Published online by Cambridge University Press: 05 January 2012
Introduction
Molecular machines (Mavroidis et al. 2004) are devices that convert one form of energy into another. Just like their macroscopic counterparts, molecular machines have an “engine”, an input and an output. Most of the machines I consider in this chapter are motors (Howard 2001, Kolomeisky and Fisher 2007, Schliwa 2003) which are enzymes that convert chemical energy into mechanical work.
In spite of the striking similarities, it is the differences between molecular machines and their macroscopic counterparts that makes the studies of these systems so interesting from the perspective of physicists. Biomolecular machines are usually single proteins or macromolecular complexes comprising several proteins and/or RNAs. These operate in a domain where the appropriate units of length, time, force and energy are nano-meter, milli-second, pico-Newton and kBT, respectively (kB being the Boltzmann constant and T is the absolute temperature). Already in the first half of the twentieth century D’Arcy Thompson, father of modern bio-mechanics, realized the importance of viscous drag and Brownian forces in this domain. He pointed out that (Thompson 1963) “where bacillus lives, gravitation is forgotten, and the viscosity of the liquid, the resistance defined by Stokes’ law, the molecular shocks of the Brownian movement, doubtless also the electric charges of the ionized medium, make up the physical environment and have their potent and immediate influence on the organism. The predominant factors are no longer those of our scale; we have come to the edge of a world of which we have no experience, and where all our preconceptions must be recast”.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.