Book contents
- Frontmatter
- Dedication
- Contents
- List of Contributors
- Preface
- Part 1.1 Analytical techniques: analysis of DNA
- Part 1.2 Analytical techniques: analysis of RNA
- Part 2.1 Molecular pathways underlying carcinogenesis: signal transduction
- 10 HER
- 11 The insulin–insulin-like growth-factor receptor family as a therapeutic target in oncology
- 12 TGF-β signaling in stem cells and tumorigenesis
- 13 Platelet-derived growth factor
- 14 FMS-related tyrosine kinase 3
- 15 ALK: Anaplastic lymphoma kinase
- 16 The FGF signaling axis in prostate tumorigenesis
- 17 Hepatocyte growth factor/Met signaling in cancer
- 18 PI3K
- 19 Intra-cellular tyrosine kinase
- 20 WNT signaling in neoplasia
- 21 Ras
- 22 BRAF mutations in human cancer: biologic and therapeutic implications
- 23 Aurora kinases in cancer: an opportunity for targeted therapy
- 24 14-3-3 proteins in cancer
- 25 STAT signaling as a molecular target for cancer therapy
- 26 The MYC oncogene family in human cancer
- 27 Jun proteins and AP-1 in tumorigenesis
- 28 Forkhead box proteins: the tuning forks in cancer development and treatment
- 29 NF-κB and cancer
- Part 2.2 Molecular pathways underlying carcinogenesis: apoptosis
- Part 2.3 Molecular pathways underlying carcinogenesis: nuclear receptors
- Part 2.4 Molecular pathways underlying carcinogenesis: DNA repair
- Part 2.5 Molecular pathways underlying carcinogenesis: cell cycle
- Part 2.6 Molecular pathways underlying carcinogenesis: other pathways
- Part 3.1 Molecular pathology: carcinomas
- Part 3.2 Molecular pathology: cancers of the nervous system
- Part 3.3 Molecular pathology: cancers of the skin
- Part 3.4 Molecular pathology: endocrine cancers
- Part 3.5 Molecular pathology: adult sarcomas
- Part 3.6 Molecular pathology: lymphoma and leukemia
- Part 3.7 Molecular pathology: pediatric solid tumors
- Part 4 Pharmacologic targeting of oncogenic pathways
- Index
- References
10 - HER
from Part 2.1 - Molecular pathways underlying carcinogenesis: signal transduction
Published online by Cambridge University Press: 05 February 2015
- Frontmatter
- Dedication
- Contents
- List of Contributors
- Preface
- Part 1.1 Analytical techniques: analysis of DNA
- Part 1.2 Analytical techniques: analysis of RNA
- Part 2.1 Molecular pathways underlying carcinogenesis: signal transduction
- 10 HER
- 11 The insulin–insulin-like growth-factor receptor family as a therapeutic target in oncology
- 12 TGF-β signaling in stem cells and tumorigenesis
- 13 Platelet-derived growth factor
- 14 FMS-related tyrosine kinase 3
- 15 ALK: Anaplastic lymphoma kinase
- 16 The FGF signaling axis in prostate tumorigenesis
- 17 Hepatocyte growth factor/Met signaling in cancer
- 18 PI3K
- 19 Intra-cellular tyrosine kinase
- 20 WNT signaling in neoplasia
- 21 Ras
- 22 BRAF mutations in human cancer: biologic and therapeutic implications
- 23 Aurora kinases in cancer: an opportunity for targeted therapy
- 24 14-3-3 proteins in cancer
- 25 STAT signaling as a molecular target for cancer therapy
- 26 The MYC oncogene family in human cancer
- 27 Jun proteins and AP-1 in tumorigenesis
- 28 Forkhead box proteins: the tuning forks in cancer development and treatment
- 29 NF-κB and cancer
- Part 2.2 Molecular pathways underlying carcinogenesis: apoptosis
- Part 2.3 Molecular pathways underlying carcinogenesis: nuclear receptors
- Part 2.4 Molecular pathways underlying carcinogenesis: DNA repair
- Part 2.5 Molecular pathways underlying carcinogenesis: cell cycle
- Part 2.6 Molecular pathways underlying carcinogenesis: other pathways
- Part 3.1 Molecular pathology: carcinomas
- Part 3.2 Molecular pathology: cancers of the nervous system
- Part 3.3 Molecular pathology: cancers of the skin
- Part 3.4 Molecular pathology: endocrine cancers
- Part 3.5 Molecular pathology: adult sarcomas
- Part 3.6 Molecular pathology: lymphoma and leukemia
- Part 3.7 Molecular pathology: pediatric solid tumors
- Part 4 Pharmacologic targeting of oncogenic pathways
- Index
- References
Summary
ERBB: The receptor network
ERBB receptors (also called HER receptors) are composed of an extra-cellular domain (comprising subdomains I–IV), a single transmembrane portion, and a large intra-cellular domain comprising a short juxtamembrane portion, a bilobular tyrosine kinase domain and a carboxyl-terminal tail. The principal ERBB receptor activation mechanism involves ligand binding, which activates the kinase domains of receptor homo- and heterodimers. Notably, the ligandless ERBB2 and the kinase-dead ERBB3 are non-autonomous, yet confer potent signaling upon heterodimerization. Activated kinase domains then phosphorylate tyrosine residues located in the cytoplasmic receptor's portion, which serve as docking sites for proteins containing phosphotyrosine-binding or Src homology-2 domains (Figure 10.1). These signaling effectors and adaptor proteins link activated receptors directly or indirectly to canonical intra-cellular pathways, depicted in Figure 10.2, as well as to the endocytic, desensitizing machinery. Although there is considerable overlap amongst the individual ERBB receptors with regards to the recruited signaling effectors and adaptor proteins, the stoichiometry of recruited adaptors varies, and some pathways are unique to individual receptors (1,2). Moreover, many tyrosine residues can bind several adaptors and effectors, which, in turn, can act as molecular scaffolds. For instance, phosphorylated tyrosine residues 1068 and 1086 of the EGFR recruit the adaptor protein Grb2, which can bind both positive (Sos) and negative (e.g. Cbl, Ship, Socs, Sprouty, Ack1) regulators of EGFR signaling. Further fine-tuning of receptor activity and connectivity is achieved by phosphorylation of cytoplasmic ERBB receptor residues by intra-cellular kinases (e.g. Src phosphorylates EGFR on multiple residues, including tyrosine 845, which then serves as a novel docking site for STAT5b (3)). ERBB signaling may both activate and undergo activation by several heterologous receptors (e.g. the HGF-receptor MET) through multiple mechanisms, including formation of signaling-competent receptor heteromers, receptor transmodulation, and by transcriptional induction of heterologous ligands and receptors.
- Type
- Chapter
- Information
- Molecular OncologyCauses of Cancer and Targets for Treatment, pp. 85 - 109Publisher: Cambridge University PressPrint publication year: 2013