Book contents
- Frontmatter
- Dedication
- Contents
- List of Contributors
- Preface
- Part 1.1 Analytical techniques: analysis of DNA
- Part 1.2 Analytical techniques: analysis of RNA
- Part 2.1 Molecular pathways underlying carcinogenesis: signal transduction
- 10 HER
- 11 The insulin–insulin-like growth-factor receptor family as a therapeutic target in oncology
- 12 TGF-β signaling in stem cells and tumorigenesis
- 13 Platelet-derived growth factor
- 14 FMS-related tyrosine kinase 3
- 15 ALK: Anaplastic lymphoma kinase
- 16 The FGF signaling axis in prostate tumorigenesis
- 17 Hepatocyte growth factor/Met signaling in cancer
- 18 PI3K
- 19 Intra-cellular tyrosine kinase
- 20 WNT signaling in neoplasia
- 21 Ras
- 22 BRAF mutations in human cancer: biologic and therapeutic implications
- 23 Aurora kinases in cancer: an opportunity for targeted therapy
- 24 14-3-3 proteins in cancer
- 25 STAT signaling as a molecular target for cancer therapy
- 26 The MYC oncogene family in human cancer
- 27 Jun proteins and AP-1 in tumorigenesis
- 28 Forkhead box proteins: the tuning forks in cancer development and treatment
- 29 NF-κB and cancer
- Part 2.2 Molecular pathways underlying carcinogenesis: apoptosis
- Part 2.3 Molecular pathways underlying carcinogenesis: nuclear receptors
- Part 2.4 Molecular pathways underlying carcinogenesis: DNA repair
- Part 2.5 Molecular pathways underlying carcinogenesis: cell cycle
- Part 2.6 Molecular pathways underlying carcinogenesis: other pathways
- Part 3.1 Molecular pathology: carcinomas
- Part 3.2 Molecular pathology: cancers of the nervous system
- Part 3.3 Molecular pathology: cancers of the skin
- Part 3.4 Molecular pathology: endocrine cancers
- Part 3.5 Molecular pathology: adult sarcomas
- Part 3.6 Molecular pathology: lymphoma and leukemia
- Part 3.7 Molecular pathology: pediatric solid tumors
- Part 4 Pharmacologic targeting of oncogenic pathways
- Index
- References
22 - BRAF mutations in human cancer: biologic and therapeutic implications
from Part 2.1 - Molecular pathways underlying carcinogenesis: signal transduction
Published online by Cambridge University Press: 05 February 2015
- Frontmatter
- Dedication
- Contents
- List of Contributors
- Preface
- Part 1.1 Analytical techniques: analysis of DNA
- Part 1.2 Analytical techniques: analysis of RNA
- Part 2.1 Molecular pathways underlying carcinogenesis: signal transduction
- 10 HER
- 11 The insulin–insulin-like growth-factor receptor family as a therapeutic target in oncology
- 12 TGF-β signaling in stem cells and tumorigenesis
- 13 Platelet-derived growth factor
- 14 FMS-related tyrosine kinase 3
- 15 ALK: Anaplastic lymphoma kinase
- 16 The FGF signaling axis in prostate tumorigenesis
- 17 Hepatocyte growth factor/Met signaling in cancer
- 18 PI3K
- 19 Intra-cellular tyrosine kinase
- 20 WNT signaling in neoplasia
- 21 Ras
- 22 BRAF mutations in human cancer: biologic and therapeutic implications
- 23 Aurora kinases in cancer: an opportunity for targeted therapy
- 24 14-3-3 proteins in cancer
- 25 STAT signaling as a molecular target for cancer therapy
- 26 The MYC oncogene family in human cancer
- 27 Jun proteins and AP-1 in tumorigenesis
- 28 Forkhead box proteins: the tuning forks in cancer development and treatment
- 29 NF-κB and cancer
- Part 2.2 Molecular pathways underlying carcinogenesis: apoptosis
- Part 2.3 Molecular pathways underlying carcinogenesis: nuclear receptors
- Part 2.4 Molecular pathways underlying carcinogenesis: DNA repair
- Part 2.5 Molecular pathways underlying carcinogenesis: cell cycle
- Part 2.6 Molecular pathways underlying carcinogenesis: other pathways
- Part 3.1 Molecular pathology: carcinomas
- Part 3.2 Molecular pathology: cancers of the nervous system
- Part 3.3 Molecular pathology: cancers of the skin
- Part 3.4 Molecular pathology: endocrine cancers
- Part 3.5 Molecular pathology: adult sarcomas
- Part 3.6 Molecular pathology: lymphoma and leukemia
- Part 3.7 Molecular pathology: pediatric solid tumors
- Part 4 Pharmacologic targeting of oncogenic pathways
- Index
- References
Summary
Introduction
The Mitogen-Activated Protein Kinase (MAPK or ERK) pathway is a central regulator of cellular proliferation and is frequently activated in human tumors. This pathway consists of the RAF, MEK (mitogen-activated protein kinase (MAPK) kinase) and ERK (extra-cellular signal-regulated kinase) kinases (see Figure 22.1). In normal cells, the RAS (K-, N-, and HRAS) small GTPase proteins activate the RAF kinases (ARAF, BRAF, and CRAF/RAF1) by regulating their cellular localization and homo- and heterodimerization (1). Recruitment of RAF to the plasma membrane by activated RAS induces an “open” conformation, which facilitates its phosphorylation and resulting kinase activation (2). Activation of RAF initiates a series of phosphorylation events, including the phosphorylation of the MEK1 and MEK2, and ERK1 and ERK2 kinases. Phosphorylated ERK in turn regulates several cellular processes such as cell-cycle progression and survival through phosphorylation of nuclear transcription factors and cytosolic proteins (3–8).
The ERK pathway operates as a negative feedback loop in which activation of the pathway is balanced by feedback regulatory elements including the dual-specificity phosphatases (DUSPs) and the Sprouty family proteins, the expression of which are ERK dependent (9,10). ERK pathway activity is also regulated by cross-talk with parallel signaling pathways such as the PI3K/AKT pathway and by scaffold proteins such as 14-3-3 that regulate RAF subcellular localization and stability (11).
- Type
- Chapter
- Information
- Molecular OncologyCauses of Cancer and Targets for Treatment, pp. 272 - 277Publisher: Cambridge University PressPrint publication year: 2013