chubanshe, Beijing, pp.183259.Google Scholar
Flad, R., Chen, P., 2013. Ancient Central China: An Archaeological Study of Centers and Peripheries along the Yangzi River. Cambridge University Press, Cambridge, 397 pp.Google Scholar
Flad, R. K., Yuan, J.袁., Li, S.李., 2007. Zooarcheological evidence for animal domestication in northwest China. In: Madsen, D.B., Chen, F.H., Gao, X. (eds.), Late Quaternary Climate Change and Human Adaptation in Arid Chin. Elsevier, Amsterdam, pp. 167203.Google Scholar
Flam, L., 1981. The Paleogeography and Prehistoric Settlement Patterns in Sind, Pakistan (ca. 4000–2000 BC). PhD Thesis, University of Michigan, Ann Arbor, Michigan.Google Scholar
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., Rummukainen, M., 2013. Evaluation of Climate Models. In: Stocker, T.F. et al. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, pp. 741882.Google Scholar
Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300(5626): 17371739.Google Scholar
Fuller, D., 2002. Fifty years of archaeobotanical studies in india: laying a solid foundation. In: Settar, S., Korisettar, R. (eds.), Indian Archaeology in Retrospect. Archaeology and Interactive Disciplines, Manohar, Delhi, pp.247363.Google Scholar
Fuller, D., 2007. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world.Annals of Botany, 100(5): 903924. 10.1093/aob/mcm048.Google Scholar
Fuller, D., 2012. Pathways to Asian civilizations: tracing the origins and spread of rice and rice cultures. Rice, 4(3): 7892. 10.1007/s12284-011–9078-7.Google Scholar
Fuller, D., Castillo, C., Kingwell-Banham, E., Qin, L., Weisskopf, A., 2018. Charred pomelo peel, historical linguistics and other tree crops: approaches to framing the historical context of early Citrus cultivation in East, South and Southeast Asia. In: Zech-Matterne, V., Fiorentino, G. (eds.), AGRUMED: Archaeology and History of Citrus Fruit in the Mediterranean Acclimatization, Diversifications, Uses. Centre Jean Bérard, Naples, pp.3150.Google Scholar
Fuller, D., Ling, Q., Harvey, E., 2008. Evidence for a late onset of agriculture in the Lower Yangtze Region and challenges for an archaeobotany of rice. In: Sanchez-Mazas, A., Blench, R., Ross, M., Lin, M., Pejros, I. (eds.), Past Human Migrations in East Asia: Matching Genetic, Linguistic and Archaeological Evidence. Taylor and Francis, London, pp.4083.Google Scholar
Fuller, D., Qin, L., 2009. Water management and labor in the origins and dispersal of Asian rice. World Archaeology, 41(1): 88111.Google Scholar
Fuller, D., Qin, L., 2010. Declining oaks, increasing artistry, and cultivating rice: The environmental and social context of the emergence of farming in the lower Yangtze Region. Environmental Archaeology, 15(2): 139159.Google Scholar
Fuller, D., Qin, L., Zheng, Y., Zhao, Z., Chen, X., Hosoya, L., Sun, G., 2009. The Domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science, 323(5921): 16071610.Google Scholar
Fuller, D. Q., Castillo, C., Weisskopf, A., 2016. Pathways of rice diversification across Asia. Archaeology International, 2016(19): 8496.Google Scholar
Fuller, D. Q., Harvey, E., Qin, L., 2007. Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium BC of the Lower Yangtze region. Antiquity, 81(312): 316331. DOI:10.1017/S0003598X0009520X.Google Scholar
Fuller, D. Q., Madella, M., 2001. Issues in Harappan archaeobotany: retrospect and prospect. In: Settar, S., Korisettar, R. (eds.), Indian Archaeology in Retrospect. Protohistory, vol. II. Manohar Publishers, New Delhi, pp.317390.Google Scholar
Fuller, D. Q., Van Etten, J., Manning, K., Castillo, C., Kingwell-Banham, E., Weisskopf, A., Qin, L., Sato, Y. -I., Hijmans, R. J., 2011. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: An archaeological assessment. The Holocene, 21(5): 743759.Google Scholar
Gadgil, S., 2006. The Indian monsoon:1. Variations in space and time. Resonance, 11(8): 821.Google Scholar
Gadgil, S., Gadgil, S., 2006. The Indian monsoon, GDP and agriculture. Economic and Political Weekly, 41(47): 48894895.Google Scholar
Gadgil, S., Rupa Kumar, K., 2006. The Asian Monsoon – Agriculture and Economy, The Asian Monsoon. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 651683.Google Scholar
Gagné, K., 2013. Gone with the trees: Deciphering the Thar desert’s recurring droughts. Current Anthropology, 54(4): 497509. 10.1086/671074.Google Scholar
Gamble, S. D., 1933. How Chinese Families Live in Peiping. Funk and Wagnalls Company, New York and London.Google Scholar
Gansu Sheng Wenwu Kaogu Yanjiusuo, 2006. 秦安大地湾:新石器时代遗址发掘报告Qinan Dadiwan: Xinshiqi Shidai Yizhi Fajue Baogao (Qin’an Dadiwan: Excavation Report on the Neolithic Site). Wenwu Chubanshe, Beijing.Google Scholar
Gao, C., Robock, A., Ammann, C., 2008. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. Journal of Geophysical Research: Atmospheres, 113(D23111). DOI:10.1029/2008JD010239.Google Scholar
Gao, L.-z., 2003. The conservation of Chinese rice biodiversity: genetic erosion, ethnobotany and prospects. Genetic Resources and Crop Evolution, 50(1): 1732. DOI:10.1023/A:1022933230689.Google Scholar
Gao, X., Luo, Y., Lin, W., Zhao, Z., Giorgi, F., 2003. Simulation of effects of land use change on climate in China by a regional climate model. Advances in Atmospheric Sciences, 20(4): 583592.Google Scholar
Gardelle, J., Berthier, E., Arnaud, Y., Kääb, A., 2013. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere, 7: 12631286.Google Scholar
Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S., McCouch, S. R., 2005. Genetic structure and diversity in Oryza sativa L. Genetics, 169: 16311638.Google Scholar
Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews, 19: 189211.Google Scholar
Gautam, R., Hsu, N. C., Lau, K. M., Tsay, S. C., Kafatos, M., 2009. Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophysical Research Letters, 36(7): n/a-n/a. 10.1029/2009GL037641.Google Scholar
Ge, B., Huang, C., Zhou, Y., 2010. OSL dating of the Jinghe River palaeoflood events in the late period of the Longshan culture. Quaternary Sciences, 2010(30): 422429.Google Scholar
Gernet, J., 1996. A History of Chinese Civilization. Cambridge University Press, Cambridge, England.Google Scholar
Ghose, A. K., 1982. Food supply and starvation: A study of famines with reference to the Indian sub-continent. Oxford Economic Papers, 34(2): 368389.Google Scholar
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., Eiler, J. M., 2006. 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70(6): 14391456. DOI:10.1016/j.gca.2005.11.014.Google Scholar
Gilmartin, D., 2015. Blood and Water: The Indus River Basin in Modern History. University of California Press, Oakland, p. 341.Google Scholar
Giosan, L., Clift, P. D., Macklin, M. G., Fuller, D. Q., Constantinescu, S., Durcan, J. A., Stevens, T., Duller, G. A. T., Tabrez, A., Adhikari, R., Gangal, K., Alizai, A., Filip, F., VanLaningham, S., Syvitski, J. P. M., 2012. Fluvial landscapes of the Harappan civilization. Proceedings of the National Academy of Sciences, 109(26): 16881694. DOI:10.1073/pnas.1112743109.Google Scholar
Giosan, L., Orsi, W. D., Coolen, M., Wuchter, C., Dunlea, A. G., Thirumalai, K., Munoz, S. E., Clift, P. D., Donnelly, J. P., Galy, V., Fuller, D. Q., 2018. Neoglacial climate anomalies and the Harappan metamorphosis. Climate of the Past, 14(11): 16691686. DOI:10.5194/cp-14-1669-2018.Google Scholar
Giosan, L., Ponton, C., Usman, M., Blusztajn, J., Fuller, D.Q., Galy, V., Haghipour, N., Johnson, J. E., McIntyre, C., Wacker, L., Eglinton, T. I., 2017. Massive erosion in monsoonal central India linked to late Holocene land cover degradation. Earth Surface Dynamics, 5: 781789. DOI:10.5194/esurf-5-781-2017.Google Scholar
Glennie, K. W., Singhvi, A., 2002. Event stratigraphy, paleoenvironment and chronology of SE Arabian deserts. Quaternary Science Reviews, 21: 853869.Google Scholar
Goebel, T., 1999. Pleistocene human colonization of Siberia and the peopling of the Americas: An ecological approach. Evolutionary Anthropology, 8: 208227.Google Scholar
Goldstein, M. C., Beall, C. M., 1991. Change and continuity in nomadic pastoralism on the western Tibetan Plateau. Nomadic Peoples, 28: 105122.Google Scholar
Gong, D. Y., Ho, C. H., 2002. The Siberian High and climate change over middle to high latitude Asia. Theoretical and Applied Climatology, 72: 19.Google Scholar
Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J. -x., Ayliffe, L. K., Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y. -x., Cartwright, I., Pierre, E. S., Fischer, M. J., Suwargad, B. W., 2009. Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature Geoscience, 2: 636639. DOI:10.1038/ngeo605.Google Scholar
Grimes, J., 2004. The Vivekacūḍāmaṇi of Śaṅkarācārya Bhagavatpāda: An Introduction and Translation. Motilal Banarsidass Publisher, Delhi, p. 284.Google Scholar
Grossman, M. J., Zaiki, M., Nagata, R., 2015. Interannual and interdecadal variations in typhoon tracks around Japan. International Journal of Climatology, 35(9): 25142527.Google Scholar
Grossman, M. J., Zaiki, M., Oettle, S., 2016. An analysis of typhoon tracks around Japan using ArcGIS. Papers in Applied Geography, 2(3): 352363.Google Scholar
Grove, J. M., 2012. The Little Ice Age. Routledge, Abingdon, UK.Google Scholar
Grove, R.H., 2007. The great El Niño of 1789–93 and its global consequences: Reconstructing an extreme climate event in world environmental history. Medieval History, 10: 7598.Google Scholar
Gunnell, Y., Anupama, K., Sultan, B., 2007. Response of the south Indian runoff-harvesting civilization to northeast monsoon rainfall variability during the last 2000 years: instrumental records and indirect evidence. Holocene, 17(2): 207215. DOI:10.1177/0959683607075835.Google Scholar
Guo, D. S., 1995. Hongshan and related cultures. In: Nelson, S. M. (ed.), The Archaeology of Northeast China: Beyond the Great Wall. Routledge, New York, pp. 2164.Google Scholar
Guo, Q. Y., 1996. Climatic change and East Asian Monsoon. In: Shi, Y. F. (ed.), Historical Climatic Changes of China (1): Climatic and Sea Level Change and Their Trend and Impact. Shandong Science and Technology Press, Jinan, pp. 468483 (in Chinese).Google Scholar
Guo, X., Fu, D., Guo, X., Zhang, C., 2014. A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmospheric Research, 142: 142157. DOI:10.1016/j.atmosres.2013.10.006.Google Scholar
Gupta, A. K., Anderson, D. M., Overpeck, J. T., 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421: 354356.Google Scholar
Gupta, A. K., Das, M., Anderson, D. M., 2005. Solar influence on the Indian summer monsoon during the Holocene. Geophysical Research Letters, 32(L17703). DOI:10.1029/2005GL022685.Google Scholar
Gupta, A. K., Yuvaraja, A., Prakasam, M., Clemens, S. C., Velu, A., 2015. Evolution of the South Asian monsoon wind system since the late middle miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 438: 160167. DOI:10.1016/j.palaeo.2015.08.006.Google Scholar
Gupta, H., Kao, S. -J., Dai, M., 2012. The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. Journal of Hydrology, 464: 447458.Google Scholar
Gutaker, R. M., Groen, S. C., Bellis, E. S., Choi, J. Y., Pires, I. S., Bocinsky, R. K., Slayton, E. R., Wilkins, O., Castillo, C. C., Negrão, S., Oliveira, M. M., Fuller, D. Q., d’Alpoim Guedes, J. A., Lasky, J. R., Purugganan, M. D., 2019. Genomic history and ecology of the geographic spread of rice. BioRxiv: 748178. DOI:10.1101/748178.Google Scholar
Habib, I., 1999. The Agrarian System of Mughal India: 1556–1707. Oxford University Press, New Delhi.Google Scholar
Habu, J., 2008. Growth and decline in complex hunter-gatherer societies: A case study from the Jomon period Sannai Maruyama site, Japan. Antiquity, 82(317): 571584.Google Scholar
Hairong, D., Yong, L., Chongjian, S., Svirchev, L., Qiang, X., Zhaokun, Y., Liang, Y., Shijun, N., Zeming, S., 2017. Mechanism of post-seismic floods after the Wenchuan earthquake in the upper Minjiang River, China. Journal of Earth System Science, 126(7): 96. DOI:10.1007/s12040-017-0871-6.Google Scholar
Ham, Y. -G., Kug, J. -S., Choi, J. -Y., Jin, F. -F., Watanabe, M., 2018. Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming. Nature Climate Change, 8(1): 6469. DOI:10.1038/s41558-017-0033-5.Google Scholar
Han, Z., Wu, L., Ran, Y., Ye, Y., 2003. The concealed active tectonics and their characteristics as revealed by drainage density in the North China plain (NCP). Journal of Asian Earth Sciences, 21(9): 989998. DOI:0.1016/S1367-9120(02)00175-X.Google Scholar
Hanebuth, T., Stattegger, K., Grootes, P. M., 2000. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science, 288(5468): 10331035.Google Scholar
Hao, S., Xue, J., Cui, J., 2008a. 董虎林四好人墓葬中的果壳 Donghulin Sihaoren Muzangzhong de Guoke (Seeds Uncovered from Burial no. 4 at Donghulin). Renleixue Xuebao, 27: 249255.Google Scholar
Hao, Z., Zheng, J., Ge, Q., 2008b. Precipitation cycles in the middle and lower reaches of the Yellow River (1736–2000). Journal of Geographical Sciences, 18(1): 1725. 10.1007/s11442-008–0017-5.Google Scholar
Harinarayana, G., 1987. Pearl Millet in Indian Agriculture, Proceedings of the International Pearl Millet Workshop, 7–11 April 1986, ICRISAT Center, Patancheru, India. Patancheru. Research Institute for the Semi-Arid Tropics., Andhra Pradesh, India, pp. 517.Google Scholar
Harris, N. B. W., 2006. The elevation of the Tibetan Plateau and its impact on the monsoon. Palaeogeography Palaeoclimatology Palaeoecology, 241: 415.Google Scholar
Hayden, B., 2011. Rice: The First Luxury Asian Food?, Why Cultivate? Anthropological and Archaeological Approaches to Foraging/Farming Transitions in Southeast Asia. McDonald Institute Monographs, Cambridge, pp.7593.Google Scholar
Held, I. M., Soden, B .J., 2006. Robust responses of the hydrological cycle to global warming. Journal of Climate, 19: 56865699.Google Scholar
Henan Sheng Wenwu Kaogu Yanjiusuo, 1999. 舞阳贾湖 Wuyang Jiahu (Report on the site of Jiahu at Wuyang). Kexue Chubanshe, Beijing.Google Scholar
Henan Working Team no. 1 of IA CASS, 1983. 河南新郑沙窝里新石器时代遗址 Henan Xinzheng Shawoli Xinshiqi Shidai Yizhi (Excavation of the Neolithic Site at Shawoli). Kaogu, 195: 10571065.Google Scholar
Henan Working Team No. 1 of IA CASS, 1984. Peiligang Yizhi Fajue Baogao (Excavation of the Neolithic Site at Peiligang). Kaogu Xuebao, 72: 2352.Google Scholar
Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews, 25(1–2): 163178.Google Scholar
Herzschuh, U., Tarasov, P., Wqnnemann, B., Hartmann, K., 2004. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeography Palaeoclimatology Palaeoecology, 211: 117.Google Scholar
Herzschuh, U., Winter, K., Wünnemann, B., Li, S., 2006. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International, 154–155: 113121. DOI:10.1016/j.quaint.2006.02.005.Google Scholar
Hewitt, K., 2011. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus Basin. Mt. Res. Dev. . Mountain Research and Development, 31: 188200.Google Scholar
Hicks, M. J., Burton, M. L., 2010. Preliminary Damage Estimates for Pakistani Flood Events, 2010, Ball State University, Muncie, IN.Google Scholar
Higham, C., 2002. Early Cultures of Mainland Southeast Asia. River Books, Bangkok, 375 pp.Google Scholar
Higham, C., 2005. East Asian agriculture and its impact. In: Scarre, C. (ed.), The Human Past. World Prehistory and the Development of Human Societies. Thames and Hudson, London, pp. 234263.Google Scholar
Higham, C., 2013. Hunter-gatherers in southeast Asia: from prehistory to the present. Human Biology, 85(1): 2144.Google Scholar
Higham, C. F. W., Xie, G., Lin, Q., 2011. The prehistory of a Friction Zone: first farmers and hunters-gatherers in Southeast Asia. Antiquity, 85: 529543.Google Scholar
Hijioka, Y., Lin, E., Pereira, J. J., Corlett, R. T., Cui, X., Insarov, G. E., Lasco, R. D., Lindgren, E., Surjan, A., 2014. Asia. In: Barros, V. R. et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK, pp.13271370.Google Scholar
Hijma, M. P., Cohen, K. M., 2010. Timing and magnitude of the sea-level jump preluding the 8.2 kiloyear event. Geology, 38(3): 275278. DOI:10.1130/G30439.1.Google Scholar
Hill, C. V., 2008. South Asia: An Environmental History. ABC-CLIO, Santa Barbara, California, p. 329.Google Scholar
Ho, C. -H., Baik, J. -J., Kim, J. -H., Gong, D. -Y., Sui, C. -H., 2004. Interdecadal Changes in Summertime Typhoon Tracks. Journal of Climate, 17(9): 17671776. 10.1175/1520–0442(2004)017<767:icistt>2.0.Co;2.Google Scholar
Ho, P.-t., 1959. Aspects of social mobility in China, 1368–1911. Comparative Studies in Society and History, 1(4): 330359.Google Scholar
Hodges, K., 2003. Geochronology and thermochronology in orogenic systems. In: Rudnick, R. (ed.), The Crust. Elsevier-Science, Amsterdam, pp.263292.Google Scholar
Hoffmann, T., Penny, D., Stinchcomb, G., Vanacker, V., Lu, X., 2015. Global soil and sediment transfers in the anthropocene. Pages Magazine, 23(1): 37.Google Scholar
Hosner, D., Wagner, M., Tarasov, P. E., Chen, X., Leipe, C., 2016. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: An overview. The Holocene, 26(10): 15761593.Google Scholar
Hossain, M. A., 2010. Global Warming Induced Sea Level Rise on Soil, Land and Crop Production Loss, 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia.Google Scholar
Hsu, R. C., 1982. Food for One Billion: China’s Agriculture Since 1949. Routledge, New York, p. 156.Google Scholar
Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., Johnson, K. R., 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters, 266: 221232. DOI:10.1016/j.epsl.2007.10.015.Google Scholar
Hu, D., Böning, P., Köhler, C. M., Hillier, S., Pressling, N., Wan, S., Brumsack, H. -J., Clift, P. D., 2012. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14ka in the South China Sea. Chemical Geology, 326–327: 118. DOI:10.1016/j.chemgeo.2012.07.024.Google Scholar
Hu, D., Clift, P. D., Böning, P., Hannigan, R., Hillier, S., Blusztajn, J., Wang, S., Fuller, D. Q., 2013a. Holocene evolution in weathering and erosion patterns in the Pearl River delta. Geochemistry Geophysics Geosystems, 14: 23492368. DOI:10.1002/ggge.20166.Google Scholar
Hu, L., Chao, Z., Gu, M., Li, F., Chen, L., Liu, B., Li, X., Huang, Z., Li, Y., Xing, B., Dai, J., 2013b. Evidence for a Neolithic Age fire-irrigation paddy cultivation system in the lower Yangtze River Delta, China. Journal of Archaeological Science, 40(1): 7278. DOI:10.1016/j.jas.2012.04.021.Google Scholar
Huang, C., Pang, J., Zha, X., 2011. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China. Quaternary Science Reviews, 2011(30): 460468.Google Scholar
Huang, C.C., Zhou, Y., Zhang, Y., Guo, Y., Pang, J., Zhou, Q., Liu, T., Zha, X., 2017. Comment on “Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty”. Science, 355(6332): 1382.Google Scholar
Huang, H., Yan, Z., 2009. Present situation and future prospect of hydropower in China. Renewable and Sustainable Energy Reviews, 13(6): 16521656. DOI:10.1016/j.rser.2008.08.013.Google Scholar
Huang, P., Schaal, B. A., 2012. Association between the geographic distribution during the last glacial maximum of Asian wild rice, Oryza rufipogon (Poaceae), and its current genetic variation. American Journal of Botany, 99(11): 18661874.Google Scholar
Huang, R., Fan, X., 2013. The landslide story. Nature Geoscience, 6: 325. DOI:10.1038/ngeo1806.Google Scholar
Hubei Sheng Wenwu Guanlisuo, 1981. 武安磁山Wu’an Cishan (The site of Cishan in Wu’an). Kaogu Xuebao, 1981(3): 303338.Google Scholar
Huber, M., Goldner, A., 2012. Eocene monsoons. Journal of Asian Earth Sciences, 44: 323. DOI:10.1016/j.jseaes.2011.09.014.Google Scholar
Hunan Sheng Wenwu Kaogu Yanjiusuo, 2006. 彭头山与巴士垱 Pengtoushan yu Bashidang (Pengtoushan and Bashidang). Science Press, Beijing.Google Scholar
Hunt, K. M. R., Curio, J., Turner, A. G., Schiemann, R., 2018. Subtropical westerly jet influence on occurrence of western disturbances and Tibetan Plateau Vortices. Geophysical Research Letters, 45(16): 86298636. DOI:10.1029/2018GL077734.Google Scholar
Huntington, K., Wernicke, B., Eiler, J., 2010. Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics, 29(3): TC3005. DOI:10.1029/2009TC002449Google Scholar
Hurrell, J. W., 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269(5224): 676679. DOI:10.1126/science.269.5224.676.Google Scholar
Hussain, S. M., Paperno, R., Khatoon, Z., 2010. Length–weight relationships of fishes collected from the Korangi-Phitti Creek area (Indus delta, northern Arabian Sea). Journal of Applied Ichthyology, 26(3): 477480. DOI:10.1111/j.14390426.2009.01374.x.Google Scholar
Hussain, S. S., Mudasser, M., 2007. Prospects for wheat production under changing climate in mountain areas of Pakistan – An econometric analysis. Agricultural Systems, 94(2): 494501. DOI:10.1016/j.agsy.2006.12.001.Google Scholar
Ikawa-Smith, F., 2004. Humans along the Pacific Margin of North East Asia before the last glacial maximum. In: Madsen, D. B. (ed.), Entering America: Northeast Asia and Beringia before the Last Glacial Maximum. University of Utah Press, Salt Lake City, Utah, pp. 287309.Google Scholar
Immerzeel, W. W., van Beek, L. P., Bierkens, M. F., 2010. Climate change will affect the Asian water towers. Science, 328(5984): 13821385.Google Scholar
Inam, A., Clift, P. D., Giosan, L., Tabrez, A. R., Tahir, M., Rabbani, M. M., Danish, M., 2007. The geographic, geological and oceanographic setting of the Indus River. In: Gupta, A. (ed.), Large Rivers: Geomorphology and Management. John Wiley and Sons, Chichester, UK, pp. 333345.Google Scholar
Ingraham, N. L., Taylor, B. E., 1991. Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada. Water Resources Research, 27: 7790.Google Scholar
IPCC, 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.Google Scholar
Iqbal, M. M., Goheer, A. M., Khan, A. M., 2010. Climate-change aspersions on food security of Pakistan. Science Vision, 15: 1523.Google Scholar
Ivanochko, T. S., Ganeshram, R. S., Brummer, G. -J. A., Ganssen, G., Jung, S. J. A., Moreton, S. G., Kroon, D., 2005. Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth and Planetary Science Letters, 235(1–2): 302314.Google Scholar
Jackson, S., Sleigh, A., 2000. Resettlement for China’s Three Gorges Dam: socio-economic impact and institutional tensions. Communist and Post-Communist Studies, 33(2): 223241. DOI:10.1016/S0967-067X(00)00005-2.Google Scholar
Jacques, F. M. B., Su, T., Spicer, R. A., Xing, Y., Huang, Y., Wang, W., Zhou, Z., 2011. Leaf physiognomy and climate: Are monsoon systems different? Global and Planetary Change, 76(1): 5662. DOI:10.1016/j.gloplacha.2010.11.009.Google Scholar
Jacquot, M., Courtois, B., 1987. Upland Rice. The Tropical Agriculturalist. CTA, Paris.Google Scholar
Jain, V., Kumar, R., Kaushal, R. K., Gautam, T., Singh, S., 2018. The dynamic Kosi River and its tributaries. In: Singh, D. S. (ed.), The Indian Rivers. Springer, pp. 221237.Google Scholar
James, E. W., Banner, J. L., Hardt, B., 2015. A global model for cave ventilation and seasonal bias in speleothem paleoclimate records. Geochemistry, Geophysics, Geosystems, 16(4): 10441051. DOI:10.1002/2014GC005658.Google Scholar
Jarrige, C., Jarrige, J. -F., Meadow, R. H., Quivron, G., 1995. Mehrgarh: Field Reports 1974–1985, from Neolithic Times to the Indus Civilization. Department of Culture and Tourism of Sindh, Karachi.Google Scholar
Jenny, Jean-Philippe et al., 2019. Human and climate global-scale imprint on sediment transfer during the Holocene. Proceedings of the National Academy of Sciences, 116(46): 22972.Google Scholar
Jian, Z. M., Li, B. H., Pflaumann, U., Wang, P. X., 1996. Late Holocene cooling event in the western Pacific. Science in China (Series D), 39: 542550.Google Scholar
Jiang, L., Li, L., 2006. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China. Antiquity, 80: 355361.Google Scholar
Jiang, T., Su, B., Hartmann, H., 2007. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000. Geomorphology, 85(3): 143154. DOI:10.1016/j.geomorph.2006.03.015.Google Scholar
Joint Typhoon Warning Center, 2002. The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945–2000. US Navy, www.usno.navy.mil/JTWC/.Google Scholar
Jones, H., Civáň, P., Cockram, J., Leigh, F. J., Smith, L. M. J., Jones, M. K., Charles, M. P., Molina-Cano, J. -L., Powell, W., Jones, G., Brown, T. A., 2011a. Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces. BMC Evolutionary Biology, 11(1): 320. 10.1186/1471–2148-11–320.Google Scholar
Jones, M., Hunt, H., Lightfoot, E., Lister, D., Liu, X., Motuzaite-Matuzeviciute, G., 2011b. Food globalization in prehistory. World Archaeology, 43(4): 665675. DOI:10.1080/00438243.2011.624764.Google Scholar
Jordan, P., Zvelebil, M., 2009. Ceramics Before Farming: The Dispersal of Pottery Among Prehistoric Eurasian Hunter-Gatherers, 53. Left Coast Press, Walnut Creek, CA.Google Scholar
Joseph, P. V., Simon, A., 2005. Weakening trend of the southwest monsoon current through peninsular India from 1950 to the present. Current Science, 89: 687694.Google Scholar
Joseph, S., Sahai, A. K., Goswami, B.N., Terray, P., Masson, S., Luo, J. J., 2012. Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model. Climate Dynamics, 38: 15611576.Google Scholar
Kaleemullah, S., 2001. Thermogravimetric analysis of paddy straw. Madras Agricultural Journal, 88(10/12): 582584.Google Scholar
Kamkar, B., Koocheki, A., Nassiri Mahallati, M., Rezvani Moghaddam, P., 2006. Cardinal temperatures for germination in three millet species (Panicum miliaceum, Pennisetum glaucum and Setaria italica). Asian Journal of Plant Sciences, 5: 316319.Google Scholar
Kang, N. -Y., Elsner, J. B., 2016. Climate mechanism for stronger typhoons in a warmer world. Journal of Climate, 29(3): 10511057. 10.1175/jcli-d-15–0585.1.Google Scholar
Kang, Y., Khan, S., Ma, X., 2009. Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science, 19(12): 16651674. DOI:10.1016/j.pnsc.2009.08.001.Google Scholar
Karim, A., Veizer, J., 2002. Water balance of the Indus river basin and moisture source in the Karakoram and western Himalayas: implications from hydrogen and oxygen isotopes river water. Journal of Geophysical Research, 107(D18): 4362. DOI:10.1029/2000JD000253.Google Scholar
Kaspari, S., Hooke, R. L., Mayewski, P. A., Kang, S. C., Hou, S. G., Qin, D. H., 2008. Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: Synchroneity with sites across the Tibetan plateau on 50–100 year timescales. Journal of Glaciology, 54: 343352. DOI:10.3189/002214308784886126.Google Scholar
Kathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R. L., Zhang, H., Li, X., Yi, L., Ning, Y., Cai, Y., Lui, W. L., Breitenbach, S. F. M., 2016. Indian monsoon variability on millennial-orbital timescales. Scientific Reports, 6(1): 24374. DOI:10.1038/srep24374.Google Scholar
Katz, A., 1973. The interaction of magnesium with calcite during crystal growth at 25°C–90°C and one atmosphere. Geochimica et Cosmochimica Acta, 37(6): 15631586. DOI:10.1016/0016-7037(73)90091-4.Google Scholar
Keally, C. T., Taniguchi, Y., Kuzmin, Y. V., Shewkomud, I. Y., 2004. Chronology of the beginning of pottery manufacture in East Asia. Radiocarbon, 46(1): 345351.Google Scholar
Kendall, R. A., Mitrovica, J. X., Milne, G. A., Törnqvist, T. E., Li, Y., 2008. The sea-level fingerprint of the 8.2 ka climate event. Geology, 36(5): 423426. DOI:10.1130/G24550A.1.Google Scholar
Kennett, J. P., Shackleton, N. J., 1976. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature, 260: 513515.Google Scholar
Kenoyer, J. M., 1997. Trade and technology of the Indus valley: New insights from Harappa, Pakistan. World Archaeology, 29(2): 262280. 10.1080/00438243.1997.9980377.Google Scholar
Kenoyer, J. M., 1998. Ancient Cities of the Indus Valley Civilization. American Institute of Pakistan Studies, Madison, WI.Google Scholar
Kent, A., Behrman, S., 2018. Facilitating the Resettlement and Rights of Climate Refugees: An Argument for Developing Existing Principles and Practices. Routledge, London, p. 190.Google Scholar
Khalid, B., Cholaw, B., Alvim, D. S., Javeed, S., Khan, J. A., Javed, M. A., Khan, A. H., 2018. Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010. Natural Hazards, 92(2): 971993. DOI:10.1007/s11069-018-3234-y.Google Scholar
Khan, N. M., Tingsanchali, T., 2009. Optimization and simulation of reservoir operation with sediment evacuation: a case study of the Tarbela Dam, Pakistan. Hydrological Processes, 23(5): 730747. 10.1002/hyp.7173.Google Scholar
Khawaja, B. A., Sanchez, M., 2009. Tarbela Dam: A Numerical Model for Sediment Management in the Reservoir, Coastal and Maritime Mediterranean Conference. Centre Français du Littoral, Tunisia.Google Scholar
Kidder, T., Liu, H., Xu, Q., Li, M., 2012. The alluvial geoarchaeology of the Sanyangzhuang site on the Yellow River floodplain, Henan Province, China. Geoarchaeology, 27(4): 324343.Google Scholar
Kidder, T. R., Liu, H., 2014. Bridging theoretical gaps in geoarchaeology: archaeology, geoarchaeology, and history in the Yellow River valley, China. Archaeological and Anthropological Sciences, 9: 15851602. 10.1007/s12520-014–0184-5.Google Scholar
Kidwai, S., Ahmed, W., Tabrez, S. M., Zhang, J., Giosan, L., Clift, P., Inam, A., 2019. The Indus delta—catchment, river, coast, and people. In: Wolanski, E., Day, J. W., Elliiott, M., Ramachandran, R. (eds.), Coasts and Estuaries: the Future. Elsevier, Amsterdam, pp.213232.Google Scholar
Kim, H.-J., Takata, K., Wang, B., Watanabe, M., Kimoto, M., Yokohata, T., Yasunari, T., 2011. Global monsoon, El Nino, and their interannual linkage simulated by MIROC5 and the CMIP3 CGCMs. Journal of Climate, 24: 56045618.Google Scholar
Kim, H. J., Wang, B., Ding, Q. H., 2008. The global monsoon variability simulated by CMIP3 coupled climate models. Journal of Climate, 21: 52715294.Google Scholar
Kim, J. H., Wu, C. C., Sui, C. H., Ho, C. H., 2012. Tropical cyclone contribution to interdecadal change in summer rainfall over South China in the early 1990s. Terrestrial, Atmospheric and Oceanic Sciences, 23: 4958. DOI:10.3319/TAO.2011.08.26.01(A).Google Scholar
Kim, M. -K., Lau, W. K. M., Kim, K. -M., Sang, J., Kim, Y. -H., Lee, W. -S., 2016. Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols. Climate Dynamics, 46(7): 26572671. DOI:10.1007/s00382-015-2722-y.Google Scholar
Kirsch, T. D., Wadhwani, C., Sauer, L., Doocy, S., Catlett, C., 2012. Impact of the 2010 Pakistan floods on rural and urban populations at six months. PLoS Currents, 4: e4fdfb212d2432. 10.1371/4fdfb212d2432.Google Scholar
Kitamoto, A., 2011. Digital Typhoon. National Institute of Informatics, www.digital-typhoon.org/.Google Scholar
Kleiven, H. F., Kissel, C., Laj, C., Ninnemann, U. S., Richter, T. O., Cortijo, E., 2008. Reduced North Atlantic Deep Water coeval with the glacial Lake Agassiz freshwater outburst. Science, 319: 6064.Google Scholar
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., Sugi, M., 2010. Tropical cyclones and climate change. Nature Geoscience, 3: 157. DOI:10.1038/ngeo779.Google Scholar
Kodama, D., 2003. Komakino stone circle and its significance for the study of Jomon social structure In: Habu, J., Savelle, J.M., Koyama, S., Hongo, H. (eds.), Hunter-gatherers of the North Pacific Rim (Senri Ethnological Studies 63). National Museum of Ethnological Studies, Osaka, pp.235261.Google Scholar
Kohler, T. A., Johnson, C. D., Varien, M., Ortman, S., Reynolds, R., Kobti, Z., Cowan, J., Kolm, K., Smith, S., Yap, L., 2007. Settlement ecodynamics in the prehispanic central Mesa Verde region. In: Kohler, T.A., Leeuw, S.v.d. (eds.), The Model-Based Archaeology of Socionatural Systems. School for Advanced Research Press, Santa Fe, NM, pp.61104.Google Scholar
Kondolf, G., Rubin, Z., Minear, J., 2014. Dams on the Mekong: Cumulative sediment starvation. Water Resources Research, 50(6): 51585169.Google Scholar
Kosaka, Y., Xie, S. -P., 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501: 403407. DOI:10.1038/nature12534.Google Scholar
Kovach, M. J., Sweeney, M. T., McCouch, S. R., 2007. New insights into the history of rice domestication. TRENDS in Genetics, 23(11): 578587.Google Scholar
Krishna Kumar, K., Rupa Kumar, K., Ashrit, R. G., Deshpande, N. R., Hansen, J. W., 2004. Climate impacts on Indian agriculture. International Journal of Climatology, 24(11): 13751393. 10.1002/joc.1081.Google Scholar
Krishnamurthy, V., Goswami, B. N., 2000. Indian monsoon–ENSO relationship on interdecadal timescale. Journal of Climate, 13(3): 579595. 10.1175/1520–0442(2000)013<0579:imeroi>2.0.Co;2.Google Scholar
Krishnan, R., Ramesh, K. V., Samala, B. K., Meyers, G., Slingo, J. M., Fennessy, M. J., 2006. Indian Ocean-monsoon coupled interactions and impending monsoon droughts. Geophysical Research Letters, 33(L08711). DOI:10.1029/2006GL025811.Google Scholar
Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran, M., Bhalla, R., Badiger, S., 2015. Non-stationary and non-linear influence of ENSO and Indian ocean dipole on the variability of Indian monsoon rainfall and extreme rain events. Climate Dynamics, 45(1–2): 175184.Google Scholar
Kroon, D., Steens, T., Troelstra, S. R., 1991. Onset of Monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. In: Prell, W., Niitsuma, N. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, TX, pp.257263.Google Scholar
Kühn, T., Partanen, A. I., Laakso, A., Lu, Z., Bergman, T., Mikkonen, S., Kokkola, H., Korhonen, H., Räisänen, P., Streets, D.G., Romakkaniemi, S., Laaksonen, A., 2014. Climate impacts of changing aerosol emissions since 1996. Geophysical Research Letters, 41(13): 47114718. DOI:10.1002/2014GL060349.Google Scholar
Kulp, S. A., Strauss, B. H., 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature Communications, 10(1): 4844. DOI:10.1038/s41467-019-12808-z.Google Scholar
Kumar, K. K., Rajagopalan, B., Cane, M. A., 1999. On the weakening relationship between the Indian monsoon and ENSO. Science, 284(5423): 21562159. DOI:10.1126/science.284.5423.2156.Google Scholar
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., Cane, M., 2006. Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314(5796): 115119 DOI:10.1126/science.1131152.Google Scholar
Kumar, R., Mishra, V., Buzan, J., Kumar, R., Shindell, D., Huber, M., 2017. Dominant control of agriculture and irrigation on urban heat island in India. Scientific Reports, 7(1): 14054. DOI:10.1038/s41598-017-14213-2.Google Scholar
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J., 1998. The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospherc and Oceanic Technology, 15: 809817.Google Scholar
Kurz, J., 2011. China’s Southern Tang Dynasty, 937–976. Routledge, London, p. 160.Google Scholar
Kutzbach, J. E., 1981. Monsoon climate of the early Holocene – climate experiment with the Earths orbital parameters for 9000 years ago. Science, 214(4516): 5961.Google Scholar
Kuzmin, Y., 2006a. Chronology of the earliest pottery in East Asia: progress and pitfalls. Antiquity, 80(2006): 362371.Google Scholar
Kuzmin, Y. V., 2006b. Chronology of the earliest pottery in East Asia: progress and pitfalls. Antiquity, 80(308): 362371.Google Scholar
Kuzmin, Y. V., 2010. The origin of pottery in East Asia and its relationship to environmental changes in the late glacial. Radiocarbon, 52(2–3): 415420.Google Scholar
Lansing, J. S., Fox, K. M., 2011. Niche construction on Bali: the gods of the countryside. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1566): 927934. DOI:10.1098/rstb.2010.0308.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the last glacial maximum to the holocene. Proceedings of the National Academy of Sciences, 111(43): 1529615303. 10.1073/pnas.1411762111.Google Scholar
Lansing, J. S., Kremer, J. N., 2011. Rice, fish, and the planet. Proceedings of the National Academy of Sciences, 108(50): 1984119842.Google Scholar
Lau, K. M., Kim, K. M., 2006. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters, 33: L21810. DOI:10.1029/2006GL027546.Google Scholar
Lau, N. C., Wang, B., 2005. Monsoon–ENSO interactions. The Global Monsoon System: Research and Forecast. WMO Technical Document 1266 and TMRP Report, 70: 299309.Google Scholar
Lau, W. K. M., Kim, K. M., 2010. Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophysical Research Letters, 37(L16705). DOI:10.1029/2010GL043255.Google Scholar
Laufer, B., 1907. The Introduction of Maize into Eastern Asia. Dussault & Proulx, Québec City.Google Scholar
Lawson, P., 2014. The East India Company: A History. Routledge, London, 200 pp.Google Scholar
Lear, C. H., Rosenthal, Y., Slowey, N., 2002. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochimica et Cosmochimica Acta, 66(19): 33753387. DOI:10.1016/S0016-7037(02)00941-9.Google Scholar
Lee, G. -A., 2011. The transition from foraging to farming in prehistoric korea. Current Anthropology, 52(S4): S307S329. DOI:10.1086/658488.Google Scholar
Lee, G. -A., Crawford, G. W., Liu, L., Sasaki, Y., Chen, X., 2011. Archaeological soybean (Glycine max) in East Asia: does size matter? PLOS ONE, 6(11): e26720. 10.1371/journal.pone.0026720.Google Scholar
Lee, J., 1982. Food supply and population growth in southwest China, 1250–1850. The Journal of Asian Studies, 41(4): 711747. DOI:10.2307/2055447.Google Scholar
Lee, J., Feng, W., 1999. Malthusian models and Chinese realities: The Chinese demographic system 1700–2000. Population and Development Review, 25(1): 3365.Google Scholar
Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I., Scheff, J., 2018. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proceedings of the National Academy of Sciences, 115(16): 40934098. DOI:10.1073/pnas.1720712115.Google Scholar
Leng, M. J., Barker, P. A., 2006. A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth-Science Reviews, 75(1–4): 527.Google Scholar
Leshnik, L. S., 1973. Land use and ecological factors in prehistoric Northwest India. In: Hammond, N. (ed.), South Asian Archaeology. Duckworth, London, pp.6784.Google Scholar
Leung, Y. K., Wu, M. C., Yeung, K. K., 2007. Recent Decline in Typhoon Activity in the South China Sea, International Conference on Climate Change. Hong Kong Observatory, Hong Kong, China.Google Scholar
Levine, R. C., Turner, A. G., 2012. Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Climate Dynamics, 38: 21672190.Google Scholar
Lewandowsky, S., Risbey, J. S., Oreskes, N., 2016. The “pause” in global warming: Turning a routine fluctuation into a problem for science. Bulletin of the American Meteorological Society, 97(5): 723733.Google Scholar
Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., Streets, D., He, H., Ren, X., Li, Z., Dickerson, R. R., 2017a. India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. Scientific Reports, 7(1): 14304. DOI:10.1038/s41598-017-14639-8.Google Scholar
Li, H. M., Dai, A. G., Zhou, T. J., Lu, J., 2010. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dynamics, 34: 501514.Google Scholar
Li, J., Liu, Z., He, C., Yue, H., Gou, S., 2017b. Water shortages raised a legitimate concern over the sustainable development of the drylands of northern China: Evidence from the water stress index. Science of The Total Environment, 590–591: 739750. DOI:10.1016/j.scitotenv.2017.03.037.Google Scholar
Li, K., Xu, Z., 2006. Overview of Dujiangyan irrigation scheme of ancient China with current theory. Irrigation and Drainage, 55(3): 291298. DOI:10.1002/ird.234.Google Scholar
Li, X., Dodson, J., Zhou, J., Zhou, X., 2009. Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000 BP. Quaternary International, 202(1–2): 4150.Google Scholar
Li, X., Ting, M., Li, C., Henderson, N., 2015. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. Journal of Climate, 28(10): 41074125. 10.1175/jcli-d-14–00559.1.Google Scholar
Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., Li, X., 2017c. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment, 605: 426435.Google Scholar
Li, Z., Lau, W. K. -M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, S.-S., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., Brasseur, G. P., 2016. Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4): 866929. DOI:10.1002/2015rg000500.Google Scholar
Liang, X., Wood, E. F., Lettenmaier, D. P., 1996. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global and Planetary Change, 13(1): 195206. DOI:10.1016/0921-8181(95)00046-1.Google Scholar
Licht, A., Cappelle, M. v., Abels, H. A., Ladant, J. -B., Trabucho-Alexandre, J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lecuyer, C., Terry, D., Adriaens, R., Boura, A., Guo, Z., Soe, A. N., Quade, J., Dupont-Nivet, G., Jaeger, J. -J., 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513: 501506. DOI:10.1038/nature13704.Google Scholar
Lieberman, V., 2003. Strange Parallels: Southeast Asia in Global Context, C. 800–1830, vol. 1, Integration on the Mainland. Cambridge University Press, Cambridge.Google Scholar
Linwang, X. Z. Y., 2012. Fluctuation characteristics of Holocene sea-level change and its environmental implications. Quaternary Sciences, 6: 004.Google Scholar
Liu, L., Chen, X., Shi, J., 2014. Shanxi Wuxiang Niupiziwan shimopan, mobang de weihen yu canliuwu fenxi (Usewear and residue analyses of the grinding stones from Niupiziwan in Wuxiang county, Shanxi province). Kaogu yu Wenwu, 3: 109119.Google Scholar
Liu, B., Xu, M., Henderson, M., Qi, Y., 2005a. Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. Journal of Geophysical Research, 110(D08103). DOI:10.1029/2004JD004864.Google Scholar
Liu, J., Xu, K., Li, A., Milliman, J., Velozzi, D., Xiao, S., Yang, Z., 2007a. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3–4): 208224.Google Scholar
Liu, K. S., Chan, J. C. L., 2019. Inter-decadal variability of the location of maximum intensity of category 4–5 typhoons and its implication on landfall intensity in East Asia. International Journal of Climatology, 39(4): 18391852. DOI:10.1002/joc.5919.Google Scholar
Liu, L., Chen, X., Zhao, H., 2013. Henan Mengjin Zhaigen, Bangou chutu Peiligang wanqi shimopan gongneng fenxi (Functional analysis of grinding slabs of the late Peiligang culture from Zhaigen and Bangou in Mengjin, Henan). Zhongyuan Wenwu, 5: 7686.Google Scholar
Liu, L., Field, J., Fullagar, R., Chaohong, Z., Chen, X., Yu, J., 2010. A functional analysis of grinding stones from an early holocene site at Donghulin, North China. Journal of Archaeological Science, 37(2010): 26302639.Google Scholar
Liu, L., Ge, W., Bestel, S., Jones, D., Shi, J., Song, Y., Chen, X., 2011. Plant exploitation of the last foragers at Shizitan in the middle yellow river valley China: evidence from grinding stones. Journal of Archaeological Science, 38(12): 35243532.Google Scholar
Liu, L., Lee, G. -A., Jiang, L., Zhang, J., 2007b. Evidence for the early beginning (c. 9000 cal. BP) of rice domestication in China: a response. The Holocene, 17(8): 10591068.Google Scholar
Liu, W., Huang, Y., 2005. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Organic Geochemistry, 36(6): 851860. DOI:10.1016/j.orggeochem.2005.01.006.Google Scholar
Liu, W., Huang, Y., An, Z., Clemens, S. C., Li, L., Prell, W. L., Ning, Y., 2005b. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau; carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3–4): 243254.Google Scholar
Liu, X., 1998. The success or failure of ancient cities and paleoclimate in Chengdu plain. Sichuan Wenwu, 4: 3437.Google Scholar
Liu, Y., Jiang, D., 2016. Last glacial maximum permafrost in China from CMIP5 simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 447: 1221. DOI:10.1016/j.palaeo.2016.01.042.Google Scholar
Liu, Z., Otto-Bliesner, B., Kutzbach, J., Li, L., Shields, C., 2003. Coupled climate simulation of the evolution of global monsoons in the Holocene. Journal of Climatology, 16: 24722490.Google Scholar
Lobell, D. B., Burke, M. B., 2008. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environmental Research Letters, 3(034007), DOI:10.1088/1748-9326/3/3/034007.Google Scholar
Lobell, D. B., Field, C. B., 2007. Global scale climate–crop yield relationships and the impacts ofrecent warming. Environmental Research Letters, 2(014002), DOI:10.1088/1748-9326/2/1/014002.Google Scholar
Lockwood, M., Bell, C., Woollings, T., Harrison, R. G., Gray, L. J., Haigh, J. D., 2010. Top-down solar modulation of climate: evidence for centennial-scale change. Environmental Research Letters, 5(3): 034008. 10.1088/1748–9326/5/3/034008.Google Scholar
Londo, J. P., Chiang, Y. -C., Hung, K. -H., Chiang, T. -Y., Schaal, B. A., 2006. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proceedings of the National Academy of Sciences 103(25): 95789583.Google Scholar
Looney, R., 2012. Economic impacts of the floods in Pakistan. Contemporary South Asia, 20(2): 225241. 10.1080/09584935.2012.670203.Google Scholar
Lu, H., Liu, Z., Wu, N., BernÉ, S., Saito, Y., Liu, B., Wang, L. U. O., 2008. Rice domestication and climatic change: phytolith evidence from East China. Boreas, 31(4): 378385. 10.1111/j.1502–3885.2002.tb01081.x.Google Scholar
Lu, H., Zhang, J., Liu, K. -b., Wu, N., Li, Y., Zhou, K., Ye, M., Zhang, T., Zhang, H., Yang, X., Shen, L., Xu, D., Li, Q., 2009. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences, 106(18): 73677372. 10.1073/pnas.0900158106.Google Scholar
Lu, T., 2006. The occurrence of cereal cultivation in China. Asian Perspectives, 45(2): 129158.Google Scholar
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., Bierkens, M. F. P., 2014. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4: 587592. DOI 10.1038/NCLIMATE2237.Google Scholar
Mabbett, I. W., 1964. The date of the arthaśāstra. Journal of the American Oriental Society, 84(2): 162169.Google Scholar
MacNeish, R. S., Cunnar, G., Zhao, Z., Libby, J. G., 1998. Re-revised Second Annual Report of the Sino-American Jiangxi (PRC) Origin of Rice Project SAJOR. Andover Foundation for Archaeological Research, Andover, MA.Google Scholar
Madden, R. A., Julian, P. R., 1972. Description of global-scale circulation cells in tropics with a 40–50 day period. Journal of Atmospheric Science, 29: 11091123.Google Scholar
Madden, R. A., Julian, P. R., 1994. Observations of the 40–50-day tropical oscillation—a review. Monthly Weather Review, 122: 814837.Google Scholar
Madella, M., 2003. Investigating agriculture and environment in South Asia: present and future contributions from opal phytoliths In: Weber, SA, Belcher, WM, (eds.), Indus Ethnobiology. New Perspectives from the Field. Altamira Press, Lanham, MD, pp. 201250.Google Scholar
Madella, M., Fuller, D. Q., 2006. Palaeoecology and the Harappan civilisation of south Asia: a reconsideration. Quaternary Science Reviews, 25: 12831301. DOI:10.1016/j.quascirev.2005.10.012.Google Scholar
Magee, J. W., Miller, G. H., Spooner, N. A., Questiaux, D., 2004. Continuous 150 k.y. monsoon record from Lake Eyre, Australia: Insolation-forcing implications and unexpected Holocene failure. Geology, 32: 885888.Google Scholar
Manabe, S., Terpstra, T. B., 1974. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. Journal of Atmospheric Science, 31: 342.Google Scholar
Manghnani, V., Morrison, J. M., Hopkins, T. S., Böhm, E., 1998. Advection of upwelled waters in the form of plumes off Oman during the Southwest Monsoon. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10–11): 20272052.Google Scholar
Mann, H., 1946. Millets in the middle east. Empire Journal of Experimental Agriculture, 14: 208–16.Google Scholar
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957): 12561260.Google Scholar
Mao, L., Zhang, Y., Bi, H., 2006. Modern pollen deposits in coastal mangrove swamps from northern Hainan Island, China. Journal of Coastal Research, 226: 14231436. DOI:/10.2112/05-0516.1Google Scholar
Marcott, S. A., Shakun, J. D., Clark, P. U., Mix, A. C., 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science, 339(6124): 11981201. 10.1126/science.1228026.Google Scholar
Marks, R., 1998. Tigers, Rice, Silk, and Silt: Environment and Economy in Late Imperial South China. Cambridge University Press, Cambridge.Google Scholar
Marshall, J. H., 1931. Mohenjo-daro and the Indus Civilisation. Arthur Probsthain, London.Google Scholar
Marshall, M., 2010. Frozen jet stream links Pakistan floods, Russian fires, New Scientist. www.newscientist.com/article/mg20727730-101-frozen-jet-stream-links-pakistan-floods-russian-fires/.Google Scholar
Marston, J. M., 2011. Archaeological markers of agricultural risk management. Journal of Anthropological Archaeology, 30(2): 190205.Google Scholar
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., Rouco, J. F. G., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., Timmermann, A., 2013. Information from paleoclimate archives. In: Stocker, T.F. et al. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Matsui, A., 1996. Archaeological investigations of andromous salminoid fishing in Japan. World Archaeology, 27(3): 444460.Google Scholar
Matthew, R., 2013. Climate change and water security in the Himalayan region. Asia Policy, 16: 3944.Google Scholar
May, T. M., 2012. The Mongols Conquests in World History. Reaktion Books, London, p. 313.Google Scholar
McGlade, J., 1995. Archaeology and the ecodynamics of human-modified landscapes. Antiquity, 68: 113132.Google Scholar
McInerney, F. A., Helliker, B. R., Freeman, K. H., 2011. Hydrogen isotope ratios of leaf wax n-alkanes in grasses are insensitive to transpiration. Geochimica et Cosmochimica Acta, 75(2): 541554. DOI:10.1016/j.gca.2010.10.022.Google Scholar
McIntosh, R. J., Tainter, J. A., McIntosh, S. K., 2000. The Way the Wind Blows: Climate, History, and Human Action. Columbia University Press, New York.Google Scholar
McManus, J., Francois, R., Gherardi, J., Keigwin, L., Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428: 834837.Google Scholar
Meadow, R., 1984. Notes on the faunal remains from Mehrgarh, with a focus on cattle (Bos). In: Allchin, B. (ed.), South Asian Archaeology. Cambridge University Press, Cambridge, pp. 3440.Google Scholar
Meehl, G. A., Arblaster, J. M., Lawrence, D. M., Seth, A., Schneider, E. K., Kirtman, B. P., Min, D., 2006. Monsoon regimes in the CCSM3. Journal of Climate, 19: 24822495.Google Scholar
Memon, A. A., 2004. Evaluation of Impacts on the Lower Indus River Basin Due to Upstream Water Storage and Diversion, World Water & Environmental Resources Congress. American Society of Civil Engineers, Salt Lake City, Utah.Google Scholar
Meybeck, M., 1987. Global chemical weathering of surficial rocks estimates from river dissolved loads. American Journal of Science, 287: 401428.Google Scholar
Meyers, P. A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5): 213250. DOI:10.1016/S0146-6380(97)00049-1.Google Scholar
Middleton, G. D., 2017. The show must go on: Collapse, resilience, and transformation in 21st-century archaeology. Reviews in Anthropology, 46(2–3): 78105.Google Scholar
Miller, H., 2006a. Water supply, labor requirements, and land ownership in Indus floodplain agricultural systems. In: Marcus, J., Stanish, C. (eds.), Agricultural Strategies, Cotsen Institute of Archaeology, UCLA, pp. 92127.Google Scholar
Miller, M. -L. H., 2006b. Water supply, Labor organization and land ownership in Indus floodplain agricultural systems. In: Stanish, C., Marcus, J. (eds.), Agriculture and Irrigation in Archaeology. Cotsen Institute of Archaeology Press, Los Angeles, pp.92128.Google Scholar
Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H., Smith, L. C., 2008. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Planet. Change. Global and Planetary Change, 62: 187194.Google Scholar
Milliman, J. D., Syvitski, J. P. M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean; the importance of small mountainous rivers. Journal of Geology, 100: 525544.Google Scholar
Milne, G. A., Mitrovica, J. X., 2008. Searching for eustasy in deglacial sea-level histories. Quaternary Science Reviews, 27(25): 22922302. DOI:10.1016/j.quascirev.2008.08.018.Google Scholar
Minnis, P. E., 1999. Sustainability: The long view from archaeology. New Mexico Journal of Science, 39: 2341.Google Scholar
Mishra, A. K., Singh, V. P., 2010. A review of drought concepts. Journal of Hydrology, 391(1): 202216. DOI:10.1016/j.jhydrol.2010.07.012.Google Scholar
Mishra, V., Shah, R., Thrasher, B., 2014. Soil moisture droughts under the retrospective and projected climate in India. Journal of Hydrometeorology, 15(6): 22672292. https://doi.org/10.1175/JHM-D-13-0177.1Google Scholar
Mishra, V., Smoliak, B. V., Lettenmaier, D. P., Wallace, J. M., 2012. A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proceedings of the National Academy of Sciences, 109(19): 72137217. DOI:10.1073/pnas.1119150109.Google Scholar
Mishra, V., Tiwari, A. D., Aadhar, S., Shah, R., Xiao, M., Pai, D. S., Lettenmaier, D., 2019. Drought and famine in India, 1870–2016. Geophysical Research Letters, 46(4): 20752083. DOI:10.1029/2018GL081477.Google Scholar
Miteva, D. A., Murray, B. C., Pattanayak, S. K., 2015. Do protected areas reduce blue carbon emissions? A quasi-experimental evaluation of mangroves in Indonesia. Ecological Economics, 119: 127135. DOI:10.1016/j.ecolecon.2015.08.005.Google Scholar
Mitrovica, J. X., Tamisiea, M. E., Davis, J. L., Milne, G. A., 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409(6823): 10261029. DOI:10.1038/35059054.Google Scholar
Mohammed, A. R., Tarpley, L., 2009. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology, 149(6): 9991008. DOI:10.1016/j.agrformet.2008.12.003.Google Scholar
Mohtadi, M., Oppo, D. W., Steinke, S., Stuut, J. -B. W., Pol-Holz, R. D., Hebbeln, D., Lückge, A., 2011. Glacial to Holocene swings of the Australian-Indonesian monsoon. Nature Geoscience, 4: 540544.Google Scholar
Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4): 357396.Google Scholar
Molnar, P. H., Rajagopalan, B., 2012. Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since ~10 Ma. Geophysical Research Letters, 39: L09702. DOI:10.1029/2012GL051305.Google Scholar
Morisaki, K., 2012. The evolution of lithic technology and human behavior from MIS 3 to MIS 2 in the Japanese Upper Paleolithic. Quaternary International, 248: 5669. DOI:10.1016/j.quaint.2010.11.011.Google Scholar
Morrill, C., Anderson, D. M., Bauer, B. A., Buckner, R., Gille, E. P., Gross, W. S., Hartman, M., Shah, A., 2013a. Proxy benchmarks for intercomparison of 8.2 ka simulations. Clim. Past, 9(1): 423432. DOI:10.5194/cp-9-423-2013.Google Scholar
Morrill, C., LeGrande, A. N., Renssen, H., Bakker, P., Otto-Bliesner, B. L., 2013b. Model sensitivity to North Atlantic freshwater forcing at 8.2 ka. Clim. Past, 9(2): 955968. DOI:10.5194/cp-9-955-2013.Google Scholar
Morrill, C., Wagner, A., Otto-Bliesner, B., Rosenbloom, N., 2011. Evidence for significant climate impacts in monsoonal Asia at 8.2 ka from multiple proxies and model simulations. Journal of Earth Environment, 2: 426441.Google Scholar
Morrill, C., Wagner, A. J., Otto-Bliesner, B. L., Rosenbloom, N., 2014. Evidence for significant climate impacts in monsoonal Asia at 8.2 ka from multiple proxies and model simulations. Journal of Earth Environment, 2: 426441.Google Scholar
Moulherat, C., Tengberg, M., Haquet, J. -F., Mille, B. t., 2002. First evidence of cotton at Neolithic Mehrgarh, Pakistan: analysis of mineralized fibres from a copper bead. Journal of Archaeological Science, 29(12): 13931401.Google Scholar
Mughal, M. R., 1997. Ancient Cholistan: Archaeology and Architecture. Ferozsons Pvt. Ltd, Rawalpindi.Google Scholar
Mughal, R., 1990. The protohistoric settlement patterns in the Cholistan desert, Pakistan. In: Teddei, M. (ed.), South Asian Archaeology 1987. Instituto Italiano per il Medio ed Estremo Oriente, Rome, pp.143156.Google Scholar
Mughal, R., 1992. The geographical extent of the Indus civilization during the early, mature and late Harappan times. In: Possehl, G. (ed.), South Asian Archaeology Studies. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp.123143.Google Scholar
Muir, J., 1873. Original Sanskrit Texts on the Origin and History of the People of India, Their Religions and Institutions. Trübner & Company.Google Scholar
Murakami, H., Vecchi, G. A., Underwood, S., 2017. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nature Climate Change, 7(12): 885889. DOI:10.1038/s41558-017-0008-6.Google Scholar
Murra, J., 1985. The limits and limitations of the “vertical archipelago” in the andes. In: Masuda, S., Shimada, I., Morris, C. (eds.), Andean Ecology and Civilization: An Interdisciplinary Perspective on Andean Ecological Complementarity. University of Tokyo, Tokyo, pp.1520.Google Scholar
Mustafa, D., Wrathall, D., 2011. Indus basin floods of 2010: souring of a Faustian bargain? Water Alternatives, 4(1): 7285.Google Scholar
Naidu, P. D., Malmgren, B. A., 1995. A 2,200 years periodicity in the Asian monsoon system. Geophysical Research Letters, 22: 23612364.Google Scholar
Nakajima, T., Hudson, M. J., Uchiyama, J., Makibayashi, K., Zhang, J. 2019. Common carp aquaculture in Neolithic China dates back 8,000 years. Nature Ecology & Evolution, 3(10): 14151418, DOI:10.1038/s41559-019-0974-3.Google Scholar
Naqvi, S. A., 2012. Indus Waters and Social Change: The Evolution and Transition of Agrarian Society in Pakistan.Oxford University Press, Pakistan, p. 541.Google Scholar
Neena, J. M., Suhas, E., Goswami, B. N., 2011. Leading role of internal dynamics in the 2009 Indian summer monsoon drought. Journal of Geophysical Research: Atmospheres, 116(D13). DOI:10.1029/2010jd015328.Google Scholar
Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44: 16591666.Google Scholar
Netting, R. M., 1993. Smallholders, Householders: Farm Families and the Ecology of Intensive, Sustainable Agriculture. Stanford University Press, Palo Alto, CA, p. 446.Google Scholar
Neumann, B., Vafeidis, A. T., Zimmermann, J., Nicholls, R. J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding – a global assessment. PLOS ONE, 10(3): e0118571. DOI;10.1371/journal.pone.0118571.Google Scholar
Neumann, J. E., Emanuel, K. A., Ravela, S., Ludwig, L. C., Verly, C., 2015b. Risks of coastal storm surge and the effect of sea level rise in the red river delta, vietnam.Sustainability, 7: 65536572. DOI;10.3390/su7066553.Google Scholar
Ni, J., Ge, Y., Harrison, S., Prentice, C. I., 2010. Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeography, Palaeoclimatology, Palaeoecology, 289(2010): 4461.Google Scholar
Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., Ando, S., Vermeesch, P., Saylor, J., Lu, H., Breecker, D., Hu, X., Liu, S., Resentini, A., Vezzoli, G., Peng, W., Carter, A., Ji, S., Pan, B., 2015. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 6: 8511. DOI:10.1038/ncomms9511.Google Scholar
North Greenland Ice Core Project members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431: 147151.Google Scholar
Norton, C., Kim, B., Bae, K., 1999. Differential processing of fish during the Korean Neolithic: Konam-Ri. Artic Anthropology, 36(1/2): 151165.Google Scholar
O’Brien, P. J., 1972. The sweet potato: its origin and dispersal1. American Anthropologist, 74(3): 342365. DOI:10.1525/aa.1972.74.3.02a00070.Google Scholar
Oberlies, T., 1998. Die Religion des Rgveda: Ester Teil: das religiöse system des Rgveda, 26. Publications of the De Nobili Research library, Vienna, Austria, 632 pp.Google Scholar
Oka, H. I., 1958. Photoperiodic adaption to latitude in rice varieties. Phyton, 11: 153160.Google Scholar
Oram, P. A., De Haan, C., 1995. Technologies for Rainfed Agriculture in Mediterranean Climates: A Review of World Bank Experiences. The World Bank, New York.Google Scholar
Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J. M., Iván Ortiz-Monasterio, J., Reynolds, M., 2008. Climate change: Can wheat beat the heat? Agriculture, Ecosystems & Environment, 126(1): 4658. DOI:10.1016/j.agee.2008.01.019.Google Scholar
Ozturk, T., Turp, M. T., Türkeş, M., Kurnaz, M. L., 2017. Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4.3.5. Atmospheric Research, 183: 296307. DOI:10.1016/j.atmosres.2016.09.008.Google Scholar
Padma Kumari, B., Londhe, A. L., Daniel, S., Jadhav, D. B., 2007. Observational evidence of solar dimming: Offsetting surface warming over India. Geophysical Research Letters, 34(21): L21810. 10.1029/2007GL031133.Google Scholar
Pal, J. S., Eltahir, E. A. B., 2015. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nature Climate Change, 6: 197. DOI:10.1038/nclimate2833.Google Scholar
Palmer, W. C., 1965. Meteorological Drought, Dept. of Commerce, Washington, D.C.Google Scholar
Palmieri, A., Shah, F., Dinar, A., 2001. Economics of reservoir sedimentation and sustainable management of dams. Journal of Environmental Management, 61(2): 149163. DOI:10.1006/jema.2000.0392.Google Scholar
Pant, G. B., Parthasarathy, B., 1981. Some aspects of an association between the southern oscillation and Indian summer monsoon. Arch. Meteor. Geophys. Bioklimatol., Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 1329: 245252.Google Scholar
Panwar, N., Kaushik, S., Kothari, S., 2011. Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3): 15131524.Google Scholar
Park, C. E., Jeong, S. J., Ho, C. H., Park, H., Piao, S., Kim, J., Feng, S., 2017. Dominance of climate warming effects on recent drying trends over wet monsoon regions. Atmos. Chem. Phys., 17(17): 1046710476. 10.5194/acp-17–10467–2017.Google Scholar
Parsons, J. B., 1970. The Peasant Rebellions of the Late Ming Dynasty. University of Arizona Press, Tuscon, 292 pp.Google Scholar
Parthasarathy, B., Kumar, K. R., Munot, A. A., 1992. Surface pressure and summer monsoon rainfall over India. Advances in Atmospheric Sciences, 9(3): 359366. 10.1007/bf02656946.Google Scholar
Parthasarathy, B., Munot, A., Kothawale, D., 1994. All-India monthly and seasonal rainfall series: 1871–1993. Theoretical and Applied Climatology, 49(4): 217224.Google Scholar
Parthasarathy, B., Munot, A. A., Kothawale, D. R., 1995 . Monthly and seasonal rainfall series for All-India homogeneous regions and meteorological subdivisions: 1871–1994. RR-065, Contributions from Indian Institute of Tropical Meteorology, Pune 411 008 India.Google Scholar
Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., Fernandez, D. P., 2007. Millennial-scale trends in west Pacific warm pool hydrology since the last glacial maximum. Nature, 449(7161): 452455. DOI:10.1038/nature06164.Google Scholar
Patil, N., Venkataraman, C., Muduchuru, K., Ghosh, S., Mondal, A., 2019. Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall. Climate Dynamics, 52(3): 22872302. DOI:10.1007/s00382-018-4251-y.Google Scholar
Pattanaik, D., 2000. Devi, the Mother-Goddess: An Introduction. Vakils, Feffer, and Simons Limited.Google Scholar
Patwardhan, S., Kulkarni, A., Rao, K. K., 2018. Projected changes in rainfall and temperature over homogeneous regions of India. Theoretical & Applied Climatology, 131(1–2): 581592. DOI:10.1007/s00704-016-1999-z.Google Scholar
Pearson, R., 2006. Jomon hot spot: increasing sedentism in south- western Japan in the Incipient Jomon (14,000–9250 cal. bc) and Earliest Jomon (9250–5300 cal. bc) periods.World Archaeology, 38(2): 239258.Google Scholar
Pederson, N., Hessl, A. E., Baatarbileg, N., Anchukaitis, K. J., Di Cosmo, N., 2014. Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proceedings of the National Academy of Sciences, 111(12): 43754379. DOI:10.1073/pnas.1318677111.Google Scholar
Pei, Q., Zhang, D. D., Li, J., Lee, H. F., 2017. Proxy-based Northern Hemisphere temperature reconstruction for the mid-to-late Holocene. Theoretical and Applied Climatology, 130(3): 10431053. 10.1007/s00704-016–1932-5.Google Scholar
Peltier, W. R., 1994. Ice age paleotopography. Science, 265: 195201.Google Scholar
Peltier, W. R., 2002. On eustatic sea level history: Last Glacial Maximum to Holocene. Quaternary Science Reviews, 21(1–3): 377396.Google Scholar
Peng, X., 1987. Demographic consequences of the great leap forward in China’s provinces. Population and Development Review, 13(4): 639670. DOI:10.2307/1973026.Google Scholar
Perkins, D. H., 1969. Agricultural Development in China 1368–1968. Aldine Publishing Co., Chicago.Google Scholar
Perkins, J. H., 1997. Geopolitics and the Green Revolution: Wheat, Genes, and the Cold War. Oxford University Press, New York, 336 pp.Google Scholar
Peterson, C. E., Shelach, G., 2012. Jiangzhai: Social and economic organization of a Middle Neolithic Chinese village. Journal of Anthropological Archaeology, 31(2012): 265301.Google Scholar
Peterson, L. C., Murray, D. W., Ehrmann, W. U., Hempel, P., 1992. Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean. In: Duncan, R. A., Rea, D. K., Kidd, R. B., von Rad, U., Weissel, J. K. (eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophysical Monograph. American Geophysical Union, Washington, DC, pp.311333.Google Scholar
Petrie, C. A., Bates, J., 2017. ‘Multi-cropping’, Intercropping and Adaptation to Variable Environments in Indus South Asia. Journal of World Prehistory, 30(2): 81130.Google Scholar
Phadtare, N. R., 2000. Sharp decrease in summer monsoon strength 4000 –3500 cal yr B.P. in the central higher himalaya of India based on pollen evidence from alpine peat. Quaternary Research, 53: 122129.Google Scholar
Pingali, P. L., 2012. Green revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31): 1230212308. DOI:10.1073/pnas.0912953109.Google Scholar
Ponte, R. M., Quinn, K. J., Piecuch, C. G., 2018. Accounting for gravitational attraction and loading effects from land ice on absolute sea level. Journal of Atmospheric and Oceanic Technology, 35(2): 405410. DOI:10.1175/JTECH-D-17-0092.1.Google Scholar
Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D., Johnson, J. E., Kumar, P., Collet, T. S., 2012. Holocene Aridification of India. Geophysical Research Letters, 39(L03704). DOI:10.1029/2011GL050722.Google Scholar
Porter, J., Xie, L., Challinor, A., Cochrane, K., Howden, S., Iqbal, M., Lobell, D., Travasso, M., 2014. Food security and food production systems. In: Field, C. B. et al. (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 485533.Google Scholar
Prasad, S., Enzel, Y., 2006. Holocene paleoclimates of India. Quaternary Research, 66: 442453.Google Scholar
Prasad, S., Kusumgar, S., Gupta, S. K., 1997. A mid–late Holocene record of palaeoclimatic changes from Nal Sarovar—A palaeodesert margin lake in western India. Journal of Quaternary Science, 12(2): 153159.Google Scholar
Prasanna, V., 2014. Impact of monsoon rainfall on the total foodgrain yield over India. Journal of Earth System Science, 123(5): 11291145. 10.1007/s12040-014–0444-x.Google Scholar
Prell, W. L., Kutzbach, J. E., 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360(6405): 647652.Google Scholar
Prell, W. L., Murray, D. W., Clemens, S. C., Anderson, D. M., 1992. Evolution and variability of the Indian ocean summer monsoon: evidence from the western Arabian sea drilling program. In: Duncan, R. A., Rea, D. K., Kidd, R. B., von Rad, U., Weissel, J. K. (eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophysical Monograph. American Geophysical Union, Washington, DC, pp.447469.Google Scholar
Prendergast, M. E., Yuan, J., Bar-Yosef, O., 2009. Resource intensification in the Late Upper Paleolithic: a view from southern China. Journal of Archaeological Science, 36(2009): 10271037.Google Scholar
Pretzsch, H., 2009. Forest dynamics, growth, and yield, Forest Dynamics, Growth and Yield. Springer, pp. 139.Google Scholar
Pritchard, H. D., 2017. Asia’s glaciers are a regionally important buffer against drought. Nature, 545: 169. DOI:10.1038/nature22062.Google Scholar
Purugganan, M. D., Fuller, D. Q., 2009. The nature of selection during plant domestication. Nature, 457(7231): 843848.Google Scholar
Qian, W. -h., Huang, J., 2018. Impact of different climatic flows on typhoon tracks. Meteorology and Atmospheric Physics, 130(2): 137152. DOI:10.1007/s00703-017-0515-z.Google Scholar
Qinghai Sheng Huangyuan Xian Bowuguan, Qinghai Sheng Wenwu Kaogudui, 1985. Qinghai Huangyuan Xian Dahuazhongzhuang Kayue Wenhua Mudi Fajue Jianbao. Kaogu yu Wenwu, 1985(5): 1134.Google Scholar
Qu, T., Bar-Yosef, O., Wang, Y., Wu, X., 2013. The chinese upper paleolithic: geography, chronology and techno-typology. Journal of Archaeological Research, 21(2013): 173.Google Scholar
Quade, J., Cerling, T. E., Bowman, J. R., 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342(6246): 163166.Google Scholar
Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., Cogley, J. G., 2013. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics, 42: 3758. DOI:10.1007/s00382-013-1719-7.Google Scholar
Rajeevan, M., Bhate, I., Kale, J. D., Lal, B., 2006. High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Current Science, 91: 296306.Google Scholar
Rajeevan, M., Gadgil, S., Bhate, J., 2010. Active and break spells of the Indian summer monsoon. Journal of Earth System Science, 119(3): 229247. DOI:10.1007/s12040-010-0019-4.Google Scholar
Ramanathan, V., Carmichael, G., 2008. Global and regional climate changes due to black carbon. Nature Geoscience, 1: 221. 10.1038/ngeo156.Google Scholar
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, Q., Sikka, D. R., Wild, M., 2005. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences, 102(15): 53265333. DOI:10.1073/pnas.0500656102.Google Scholar
Ramankutty, N., Foley, J. A., 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992,. Global Biogeochemical Cycles, 13(4): 9971027. DOI:10.1029/1999GB900046.Google Scholar
Ramaswamy, V., Chanin, M. L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., Keckhut, P., Koshelkov, Y., Labitzke, K., Lin, J. J. R., O’Neill, A., Nash, J., Randel, W., Rood, R., Shine, K., Shiotani, M., Swinbank, R., 2001. Stratospheric temperature trends: Observations and model simulations. Reviews of Geophysics, 39(1): 71122. 10.1029/1999RG000065.Google Scholar
Ramstein, G., Fluteau, F., Besse, J., Joussaume, S., 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386: 788795.Google Scholar
Rao, S. R., 1973. Lothal and the Indus Civilisation. Asia Publishing House, London.Google Scholar
Rao, V. B., Ferreira, C. C., Franchito, S. H., Ramakrishna, S. S. V. S., 2008. In a changing climate weakening tropical easterly jet induces more violent tropical storms over the north. Geophysical Research Letters, 35(L15710), DOI:10.1029/2008GL034729.Google Scholar
Rasmusson, E. M., Carpenter, T. H., 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern oscillation/El Niño. Monthly Weather Review, 110: 354384.Google Scholar
Rasul, G., Mahmood, A., Sadiq, A., Khan, S. I., 2012. Vulnerability of the Indus delta to climate change in Pakistan. Pakistan Journal of Meteorology, 8(16): 89107.Google Scholar
Raven, P. H., 2009. Biology of Plants W H. Freeman & Company.Google Scholar
Rea, D. K., 1994. The paleoclimatic record provided by eolian deposition in the deep sea; the geologic history of wind. Reviews in Geophysics, 32: 159195.Google Scholar
Reddy, S.N., 1997. If the threshing floor could talk: Integration of agriculture and pastoralism during the late Harappan in Gujarat, India. Journal of Anthropological Archaeology, 16(2): 162187. DOI:10.1006/jaar.1997.0308.Google Scholar
Reddy, S. N., 2003. Food and fodder: Plant usage and changing socio-cultural landscapes during the Harappan phase in Gujarat, India. In: Weber, S., Belcher, W. R. (eds.), Indus Ethnobiology. New perspectives from the field. Lexington Books, Lanham, pp.327342.Google Scholar
Redman, C., 2005. Resilience theory in archaeology. American Anthropologist, 107(1): 7077.Google Scholar
Redman, C. L., Kinzig, A. P., 2003. Resilience of past landscapes resilience theory, society, and the longue duree. Conservation Ecology, 7(1): 14. DOI:10.5751/ES-00510-070114.Google Scholar
Regattieri, E., Giaccio, B., Galli, P., Nomade, S., Peronace, E., Messina, P., Sposato, A., Boschi, C., Gemelli, M., 2016. A multi-proxy record of MIS 11–12 deglaciation and glacial MIS 12 instability from the Sulmona basin (central Italy). Quaternary Science Reviews, 132: 129145. DOI:10.1016/j.quascirev.2015.11.015.Google Scholar
Ren, M. -E., Shi, Y. -L., 1986. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea Original Research. Continental Shelf Research, 6(6): 785810. DOI:10.1016/0278-4343(86)90037-3.Google Scholar
Revadekar, J. V., Kothawale, D. R., Patwardhan, S. K., Pant, G. B., Rupa Kumar, K., 2012. About the observed and future changes in temperature extremes over India. Natural Hazards, 60(3): 11331155. DOI:10.1007/s11069-011-9895-4.Google Scholar
Rispoli, F., 2007. The incised & impressed pottery style of mainland Southeast Asia: following the paths of Neolithization. East and West, 57(1/4): 235304.Google Scholar
Rispoli, F., Ciarla, R., Pigott, V. C., 2013. Establishing the prehistoric cultural sequence for the Lopburi region, Central Thailand. Journal of World Prehistory, 26(2): 101171. DOI:10.1007/s10963-013-9064-7.Google Scholar
Roberts, P., Boivin, N., Petraglia, M., Masser, P., Meece, S., Weisskopf, A., Silva, F., Korisettar, R., Fuller, D. Q., 2016. Local diversity in settlement, demography and subsistence across the southern Indian Neolithic-Iron age transition: site growth and abandonment at Sanganakallu-Kupgal. Archaeological and Anthropological Sciences, 8(3): 575599.Google Scholar
Rolett, B. V., Zheng, Z., Yue, Y., 2011. Holocene sea-level change and the emergence of Neolithic seafaring in the Fuzhou Basin (Fujian, China). Quaternary Science Reviews, 30(7): 788797. DOI:10.1016/j.quascirev.2011.01.015.Google Scholar
Ropelewski, C. F., Halpert, M. S., 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115(8): 16061626.Google Scholar
Rosen, A., 2008. The impact of environmental change and human land use on alluvial valleys in the loess plateau of China during the middle holocene. Geomorphology, 101(2008): 298307.Google Scholar
Rosen, A., Macphail, R., Liu, L., Chen, X., Weisskopf, A., 2017. Rising social complexity, agricultural intensification, and the earliest rice paddies on the Loess Plateau of northern China. Quaternary International, 437, Part B: 5059. DOI:10.1016/j.quaint.2015.10.013.Google Scholar
Rosenfeld, D., Dai, J., Yu, X., Yao, Z., Xu, X., Yang, X., Du, C., 2007. Inverse relations between amounts of air pollution and orographic precipitation. Science, 315(5817): 1396. DOI:10.1126/science.1137949.Google Scholar
Rowley, D. B., Currie, B. S., 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677681.Google Scholar
Roy, T. N., 1984. The concept, provenance and chronology of painted grey ware. East and West, 34(1/3): 127137.Google Scholar
Royden, L. H., Burchfiel, B. C., Van Der Hilst, R. D., 2008. The geological evolution of the Tibetan plateau. Science, 321(5892): 10541058. DOI:10.1126/science.1155371.Google Scholar
Rozanski, K., Araguás‐Araguás, L., Gonfiantini, R., 2013. Isotopic patterns in modern global precipitation. In: Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S. (eds.), Climate Change in Continental Isotopic Records. Geophysical Monograph. American Geophysical Union, Washington DC, pp. 136.Google Scholar
Ruddiman, W. F., 2003. The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61(3): 261293. DOI:10.1023/B:CLIM.0000004577.17928.fa.Google Scholar
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., Zemsky, R., 2009. Global multi-resolution topography synthesis. Geochemistry Geophysics Geosystems, 10(Q03014). DOI:10.1029/2008GC002332.Google Scholar
Sagawa, T., Kuwae, M., Tsuruoka, K., Nakamura, Y., Ikehara, M., Murayama, M., 2014. Solar forcing of centennial-scale East Asian winter monsoon variability in the mid- to late Holocene. Earth and Planetary Science Letters, 395(1): 124135.Google Scholar
Sage, S. F., 1992. Ancient Sichuan and the Unification of China. SUNY Press, New York.Google Scholar
Sahni, H. K., 2006. The politics of water in South Asia: the case of the Indus waters treaty. SAIS Review of International Affairs, 26(2): 153165. DOI:10.1353/sais.2006.0043.Google Scholar
Saini, H. S., Tandon, S. K., Mujtaba, S. A. I., Pant, N. C., Khorana, R. K., 2009. Reconstruction of buried channel-floodplain systems of the northwestern Haryana Plains and their relation to the ‘Vedic’ Saraswati. Current Science, 97(11): 16341643.Google Scholar
Saith, N., Slingo, J. M., 2006. The role of the Madden Julian oscillation in the Indian drought of 2002. International Journal of Climatology, 26(10): 13611378. DOI:10.1002/joc.1317.Google Scholar
Sankaran, A., 1999. Saraswati–the ancient river lost in the desert. Current Science, 77(8): 10541060.Google Scholar
Sarkar, J., 2011. Chapter 4 drought, its impacts and management: scenario in India. In: Shaw, R., Nguyen, H. (eds.), Droughts in Asian Monsoon Region (Community, Environment and Disaster Risk Management, Volume 8). Emerald Group Publishing Limited, pp.6785.Google Scholar
Sarthi, P. P., Agrawal, A., Rana, A., 2014. Possible future changes in cyclonic storms in the Bay of Bengal, India under warmer climate. International Journal of Climatology, 35: 12671277. DOI:10.1002/joc.4053.Google Scholar
Saseendran, S. A., Nielsen, D. C., Lyon, D. J., Ma, L., Felter, D. G., Baltensperger, D. D., Hoogenboom, G., Ahuja, L. R., 2009. Modeling responses of dryland spring triticale, proso millet and foxtail millet to initial soil water in the high plains. Field Crops Research, 113: 4863.Google Scholar
Sato, T., 2009. Influences of subtropical jet and Tibetan Plateau on precipitation pattern in Asia: Insights from regional climate modeling. Quaternary International, 194(1): 148158. DOI:10.1016/j.quaint.2008.07.008.Google Scholar
Sato, Y. -I., Yamanaka, S., Takahashi, M., 2003. Evidence for Jomon Plant Cultivation based on DNA analysis of chestnut remains. Senri Ethnological Studies, 63: 187198.Google Scholar
Schewe, J., Levermann, A., 2012. A statistically predictive model for future monsoon failure in India. Environmental Research Letters, 7(4): 044023. DOI:10.1088/1748-9326/7/4/044023.Google Scholar
Schouten, S., Hopmans, E. C., Schefuß, E., Sinninghe Damsté, J. S., 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204(1): 265274. DOI:10.1016/S0012-821X(02)00979-2.Google Scholar
Schuldenrein, J., Wright, R., Khan, M. A., 2007. Harappan geoarchaeology reconsidered: Holocene landscapes and environments of the Greater Indus Plain. Settlement and Society: Essays Dedicated to Robert McCormick Adams, Cotsen Institute of Archaeology, University of California, Los Angeles: 83116.Google Scholar
Schulz, H., von Rad, U., Ittekkot, V., 2002. Planktic Foraminifera, particle flux and oceanic productivity off Pakistan, NE Arabian Sea; modern analogues and application to the palaeoclimatic record. In: The Tectonic and Climatic Evolution of the Arabian Sea region. In: Clift, P. D., Kroon, D., Gaedicke, C., Craig, J. (eds.), Special Publication. Geological Society, London, pp. 499516.Google Scholar
Scott, J. C., 1998. Seeing Like a State: How Certain Schemes to Improve the Human Condition Have Failed. Yale University Press, New Haven, 460 pp.Google Scholar
Scussolini, P., Tran, T. V. T., Koks, E., Diaz-Loaiza, A., Ho, P. L., Lasage, R., 2017. Adaptation to sea level rise: A multidisciplinary analysis for Ho Chi Minh City, Vietnam. Water Resources Research, 53(12): 1084110857. DOI:10.1002/2017WR021344.Google Scholar
Sen, A., 1977. Starvation and exchange entitlements: a general approach and its application to the great Bengal famine. Cambridge Journal of Economics, 1(1): 3359. DOI:10.1093/oxfordjournals.cje.a035349.Google Scholar
Shakir, A. S., Khan, N. M., Qureshi, M. M., 2010. Canal water management: Case study of upper Chenab Canal in Pakistan. Irrigation and Drainage, 59(1): 7691. 10.1002/ird.556.CrossRefGoogle Scholar
Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J. E., Dettman, D. L., Peck, J. A., Scholz, C. A., King, J. W., 2009. Atlantic forcing of persistent drought in West Africa. Science, 324: 377380. DOI:10.1126/science.1166352.Google Scholar
Shao, X., Wang, Y., Cheng, H., Kong, X., Wu, J., Edwards, R. L., 2006. Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ10O record from Shennongjia in Central China. Chinese Science Bulletin, 51(2): 222228. DOI:10.1007/s11434-005-0882-6.Google Scholar
Shapiro, J., 2001. Mao’s War Against Nature: Politics and the Environment in Revolutionary China. Cambridge University Press, Cambridge, 276 pp.Google Scholar
Sharma, A., Sharma, D., Panda, S. K., Dubey, S. K., Pradhan, R. K., 2018. Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Global and Planetary Change, 161: 8296. DOI:10.1016/j.gloplacha.2017.12.008.Google Scholar
Sharmila, S., Joseph, S., Sahai, A. K., Abhilash, S., Chattopadhyay, R., 2015. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global and Planetary Change, 124: 6278. DOI:10.1016/j.gloplacha.2014.11.004.Google Scholar
Sheffield, J., Goteti, G., Wen, F., Wood, E. F., 2004. A simulated soil moisture based droughtanalysis for the United States. Journal of Geophysical Research: Atmospheres, 109: 19842012.Google Scholar
Shelach, G., 2006. Economic adaptation, community structure, and sharing strategies of households at early sedentary communities in northeast China. Journal of Anthropological Archaeology, 25(2006): 318345.Google Scholar
Shelach, G., 2009. Prehistoric Socities on the Northern Frontiers of China. Equinox Publishing, London.Google Scholar
Shelach, G., 2012. On the invention of pottery. Science, 336(6089): 16441645. 10.1126/science.1224119.Google Scholar
Shelach-Lavi, G., Teng, M., Goldsmith, Y., Wachtel, I., Stevens, C. J., Marder, O., Wan, X., Wu, X., Tu, D., Shavit, R., Polissar, P., Xu, H., Fuller, D. Q., 2019. Sedentism and plant cultivation in northeast China emerged during affluent conditions. PLOS ONE, 14(7): e0218751. 10.1371/journal.pone.0218751.Google Scholar
Sheng, E., Yu, K., Xu, H., Lan, J., Liu, B., Che, S., 2015. Late Holocene Indian summer monsoon precipitation history at Lake Lugu, northwestern Yunnan Province, southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 438: 2433. DOI:10.1016/j.palaeo.2015.07.026.Google Scholar
Sheng, M., Wang, X., Zhang, S., Chu, G., Su, Y., Yang, Z., 2017. A 20,000-year high-resolution pollen record from Huguangyan Maar Lake in tropical–subtropical South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 472: 8392.Google Scholar
Shi, S., 1956. 氾勝之書今釋 : 初稿 / 石声漢著 Fan Shengzhi shu jin shi : chu gao Shi Shenghan zhu (The Book of Fan Shengzhi) Kexue Chubanshe, Beijing, China.Google Scholar
Shi, S., 1974. On “Fan Sheng-chih shu” : An Agriculturist Book of China written by Fan Sheng-chih in the first century B.C. Kexue Chubanshe, Beijing, China.Google Scholar
Shi, Y. F., 2002. Characteristics of late quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quaternary International, 97–98: 7991.CrossRefGoogle Scholar
Shimpei, A., 2007. Agricultural technologies of terraced rice cultivation in the Ailao Mountains, Yunnan, China.Asian and African Area Studies, 6(2): 173196.Google Scholar
Shinde, V., Deshpande, S. S., Osada, T., Uno, T., 2006. Basic issues in Harappan archaeology: some thoughts. Ancient Asia, 1: 6372. DOI:10.5334/aa.06107.CrossRefGoogle Scholar
Shiva, V., 2016. The Violence of the Green Revolution: Third World Agriculture, Ecology, and Politics. University Press of Kentucky, 264.Google Scholar
Shoda, S., Lucquin, A., Yanshina, O., Kuzmin, Y., Shevkomud, I., Medvedev, V., Derevianko, E., Lapshina, Z., Craig, O. E., Jordan, P., 2020. Late Glacial hunter-gatherer pottery in the Russian far east: Indications of diversity in origins and use. Quaternary Science Reviews, 229: 106124. DOI:10.1016/j.quascirev.2019.106124.Google Scholar
Siegel, B. R., 2018. Hungry Nation: Food, Famine, and The Making of Modern India. Cambridge University Press, Cambridge, 279 pp.Google Scholar
Simoons, F. J., 1991. Food in China: A Cultural and Historical Inquiry. CRC Press, Boca Raton, FL.Google Scholar
Singapore Red Cross, 2010. Pakistan Floods:The Deluge of Disaster – Facts & Figures as of 15 September 2010. ReliefWeb, www.reliefweb.int/rw/rwb.nsf/db900SID/LSGZ89GD7W?OpenDocument.Google Scholar
Singh, A., Thomsen, K. J., Sinha, R., Buylaert, J. -P., Carter, A., Mark, D. F., Mason, P. J., Densmore, A. L., Murray, A. S., Jain, M., Paul, D., Gupta, S., 2017. Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nature Communications, 8(1): 1617. 10.1038/s41467-017–01643-9.Google Scholar
Singhvi, A. K., Williams, M. A. J., Rajaguru, S. N., Misra, V. N., Chawla, S., Stokes, S., Chauhan, N., Francis, T., Ganjoo, R. K., Humphreys, G. S., 2010. A 200 ka record of climatic change and dune activity in the Thar Desert, India. Quaternary Science Reviews, 29(23–24): 30953105. DOI:10.1016/j.quascirev.2010.08.003.Google Scholar
Sinha, A., Cannariato, K. G., Stott, L. D., Li, H. -C., You, C. -F., Cheng, H., Edwards, R. L., Singh, I. B., 2005. Variability of southwest Indian summer monsoon precipitation during the Bolling-Allerod. Geology, 33(10): 813816.Google Scholar
Sivakumar, M. V. K., Singh, P., Williams, J. S., 1983. Agroclimatic Aspects in Planning for Improved Productivity in Alfisols’, Alfisols in the Semiarid Tropics: A Consultant’s Workshop, ICRISAT Centre, India.Google Scholar
Slingerland, R., Smith, N. D., 2004. River avulsions and their deposits. Annu. Rev. Earth Planet. Sci., 32: 257285.Google Scholar
Smith, B. D., 2015. A comparison of niche construction theory and diet breadth models as explanatory frameworks for the initial domestication of plants and animals. Journal of Archaeological Research, 23(3): 215262.Google Scholar
Smith, B. N., Epstein, S., 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47: 380384.CrossRefGoogle Scholar
Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A., Calvin, K., 2015. Near-term acceleration in the rate of temperature change. Nature Climate Change, 5: 333. DOI:10.1038/nclimate2552.Google Scholar
Solomon, S., Plattner, G. -K., Knutti, R., Friedlingstein, P., 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, 106(6): 17041709.Google Scholar
Sorrel, P., Eymard, I., Leloup, P. -H., Maheo, G., Olivier, N., Sterb, M., Gourbet, L., Wang, G., Jing, W., Lu, H., Li, H., Yadong, X., Zhang, K., Cao, K., Chevalier, M. -L., Replumaz, A., 2017. Wet tropical climate in SE Tibet during the Late Eocene. Scientific Reports, 7(1): 7809. 10.1038/s41598-017–07766-9.Google Scholar
Sperber, K. R., Annamalai, H., Kang, I. -S., Kitoh, A., Moise, A., Turner, A., Wang, B., Zhou, T., 2013. The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dynamics, 41: 27112744. DOI 10.1007/s00382-012–1607-6.Google Scholar
Spicer, R. A., Valdes, P. J., Spicer, T. E. V., Craggs, H. J., Srivastava, G., Mehrotra, R. C., Yang, J., 2009. New developments in CLAMP: Calibration using global gridded meteorological data. Palaeogeography, Palaeoclimatology, Palaeoecology, 283(1): 9198. DOI:10.1016/j.palaeo.2009.09.009.Google Scholar
Spignesi, S. J., 2004. Catastrophe!: The 100 Greatest Disasters of All Time. Citadel Press, New York, p. 37.Google Scholar
Stager, J., Mayewski, P. A., 1997. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science, 276(5320): 18341836.CrossRefGoogle Scholar
Staubwasser, M., Sirocko, F., Grootes, P. M., Segl, M., 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters, 30: 1425. DOI:10.1029/2002GL016822.Google Scholar
Staubwasser, M., Weiss, H., 2006. Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quaternary Research, 66(3): 372387. DOI:10.1016/j.yqres.2006.09.001.Google Scholar
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., 2018. Trajectories of the earth system in the anthropocene. Proceedings of the National Academy of Sciences, 115(33): 82528259. DOI:10.1073/pnas.1810141115.Google Scholar
Stein, M. A., 1942. A survey of ancient sites along the ‘Lost’ Saraswati river. Geographical Journal, 99: 173182.Google Scholar
Steinke, S., Groeneveld, J., Johnstone, H., Rendle-Bühring, R., 2010. East Asian summer monsoon weakening after 7.5 Ma: Evidence from combined planktonic foraminifera Mg/Ca and δ18O (ODP Site 1146; northern South China Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 289(1–4): 3343. DOI:10.1016/j.palaeo.2010.02.007.Google Scholar
Stocker, T. F., Qin, D., Plattner, G. -K., Alexander, L. V., Allen, S. K., Bindoff, N. L., Bréon, F. -M., Church, J. A., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M., Hartmann, D. L., Jansen, E., Kirtman, B., Knutti, R., Kumar, K. K., Lemke, P., Marotzke, J., Masson-Delmotte, V., Meehl, G. A., Mokhov, I. I., Piao, S., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley, L. D., Vaughan, D. G., Xie, S. -P., 2013. Technical summary. In: Stocker, T. F. et al. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY.Google Scholar
Stokes, E., 1975. Agrarian society and the pax britannica in Northern India in the early nineteenth century. Modern Asian Studies, 9(4): 505528.Google Scholar
Stone, Glenn D., 2002. Both sides now: Fallacies in the genetic‐modification wars, implications for developing countries, and anthropological perspectives. Current Anthropology, 43(4): 611630. DOI;10.1086/341532.Google Scholar
Stone, G. D., 2019. Commentary: New histories of the Indian green revolution. The Geographical Journal, 185(2): 243250.Google Scholar
Stone, R., 2008. Three Gorges Dam: Into the unknown. Science, 321(5889): 628632. 10.1126/science.321.5889.628.CrossRefGoogle ScholarPubMed
Stott, L., Cannariato, K., Thunell, R., Haug, G. H., Koutavas, A., Lund, S., 2004. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 431: 5659.Google Scholar
Stuiver, M., Grootes, P. M., 2000. GISP2 oxygen isotope ratios. Quaternary Research (New York), 53(3): 277284.Google Scholar
Stuiver, M., Reimer, P. J., 1993. Extended C-14 data-base and revised calib 3.0 C-14 age calibration program. Radiocarbon, 35(1): 215230.Google Scholar
Subramanian, K., 2015. Revisiting the Green Revolution: Irrigation and food production in twentieth-century India. PhD Thesis, King’s College London, p. 259.Google Scholar
Sugiura, T., Sumida, H., Yokoyama, S., Ono, H., 2012. Overview of recent effects of global warming on agricultural production in Japan. Japan Agricultural Research Quarterly: JARQ, 46(1): 713. DOI:10.6090/jarq.46.7.Google Scholar
Sun, J., Oey, L., Xu, F. H., Lin, Y. C., 2017. Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades. Scientific Reports, 7(1): 7418. DOI:10.1038/s41598-017-07572-3.Google Scholar
Sun, X., Wang, P., 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3–4): 181222.Google Scholar
Sun, X., Xu, L., Luo, Y., Chen, X., 2000. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(2000): 301316.Google Scholar
Sweeney, M. T., McCouch, S. R., 2007. The complex history of the domestication of rice. Annals of Botany, 100: 951957.Google Scholar
Syvitski, J. P., Brakenridge, G. R., 2013. Causation and avoidance of catastrophic flooding along the Indus River, Pakistan. GSA Today, 23(1): 410.Google Scholar
Syvitski, J. P., Kettner, A. J., Overeem, I., Giosan, L., Brakenridge, G. R., Hannon, M., Bilham, R., 2013. Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene, 3: 2435. DOI:10.1016/j.ancene.2014.02.003.Google Scholar
Syvitski, J. P. M., C., V., Kettner, A. J., Green, P., 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308: 376380.Google Scholar
Syvitski, J. P. M., Kettner, A. J., 2011. Sediment flux and the Anthropocene. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 369: 957975. DOI:10.1098/rsta.2010.0329.Google Scholar
Tada, R., Zheng, H., Clift, P. D., 2016. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Progress in Earth and Planetary Science, 3(4): 126. DOI 10.1186/s40645-016–0080-y.Google Scholar
Tainter, J., A, 1988. The Collapse of Complex Societies. Cambridge University Press, Cambridge.Google Scholar
Taiz, L., Zeiger, E., 2002. Plant Physiology. Sinauer Associates, Sunderland MA, 623 pp.Google Scholar
Takata, K., Saito, K., Yasunari, T., 2009. Changes in the Asian monsoon climate during 1700 –1850 induced by preindustrial cultivation. Proceedings of the National Academy of Sciences, 106(24): 95869589.Google Scholar
Talbot, M., 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section, 80(4): 261279.Google Scholar
Tan, L., Cai, Y., Cheng, H., An, Z., Edwards, R. L., 2009. Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(3–4): 432439.Google Scholar
Tan, L. C., An, Z. S., Cai, Y. J., 2008. The hydrological exhibition of 4.2 ka BP event in China and its global linkages. Geological Reviews, 54: 94104.Google Scholar
Tan, Z., Huang, C., Pang, J., 2011. Holocene wildfires related to climate and land-use change over the Weihe River Basin, China. Quaternary International, 234: 167173.Google Scholar
Tao, J. -s., 1976. The Jurchen in Twelfth Century China. University of Washington Press, Seattle.Google Scholar
Tao, S., Eglinton, T. I., Montluçon, D. B., McIntyre, C., Zhao, M., 2015. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance. Earth and Planetary Science Letters, 414: 7786. DOI:10.1016/j.epsl.2015.01.004.Google Scholar
Tariq, M. A. U. R., van de Giesen, N., 2012. Floods and flood management in Pakistan. Physics and Chemistry of the Earth, Parts A/B/C, 47–48: 1120. DOI:10.1016/j.pce.2011.08.014.Google Scholar
Tate, E. L., Farquharson, F. A. K., 2000. Simulating reservoir management under the threat of sedimentation: the case of Tarbela dam on the river Indus. Water Resources Management, 14(3): 191208. 10.1023/a:1026579230560.Google Scholar
Thomas, E. R., Wolff, E. W., Mulvaney, R., Steffensen, J. P., Johnsen, S. J., Arrowsmith, C., White, J. W. C., Vaughn, B., Popp, T., 2007. The 8.2ka event from Greenland ice cores. Quaternary Science Reviews, 26: 7081.Google Scholar
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Lin, P. -N., 2000. A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science, 289: 19161919.Google Scholar
Thornalley, D. J. R., Barker, S., Broecker, W. S., Elderfield, H., McCave, I. N., 2011. The deglacial evolution of North Atlantic deep convection. Science, 331: 202205.CrossRefGoogle ScholarPubMed
Tian, X., Matsui, T., Li, S., Yoshimoto, M., Kobayasi, K., Hasegawa, T., 2010. Heat-induced floret sterility of hybrid rice (Oryza sativa L.) cultivars under humid and low wind conditionsin the field of Jianghan basin, China. Plant Production Science, 13(3): 243251. DOI:10.1626/pps.13.243.Google Scholar
Tipple, B. J., Pagani, M., 2010. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle dynamics. Earth and Planetary Science Letters, 299: 250262. DOI:10.1016/j.epsl.2010.09.006.Google Scholar
Tiwari, M., Ramesh, R., Somayajulu, B. L. K., Jull, A. J. T., Burr2, G. S., 2005. Solar control of southwest monsoon on centennial timescales. Current Science, 89(9): 15831588.Google Scholar
Tjallingii, R., Stattegger, K., Stocchi, P., Saito, Y., Wetzel, A., 2014. Rapid flooding of the southern Vietnam shelf during the early to mid-Holocene. Journal of Quaternary Science, 29(6): 581588. DOI:10.1002/jqs.2731.Google Scholar
Tong, W., 1984. 磁山遗址的原始农业依存及其相关的问题 Cishan Yizhi de Yuanshi Nongye Yicun Jiqi Xianguan de Wenti (The Agricultural Remains from the Site of Cishan and related Problems. Nongye Kaogu, 1984(1): 194207.Google Scholar
Trentesaux, A., Liu, Z., Colin, C. J. G., Boulay, S., Wang, P., Arnold, E. M., Buehring, C. J., Chen, M. -P., Clift, P. D., Colin, C. J. G., Farrell, J. W., Higginson, M. J., Jian, Z., Kuhnt, W., Laj, C. E., Lauer-Leredde, C., Leventhal, J. S., Li, A., Li, Q., Lin, J., McIntyre, K., Miranda, C. R., Nathan, S. A., Shyu, J. -P., Solheid, P. A., Su, X., Tamburini, F., Trentesaux, A., Wang, L., 2006. Pleistocene paleoclimatic cyclicity of southern China; clay mineral evidence recorded in the South China Sea (ODP Site 1146). Proceedings of the Ocean Drilling Program, Scientific Results (CD-ROM), 184: 10.Google Scholar
Truschke, A., 2017. Aurangzeb: The Life and Legacy of India’s Most Controversial King. Stanford University Press, Palo Alto, CA, p. 152.Google Scholar
Tsuboki, K., Yoshioka, M. K., Shinoda, T., Kato, M., Kanada, S., Kitoh, A., 2015. Future increase of supertyphoon intensity associated with climate change. Geophysical Research Letters, 42(2): 646652. DOI:10.1002/2014gl061793.Google Scholar
Tu, J. -Y., Chou, C., Chu, P. -S., 2009. The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with Western North Pacific–East Asian climate change. Journal of Climate, 22(13): 36173628. DOI:10.1175/2009JCLI2411.1.Google Scholar
Turner, A. G., Annamalai, H., 2012. Climate change and the south Asian summer monsoon. Nature Climate Change, 2: 19.Google Scholar
Twitchett, D. C., Fairbank, J. K., Feuerwerker, A., Peterson, W. J., Liuv, K. -C., MacFarquhar, R., 1978. The Cambridge History of China, 1991. Cambridge University Press, Cambridge.Google Scholar
Twitchett, D. C., Fairbank, J. K., Franke, H., 1994. The Cambridge History of China: Volume 6, Alien Regimes and Border States, 907–1368, 6. Cambridge University Press, Cambridge.Google Scholar
Tyndall, J., 1861. On the absorption and radiation of heat by gases and vapours. Philosophical Magazine, Series, 4, 22: 273285.Google Scholar
UN Office for the Coordination of Humanitarian Affairs, 2009. Nepal: OCHA Koshi Flood Response Update 13 May 2009 https://reliefweb.int/report/nepal/nepal-ocha-koshi-flood-response-update-13-may-2009.Google Scholar
Upadhyaya, H. D., Vetriventhan, M., Dwivedi, S. L., Pattanashetti, S. K., Singh, S. K., 2016. 8 – Proso, barnyard, little, and kodo millets. In: Singh, M., Upadhyaya, H. D. (eds.), Genetic and Genomic Resources for Grain Cereals Improvement. Academic Press, San Diego, pp. 321343.Google Scholar
Valdiya, K. S., 2002. Saraswati: The River that Disappeared. 1st. University Press (India) Limited, Hyderabad, India, 116 pp.Google Scholar
Van Buren, M., 1996. Rethinking the vertical archipelago. American Anthropologist, 98(2): 338351. 10.1525/aa.1996.98.2.02a00100.Google Scholar
Van de Noort, R., 2011. Conceptualizing climate change archaeology. Antiquity, 85: 10391048.Google Scholar
Van der Leeuw, S., Redman, C., 2002. Placing archaeology at the center of socionatural studies. American Antiquity, 67(4): 597605.Google Scholar
van Vliet, M. T. H., Sheffield, J., Wiberg, D., Wood, E. F., 2016. Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environmental Research Letters, 11(12): 124021.Google Scholar
Vanwalleghem, T., Gómez, J., Amate, J. I., de Molina, M. G., Vanderlinden, K., Guzmán, G., Laguna, A., Giráldez, J.V., 2017. Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene, 17: 1329.Google Scholar
Vaughan, D., Lu, B. R., Tomooka, N., 2008. The evolving story of rice evolution. Plant Science, 174(2008): 394408.Google Scholar
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., Storlazzi, C. D., 2017. Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7(1): 1399. DOI:10.1038/s41598-017-01362-7.Google Scholar
von Rad, U., Schaaf, M., Michels, K. H., Schulz, H., Berger, W. H., Sirocko, F., 1999. A 5,000 year record of climate change in varved sediments from the Oxygen Minimum Zone off Pakistan (Northeastern Arabian Sea). Quaternary Research, 51: 3953.Google Scholar
Wainer, I., Webster, P. J., 1996. Monsoon/El Niño-Southern oscillation relationships in a simple coupled ocean-atmosphere model. Journal of Geophysical Research: Oceans, 101(C11): 2559925614. 10.1029/96JC00670.Google Scholar
Walsh, D., 2010. Pakistan Floods: The Indus Delta, The Guardian, London.Google Scholar
Wan, H. L., Huang, C. C., Pang, J. L., 2010a. Holocene extreme floods of the Baoji Gorges of the Weihe River. Quaternary Sciences, 2010(30): 430440.Google Scholar
Wan, S., Clift, P. D., Li, A., Li, T., Yin, X., 2010b. Geochemical records in the South China Sea: implications for East Asian summer monsoon evolution over the last 20 Ma. In: Clift, P. D., Tada, R., Zheng, H. (eds.), Monsoon Evolution and Tectonics–Climate Linkage in Asia. Special Publication. Geological Society, London, pp.245263.Google Scholar
Wang, A., Lettenmaier, D. P., Sheffield, J., 2011a. Soil moisture drought in China, 1950–2006. Journal of Climate, 24(13): 32573271. DOI:10.1175/2011jcli3733.1.Google Scholar
Wang, B. (ed.), 2006. The Asian Monsoon. Springer-Verlag, Berlin, 795 pp.Google Scholar
Wang, B., Ding, Q. H., 2008. Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 44: 165183.Google Scholar
Wang, B., Kim, H. J., Kikuchi, K., Kitoh, A., 2011b. Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dynamics, 37: 941955.Google Scholar
Wang, B., Wu, R., Li, T., 2003. Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. Journal of Climate, 16(8): 11951211. DOI:10.1175/1520-0442(2003)16<195:aoiaii>2.0.co;2.Google Scholar
Wang, B., Xu, S., Wu, L., 2012a. Intensified Arabian sea tropical storms. Nature, 489: E1. DOI:10.1038/nature11470.Google Scholar
Wang, E., Kirby, E., Furlong, K. P., Soest, M. v., Xu, G., Shi, X., Kamp, P. J. J., Hodges, K. V., 2012b. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5: 640645. DOI:10.1038/ngeo1538.Google Scholar
Wang, G., Su, J., Ding, Y., Chen, D., 2007a. Tropical cyclone genesis over the South China Sea. Journal of Marine Systems, 68(3): 318326. DOI:10.1016/j.jmarsys.2006.12.002.Google Scholar
Wang, H., Yang, Z., Saito, Y., Liu, J.P., Sun, X., Wang, Y., 2007b. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Global and Planetary Change, 57(3): 331354. DOI:10.1016/j.gloplacha.2007.01.003.Google Scholar
Wang, J., 1978. Xiachun Wenhua (The Xiachuan Culture). Kaogu Xuebao, 3: 259288.Google Scholar
Wang, L., Chen, W., 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 34(6): 20592078. DOI:10.1002/joc.3822.Google Scholar
Wang, Q. -S., Pan, C. -H., Zhang, G. -Z., 2018. Impact of and adaptation strategies for sea-level rise on Yangtze River Delta. Advances in Climate Change Research, 9(2): 154160. DOI:10.1016/j.accre.2018.05.005.Google Scholar
Wang, R., Wu, L., Wang, C., 2011c. Typhoon track changes associated with global warming. Journal of Climate, 24: 37483752. DOI:10.1175/JCLI-D-11-00074.1.Google Scholar
Wang, S., Fu, B., Piao, S., , Y., Ciais, P., Feng, X., Wang, Y., 2015. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 9: 38. DOI:10.1038/ngeo2602.Google Scholar
Wang, S. S. Y., Kim, H., Coumou, D., Yoon, J. -H., Zhao, L., Gillies, R. R., 2019. Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm? Atmospheric Science Letters, 20(10): e933. DOI:10.1002/asl.933.Google Scholar
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., Li, X. D., 2005. The Holocene Asian monsoon; links to solar changes and North Atlantic climate. Science, 308: 854857.Google Scholar
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., An, Z., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451: 10901093. DOI:10.1038/nature06692.Google Scholar
Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., Zhang, R., 2011d. Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmospheric Chemistry and Physics, 11: 1242112436. DOI:10.5194/acp-11-12421-2011.Google Scholar
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. -C., Dorale, J. A., 2001. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science, 294: 23452348.Google Scholar
Wang, Z., Zhan, Q., Long, H., Saito, Y., Gao, X., Wu, X., Li, L. I. N., Zhao, Y., 2013. Early to mid-Holocene rapid sea-level rise and coastal response on the southern Yangtze delta plain, China. Journal of Quaternary Science, 28(7): 659672. 10.1002/jqs.2662.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., 2008. Mid-to late holocene climate change: an overview. Quaternary Science Reviews, 27(19–20): 17911828.Google Scholar
Wasson, R. J., Smith, G. I., Agrawal, D. P., 1984. Late quaternary sediments, minerals, and inferred geochemical history of Didwana lake, Thar desert India. Palaeogeography, Palaeoclimatology, Palaeoecology, 46: 345372.Google Scholar
Weaver, A. J., Saenko, O. A., Clark, P. U., Mitrovica, J. X., 2003. Meltwater pulse 1 A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science, 299: 17091713.Google Scholar
Weber, S., 1998. Out of Africa: the initial impact of millets in South Asia. Current Anthropology, 39(2): 267274. 10.1086/204725.Google Scholar
Weber, S., 1999. Seeds of urbanism: palaeoethnobotany and the Indus Civilization. Antiquity, 73: 813826.Google Scholar
Weber, S., 2003. Archaeobotany at Harappa: Indications for Change. In: Weber, S., Belcher, B. (eds.), Indus Ethnobiology: New Perspectives from the Field, Lexington Books, Lanham, MD, pp.175198.Google Scholar
Weber, S., Kashyap, A., Harriman, D., 2010a. Does size matter: the role and significance of cereal grains in the Indus civilization. Archaeological and Anthropological Sciences, 2: 3543.Google Scholar
Weber, S., Lehman, H., Barela, T., Hawks, S., Harriman, D., 2010b. Rice or millets: Early farming strategies in prehistoric central Thailand. Archaeological and Anthropological Sciences, 2(2): 7988.Google Scholar
Weber, S. A., 1989. Plants and harappan Subsistence: An Example of Stability and Change from Rojdi. PhD Thesis, University of Pennsylvania.Google Scholar
Weber, S. A., Barela, T., Lehman, H., 2010c. Ecological continuity: An explanation for agricultural diversity in the Indus Civilization and beyond. Man and Environment, 35(1): 6275.Google Scholar
Webster, P. J., 1987. The elementary monsoon. In: Fein, J. S., Stephens, P. L. (eds.), Monsoons. John Wiley, New York, pp. 332.Google Scholar
Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., R. A., Tomas, M., Yanai, Y., Yasunari, T., 1998. Monsoons: Processes, predictability, and the prospects for prediction, in the TOGA decade. Journal of Geophysical Research, 103: 14,45114,510.Google Scholar
Wei, K. Y., Lee, M. Y., Duan, W. W., Chen, C. Y., Wang, C. H., 1998. Palaeoceanographic change in the northeastern South China Sea during the last 15,000 years. Journal of Quaternary Science, 13: 5564.Google Scholar
Weinkle, J., Maue, R., Pielke, R., 2012. Historical global tropical cyclone landfalls. Journal of Climate, 25(13): 47294735. 10.1175/JCLI-D-11–00719.1.Google Scholar
Weisman, S. R., 1987. India’s Drought Is Worst in Decades, New York Times, New York, pp. 1001016.Google Scholar
Weisskopf, A., 2018. Elusive wild foods in South East Asian subsistence: Modern ethnography and archaeological phytoliths. Quaternary International, 489: 8090. DOI:10.1016/j.quaint.2016.09.028.Google Scholar
Wells, N. A., Dorr, J. A., 1987. Shifting of the Kosi River, northern India. Geology, 15(3): 204207. 10.1130/0091–7613(1987)15<204:sotkrn>2.0.CO;2.Google Scholar
Wen, X., Bai, S., Na, Z., Chamberlain, C. P., Wang, C., Huang, C., Zhang, Q., 2012. Interruptions of the ancient shu civilization: Triggered by climate change or natural disaster? International Journal of Earth Sciences: 115.Google Scholar
Wescoat, J. L., Halvorson, S. J., Mustafa, D., 2000. Water management in the Indus basin of Pakistan: A half-century perspective. International Journal of Water Resources Development, 16(3): 391406. 10.1080/713672507.Google Scholar
West, A. J., Galy, A., Bickle, M. J., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235: 211228. DOI:10.1016/j.epsl.2005.03.020.Google Scholar
West, B. J., Han, W., Li, Y., 2018. The role of Oceanic processes in the initiation of Indian summer monsoon intraseasonal oscillations over the Indian Ocean. Journal of Geophysical Research: Oceans, 123(5): 36853704. DOI:10.1029/2017jc013564.Google Scholar
White, S., 2005. Sediment yield prediction and modelling. Hydrological Processes, 19(15): 30533057. 10.1002/hyp.6003.Google Scholar
Wiersma, A., Roche, D., Renssen, H., 2011. Fingerprinting the 8.2 ka event climate response in a coupled climate model. Journal of Quaternary Science, 26: 118127.Google Scholar
Wilks, D. S., 1995. Statistical Methods in the Atmospheric Sciences, 59. Academic Press, San Diego, CA, USA, p. 467.Google Scholar
Williams, A., 2008. Turning the tide: Recognizing climate change refugees in International Law. Law & Policy, 30(4): 502529. DOI:10.1111/j.1467-9930.2008.00290.x.Google Scholar
Willmott, W. E., 1989. Dujiangyan: Irrigation and society in Sichuan, China. The Australian Journal of Chinese Affairs, 22: 143153. 10.2307/2158849.Google Scholar
Wilson, E., 1911. The use of maize. Agricultural Journal of the Union of South Africa, 1(4): 386.Google Scholar
Wilson, H. H., 1868. The Vishnu Purana: A System of Hindu Mythology and Tradition, 9. Trübner & co., London, p. 342.Google Scholar
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D’Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., Zorita, E., 2016. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 134: 118. DOI:10.1016/j.quascirev.2015.12.005.Google Scholar
Wing, S. L., Greenwood, D. R., Allen, J. R. L., Hoskins, B. J., Sellwood, B. W., Spicer, R. A., Valdes, P. J., 1993. Fossils and fossil climate: the case for equable continental interiors in the Eocene. Philosophical transactions of the royal society of London. Series B: Biological Sciences, 341(1297): 243252. DOI:10.1098/rstb.1993.0109.Google Scholar
Wright, R., 2010. The Ancient Indus: Urbanism, Economy and Society. Cambridge University Press, Cambridge.Google Scholar
Wright, R. P., Bryson, R. A., Schuldenrein, J., 2008. Water supply and history: Harappa and the Beas regional survey. Antiquity, 82: 3748.Google Scholar
Wu, L., Wang, B., Geng, S., 2005. Growing typhoon influence on east Asia. Geophysical Research Letters, 32(L18703). DOI:10.1029/2005GL022937.Google Scholar
Wu, L., Zong, H., Liang, J., 2012a. Observational Analysis of Tropical Cyclone Formation Associated with Monsoon Gyres. Journal of the Atmospheric Sciences, 70(4): 10231034. DOI:10.1175/JAS-D-12-0117.1.Google Scholar
Wu, Q., Zhao, Z., Liu, L., Granger, D. E., Wang, H., Cohen, D. J., Wu, X., Ye, M., Bar-Yosef, O., Lu, B., Zhang, J., Zhang, P., Yuan, D., Qi, W., Cai, L., Bai, S., 2016a. Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty. Science, 353(6299): 579.Google Scholar
Wu, W., Liu, T., 2004. Possible role of the ‘‘Holocene Event 3’’ on the collapse of Neolithic Cultures around the Central Plain of China. Quarternary International, 117(2004): 153166.Google Scholar
Wu, X., Menzel, W. P., Wade, G. S., 1999. Estimation of sea surface temperatures using GOES-8/9 radiance measurements. Bulletin of the American Meteorological Society, 80(6): 11271138.Google Scholar
Wu, X., Zhang, C., Goldberg, P., Cohen, D., Pan, Y., Arpin, T., Bar-Yosef, O., 2012b. Early Pottery at 20,000 Years Ago in Xianrendong Cave, China. Science, 336(6089): 1696–1700. DOI;10.1126/science.1218643.Google Scholar
Wu, Y., Wu, S. -Y., Wen, J., Tagle, F., Xu, M., Tan, J., 2016b. Future Changes in Mean and Extreme Monsoon Precipitation in the Middle and Lower Yangtze River Basin, China, in the CMIP5 Models. Journal of Hydrometeorology, 17(11): 27852797. DOI:10.1175/JHM-D-16-0033.1.Google Scholar
Wu, Z., Li, J., Jiang, Z., He, J., Zhu, X., 2012c. Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. International Journal of Climatology, 32(5): 794800.Google Scholar
Wuchter, C., Schouten, S., Coolen, M. J. L., Sinninghe Damsté, J. S., 2004. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry. Paleoceanography, 19(4). DOI:10.1029/2004PA001041.Google Scholar
Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B. S., Reinhardt, C., Bloemendal, J., Diekmann, B., Hartmann, K., Krois, J., Riedel, F., Arya, N., 2010. Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews, 29: 11381155.Google Scholar
Xie, J., Hu, L., Tang, J., Wu, X., Li, N., Yuan, Y., Yang, H., Zhang, J., Luo, S., Chen, X., 2011. Ecological mechanisms underlying the sustainability of the agricultural heritage rice–fish coculture system. Proceedings of the National Academy of Sciences, 108(50): E1381E1387.Google Scholar
Xie, P., Arkin, P. A., 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite esti- mates and numerical model outputs. Bulletin of the American Meteorological Society, 78: 25392558.Google Scholar
Xu, J., 2018. A cave δ18O based 1800-year reconstruction of sediment load and streamflow: The Yellow River source area. CATENA, 161: 137147. DOI:10.1016/j.catena.2017.09.028.Google Scholar
Xu, K., Milliman, J. D., 2009. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology, 104(3): 276283. DOI:10.1016/j.geomorph.2008.09.004.Google Scholar
Xu, Q., 2001. Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution. Atmospheric Environment, 35(30): 50295040. DOI:10.1016/S1352-2310(01)00315-6.Google Scholar
Xue, Y., 2010. 云南剑川海门口遗址植物遗存初步研究Yunnan Jianchuan Haimenkou Yizhi Zhiwu Yicun Chubu Yanjiu (A Preliminary Investigation on the Archaeobotanical Material from the Site of Haimenkou in Jianchuan County, Yunnan). MA Thesis, Peking University.Google Scholar
Yan, W., 1984. Lun Zhongguo de tongshi bingyong de dai. Shiqian yanjiu, 1: 3644.Google Scholar
Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F. W., Liu, J., Sigman, D. M., Peterson, L. C., Haug, G. H., 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445: 7477. DOI:10.1038/nature05431.Google Scholar
Yang, B., Shi, Y., Braeuning, A., 2004. Evidence for a warm humid climate in arid northwestern China during 40–30 ka BP. Quaternary Science Reviews, 23: 25372548.Google Scholar
Yang, J., 2012. Tombstone: The Great Chinese Famine, 1958–1962. Macmillan, New York, p. 629.Google Scholar
Yang, S., Ding, Z., Li, Y., Wang, X., Jiang, W., Huang, X., 2015a. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences, 112(43): 1317813183.Google Scholar
Yang, S.L., Li, M., Dai, S.B., Liu, Z., Zhang, J., Ding, P. X., 2006a. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophysical Research Letters, 33(L06408). DOI:10.1029/2005GL025507.Google Scholar
Yang, S. L., Xu, K. H., Milliman, J. D., Yang, H. F., Wu, C. S., 2015b. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Scientific Reports, 5: 12581. DOI:10.1038/srep12581.Google Scholar
Yang, X., Ma, Z., Li, J., Yu, J., Stevens, C., Zhuang, Y., 2015c. Comparing subsistence strategies in different landscapes of North China 10,000 years ago. The Holocene, 25(12): 19571964. DOI:10.1177/0959683615596833.Google Scholar
Yang, X., Wang, W., Zhuang, Y., Li, Z., Ma, Z., Ma, Y., Cui, Y., Wei, J., Fuller, D. Q., 2016. New radiocarbon evidence on early rice consumption and farming in South China. The Holocene, 27(7): 10451051. DOI:10.1177/0959683616678465.Google Scholar
Yang, X., Zhou, L., Zhao, C., Yang, J., 2018. Impact of aerosols on tropical cyclone-induced precipitation over the mainland of China. Climatic Change, 148(1): 173185. DOI:10.1007/s10584-018-2175-5.Google Scholar
Yang, Z. -S., Wang, H. -J., Saito, Y., Milliman, J., Xu, K., Qiao, S., Shi, G., 2006b. Dam impacts on the Changjiang (Yangtze) river sediment discharge to the sea: The past 55 years and after the three Gorges dam. Water Resources Research, 42(4): W04407. DOI:10.1029/2005WR003970.Google Scholar
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663.Google Scholar
Yasuda, Y., 2002. Origins of pottery and agriculture in East Asia. In: Yasuda, Y. (ed.), The Origins of Pottery and Agriculture. International Research Center for Japanese Studies, Kyoto, pp. 119142.Google Scholar
Yasuda, Y., Fujiki, T., Nasu, H., Kato, M., Morita, Y., Mori, Y., Kanehara, M., Toyama, S., Yano, A., Okuno, M., Jiejun, H., Ishihara, S., Kitagawa, H., Fukusawa, H., Naruse, T., 2004. Environmental archaeology at the Chengtoushan site, Hunan Province, China, and implications for environmental change and the rise and fall of the Yangtze river civilization. Quaternary International, 123–125: 149158. DOI:10.1016/j.quaint.2004.02.016.Google Scholar
Ye, D., 1981. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) plateau and its neighborhood. Bulletin of the American Meteorological Society, 62(1): 1419. 10.1175/1520–0477(1981)062<0014:scotsc>2.0.Co;2.Google Scholar
Ye, Q. C., 1989. Landforms system of the great plain of North China and its tendency of environmental evolution. Geographical Research, 8(3): 1020.Google Scholar
Yi, M., Barton, L., Morgan, C., Liu, D., Chen, F., Zhang, Y., Pei, S., Guan, Y., Wang, H., Gao, X., Bettinger, R. L., 2013. Microblade technology and the rise of serial specialists in North-Central China. Journal of Anthropological Archaeology, 32(2013): 212223.Google Scholar
Yihui, D., 1992. Effects of the Qinghai-Xizang (Tibetan) plateau on the circulation features over the plateau and its surrounding areas. Advances in Atmospheric Sciences, 9(1): 112130. 10.1007/bf02656935.Google Scholar
Yin, H., Li, C., 2001a. Human impact on floods and flood disasters on the Yangtze River. Geomorphology, 41(2): 105109. DOI:10.1016/S0169-555X(01)00108-8.Google Scholar
Yin, H., Li, C., 2001b. Human impact on floods and flood disasters on the Yangtze River. Geomorphology, 41(2–3): 105109. DOI:10.1016/S0169-555X(01)00108-8.Google Scholar
Yin, Y., Ma, D., Wu, S., Pan, T., 2015. Projections of aridity and its regional variability over China in the mid-21st century. International Journal of Climatology, 35(14): 43874398. DOI:10.1002/joc.4295.Google Scholar
Yokoyama, Y., Naruse, T., Ogawa, N.O., Tada, R., Kitazato, H., Ohkouchi, N., 2006. Dust influx reconstruction during the last 26,000 years inferred from a sedimentary leaf wax record from the Japan Sea. Global and Planetary Change, 54(3–4): 239250.Google Scholar
Yoshida, S., 1981. Fundamentals of Rice Crop Science. In: IRRI (Editor). IRRI, Los Banos, Phillipines.Google Scholar
You, Y., 2019. Climate Change, Agriculture and Human Adaptation at the Indus site of Harappa. Masters Thesis, Washington State University.Google Scholar
Yu, F., Chen, Z., Ren, X., Yang, G., 2009a. Analysis of historical floods on the Yangtze River, China: Characteristics and explanations. Geomorphology, 113: 210216. DOI:10.1016/j.geomorph.2009.03.008.Google Scholar
Yu, F., Chen, Z., Ren, X., Yang, G., 2009b. Analysis of historical floods on the Yangtze River, China: Characteristics and explanations. Geomorphology, 113(3): 210216. DOI:10.1016/j.geomorph.2009.03.008.Google Scholar
Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., Harrison, S. P., Huang, C., Ke, M., Kong, Z., Li, S., Li, W., Liew, P., Liu, G., Liu, J., Liu, K. -B., Prentice, I. C., Qui, W., Ren, G., Song, C., Sugita, S., Sun, X., Tang, L., van Campo, E., Xia, Y., Xu, Q., Yan, S., Yang, X., Zhao, J., Zheng, Z., 2000. Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. Journal of Biogeography, 27: 635664.Google Scholar
Yu, R., Wang, B., Zhou, T., 2004. Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophysical Research Letters, 31(22): L22212. DOI:10.1029/2004gl021270.Google Scholar
Yu, X., 2005. Da Yuejin Kurezi. Shidai Chaoliu Chubanshe, Hong Kong, 124 pp.Google Scholar
Yun, K. S., Timmermann, A., 2018. Decadal monsoon‐ENSO relationships reexamined. Geophysical Research Letters, 45(4): 20142021.Google Scholar
Zawahri, N. A., 2009. India, Pakistan and cooperation along the Indus River system. Water Policy, 11(1): 120. 10.2166/wp.2009.010.CrossRefGoogle Scholar
Zeder, M. A., 2015. Core questions in domestication research. Proceedings of the National Academy of Sciences, 112(11): 31913198.Google Scholar
Zeebe, R. E., Ridgwell, A., Zachos, J. C., 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nature Geoscience, 9(4): 325.Google Scholar
Zeng, X., 1998. 中国历史上的黄穋稻 Zhonguo Lishi Shang Huangludao (Huang Lu Rice in Chinese History). Nongye Kaogu, 1998(1): 292307.Google Scholar
Zhang, C., Hung, H. -c., 2010. The emergence of agriculture in southern China. Antiquity, 84: 1125.Google Scholar
Zhang, C., Hung, H. -c., 2012. Later hunter-gatherers in southern China 18000–3000 BC. Antiquity, 86(331): 1129.Google Scholar
Zhang, C., Hung, H. -c., 2013. Jiahu 1: earliest farmers beyond the Yangtze. Antiquity, 87(2013): 4663.Google Scholar
Zhang, D., Cervantes, J., Huamán, Z., Carey, E., Ghislain, M., 2000. Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genetic Resources and Crop Evolution, 47(6): 659665. DOI:10.1023/a:1026520507223.Google Scholar
Zhang, L., Li, J., Wei, G., Liao, W., Wang, Q., Xiang, C., 2017. Analysis of the relationship between water level fluctuation and seismicity in the Three Gorges Reservoir (China). Geodesy and Geodynamics, 8(2): 96102. DOI:10.1016/j.geog.2017.02.004.Google Scholar
Zhang, L., Wang, Q., Liu, Q., 2009. Sweet potato in China. In: Loebenstein, G., Thottappilly, G. (eds.), The Sweet Potato. Springer, Dortrecht, pp.325358.Google Scholar
Zhang, P., Cheng, H., Edwards, R. L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, J., An, C., Dai, Z., Zhou, J., Zhang, D., Jia, J., Jin, L., Johnson, K. R., 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322: 940942. DOI:10.1126/science.1163965.Google Scholar
Zhang, R., Delworth, T. L., 2006. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33(L17712). DOI:10.1029/2006GL026267.Google Scholar
Zhang, S., Yi, Y., Liu, Y., Wang, X., 2013. Hydraulic principles of the 2,268-year-old Dujiangyan project in China. Journal of Hydraulic Engineering, 139(5): 538546. DOI:10.1061/(ASCE)HY.1943-7900.0000675.Google Scholar
Zhang, W., Yuan, J., 1998. A preliminary study of ancient excavated rice from Yuchanyan site, Dao County, Hunan Province. Acta Agronomica Sinica, 24(4): 416420.Google Scholar
Zhang, X., Wang, J., 2003. 古人类食物结构研究 Gurenlei Shiwu Jiegou Yanjiu (Study on the Diet of ancient populations). 考古 Kaogu (Archaeology), 2003(2): 158171.Google Scholar
Zhang, X., Zhong, S., Wu, Z., Li, Y., 2018a. Seasonal prediction of the typhoon genesis frequency over the Western North Pacific with a Poisson regression model. Climate Dynamics, 51(11): 45854600. DOI:10.1007/s00382-017-3654-5.Google Scholar
Zhang, X., Zhou, A., Zhang, C., Hao, S., Zhao, Y., An, C., 2016a. High-resolution records of climate change in arid eastern central Asia during MIS 3 (51 600–25 300 cal a BP) from Wulungu Lake, north-western China. Journal of Quaternary Science, 31(6): 577586. DOI:10.1002/jqs.2881.Google Scholar
Zhang, Y. G., Zheng, W. J., Wang, Y. J., Zhang, D. L., Tian, Y. T., Wang, M., Zhang, Z. Q., Zhang, P. Z., 2018b. Contemporary deformation of the North China plain from global positioning system data. Geophysical Research Letters, 45(4): 18511859. DOI:10.1002/2017gl076599.Google Scholar
Zhang, Z., Jin, Q., Chen, X., Xu, C. -Y., Jiang, S., 2016. On the linkage between the extreme drought and pluvial patterns in China and the large-scale atmospheric circulation. Advances in Meteorology, 2016: 8010638. DOI:10.1155/2016/8010638.Google Scholar
Zhang, Z., Wang, H., Guo, Z., Jiang, D., 2007. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 317331.Google Scholar
Zhang, Z., Zhao, M., Eglinton, G., Lu, H., Huang, C. -Y., 2006. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quaternary Science Reviews, 25(5–6): 575594.Google Scholar
Zhao, J., An, C. -B., Huang, Y., Morrill, C., Chen, F. -H., 2017a. Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia. Quaternary Science Reviews, 178: 1423.Google Scholar
Zhao, K., Tung, C. -W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., Mezey, J., McClung, A. M., Bustamante, C. D., McCouch, S. R., 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2: 467.Google Scholar
Zhao, S., Chang, L., 1999. 论两汉时代冬小麦在我国北方的推广普及 Lun Lianghan Shidai Dong Xiaomai Zai Wo Guo Beifang Tuiguang Puji (A Discussion on Han Dynasty Winter Wheat in our Country and its Distribution in Northern China). Zhongguo Lishi Dili Luncong, 1999(2): 3746.Google Scholar
Zhao, Y., An, C. -B., Duan, F., Zhao, J., Mao, L., Zhou, A., Cao, Z., Chen, F., 2017b. Consistent vegetation and climate deterioration from early to late MIS3 revealed by multi-proxies (mainly pollen data) in north-west China. Review of Palaeobotany and Palynology, 244: 4353. DOI:10.1016/j.revpalbo.2017.04.010.Google Scholar
Zhao, Y., Yu, Z., Herzschuh, U., Yang, B., Zhao, H., Fang, K., Li, H., Li, Q., 2014. Vegetation and climate change during marine isotope stage 3 in China. Chinese Science Bulletin, 59(33): 44444455.Google Scholar
Zhao, Z., 1998. The middle Yangtze region in China is one place where rice was domesticated: Phytolith evidence from the diaotonghuan cave, Northern Jiangxi. Antiquity, 72(278): 885897.Google Scholar
Zhao, Z., 2003. 浮选与植碳化植物依存的研究 Fuxuan Yu Tanhua Zhiwu Yicun de Yanjiu (Flotation and Carbonized Plant remains). In: Yanjiusuo, Zhongguo Shehui Kexueyuan Kaogu, Gongzuodui, Guangzi Zhuangzu Zizhiqu Wenwu, Bowuguan, Guilin Zengpiyan Yizhi, Gongzuodui, Guilin Shi Wenwu (eds.), 桂林甑皮岩 Guilin Zengpiyan (The site of Zengpiyan in Guilin). Wenwu Chubanshe, Beijing, pp. 9397.Google Scholar
Zhao, Z., 2005. 从兴隆沟遗址浮选结果谈中国北方旱作农业起源问题 Cong Xinglonggou Yizhi fuxuan jieguo tan Zhongguo Beifang Zaozuo Nongye Qiyuan Wenti(Discussion on Chinese dry crop agriculture from flotation results in Xinglonggou Site). In: Wang, R., Tang, H. (eds.), 东亚古物 Dongya Guwu (Antiquities of Eastern Asia). Wenwu Chubanshe Beijing, pp. 188199.Google Scholar
Zhao, Z., Zhang, J., 2009. 贾湖遗址2001年度浮选结果分析报告 Jiahu Yizhi 2001 Niandu Fuxuan Jieguo Fenxi Baogao (Report on the Analysis of the Results of the 2001 Floatation of the Jiahu Site). Kaogu, 2009(8): 8493.Google Scholar
Zhejiang Sheng Kaogu Yanjiusuo, 2004. 浙江跨湖桥 Zhejiang Kuahuqiao (The Site of Kuahuqiao in Zhejiang). Wenwu Chubanshe, Beijing.Google Scholar
Zhen, J., 2000. Rice-wheat cropping system in China. In: Hobbs, P. R., Gupta, R. K. (eds.), Soil and crop management practices for enhanced productivity of the rice-wheat cropping system in the Sichuan province of China. Rice-Wheat Consortium Paper Series. Rice-Wheat Consortium for the Indo-Gangetic Plains, New Delhi, India, pp. 110.Google Scholar
Zheng, H., Clift, P. D., Tada, R., Jia, J. T., He, M. Y., Wang, P., 2013. A Pre-Miocene birth to the Yangtze River. Proceedings of the National Academy of Sciences: 16. DOI:10.1073/pnas.1216241110.Google Scholar
Zheng, H., Wei, X., Tada, R., Clift, P. D., Wang, B., Jourdan, F., Wang, P., He, M., 2015. Late oligocene–early miocene birth of the Taklimakan Desert. Proceedings of the National Academy of Sciences, 110(19): 75567561. DOI:10.1073/pnas.1424487112.Google Scholar
Zheng, J., Hao, Z., Ge, Q., 2005. Variation of precipitation for the last 300 years over the middle and lower reaches of the yellow river. Science in China Series D- Earth Science, 48: 2182. DOI:10.1360/03yd0392.Google Scholar
Zheng, J., Wang, W. -C., Ge, Q., Man, Z., Zhang, P., 2006. Precipitation variability and extreme events in Eastern China during the past 1500 years. Terrestrial, Atmospheric and Oceanic Sciences, 17(3): 579592.Google Scholar
Zheng, Z., Lei, Z. Q., 1999. A 400,000 year record of vegetaitonal and climatic changes from a volcanic basin, Leizhou Peininsula, Southern China. Palaeogeogr Palaeoclimatol Palaeoecol, 145: 339362.Google Scholar
Zhongguo Shehui Kexueyuan Kaoguyanjiusuo, 2003. 桂林甑皮岩 Guilin Zengpiyan (The site of Zengpiyan in Guilin Province). Wenwu Chubanshe, Beijing.Google Scholar
Zhongyuan, C., Stanley, D. J., 1998. Sea-level rise on Eastern China’s Yangtze Delta. Journal of Coastal Research, 14(1): 360366.Google Scholar
Zhou, T., Bronnimann, S., Griesser, T., Fischer, A. M., Zou, L., 2010. A reconstructed dynamic Indian monsoon index extended back to 1880. Climate Dynamics, 34: 573585. DOI 10.1007/s00382-009–0552-5.Google Scholar
Zhou, T. J., Zhang, L. X., Li, H. M., 2008. Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophysical Research Letters, 35(16): L16707. DOI:10.1029/2008GL034881.Google Scholar
Zhou, W., Lu, X., Wu, Z., Deng, L., Jull, A. J. T., Donahue, D., Beck, W., 2002. Peat record reflecting Holocene climatic change in the Zoige Plateau and AMS radiocarbon dating. Chinese Science Bulletin, 47(1): 6670.Google Scholar
Zhou, Y., Jeppesen, E., Li, J., Zhang, Y., Zhang, X., Li, X., 2016. Impacts of three gorges reservoir on the sedimentation regimes in the downstream-linked two largest Chinese freshwater lakes. Scientific Reports, 6: 35396. DOI:10.1038/srep35396.Google Scholar
Zhu, C., Zheng, C., Ma, C., Yang, X., Gao, X., Wang, H., Shao, J., 2003. On the Holocene sea-level highstand along the Yangtze delta and Ningshao plain, east China. Chinese Science Bulletin, 48(24): 26722683.Google Scholar
Zhu, S., Ge, F., Sein, D., Remedio, A., Sielmann, F., Fraedrich, K., Zhi, X., 2019. Projected changes in surface air temperature over the Indochina Peninsula from the regionally coupled model ROM. Geophysical Research Abstracts, 21: EGU20193848.Google Scholar
Zhu, X. F., Huang, C. C., Pang, J. L., 2010. Palaeo-hydrological studies of the Holocene extreme floods in the Tianshui Gorges of the Weihe River. Progress in Geography, 2010(29): 840846.Google Scholar
Zhuang, C., 2009. 雞肋編 / 莊季裕撰 Ji le bian / Zhuang Jiyu zhuan (The 12th Century Ji le Bian). Beijing Tushuguan Chubanshe, Beijing.Google Scholar
Zhuang, Y., Kidder, T. R., 2014. Archaeology of the anthropocene in the yellow river region, China, 8000–2000 cal. BP. The Holocene, 24(11): 16021623. DOI:10.1177/0959683614544058.Google Scholar
Zohary, D., Hopf, M., Weiss, E., 2012. Domestication of Plants in the Old World:The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press on Demand, Oxford.Google Scholar
Zong, Y., 2004. Mid-Holocene sea-level highstand along the Southeast Coast of China. Quaternary International, 117(1): 5567. DOI:10.1016/S1040-6182(03)00116-2.Google Scholar
Zong, Y., Chen, X., 2000. The 1998 Flood on the Yangtze, China. Natural Hazards, 22(2): 165184. 10.1023/a:1008119805106.Google Scholar
Zong, Y., Chen, Z., Innes, J.B., Chen, C., Wang, Z., Wang, H., 2007. Fire and flood management of coastal swamp enabled first rice paddy cultivation in East China. Nature, 449(7161): 459462.Google Scholar
Zuo, X., Lu, H., Jiang, L., Zhang, J., Yang, X., Huan, X., He, K., Wang, C., Wu, N., 2017. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proceedings of the National Academy of Sciences, 114(25): 64866491.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter D. Clift, Louisiana State University, Jade d'Alpoim Guedes
  • Book: Monsoon Rains, Great Rivers and the Development of Farming Civilisations in Asia
  • Online publication: 17 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781139342889.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter D. Clift, Louisiana State University, Jade d'Alpoim Guedes
  • Book: Monsoon Rains, Great Rivers and the Development of Farming Civilisations in Asia
  • Online publication: 17 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781139342889.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter D. Clift, Louisiana State University, Jade d'Alpoim Guedes
  • Book: Monsoon Rains, Great Rivers and the Development of Farming Civilisations in Asia
  • Online publication: 17 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781139342889.008
Available formats
×