Published online by Cambridge University Press: 05 January 2012
The term “Machine” invokes familiar images from the macroscopic world, of gears, springs, and levers engaging each other sequentially in a deterministic chain of events. Gravity and inertia are major forces to be reckoned with in the design, or are in fact utilized in the very function, of a device such as a crane, a locomotive, or a centrifuge. The world of molecules this book is concerned with is quite different in many respects. In this water-drenched nanodimension world, mobile parts are in constant jittering motion, powered by random thermal bombardment from the molecules of the aqueous solvent. The forces of gravity and inertia are dwarfed, by orders of magnitude, by those produced by non-covalent interactions, collisions with water molecules, and drag in the solvent. Complicating matters further, biological molecules and the “levers” and “actuators” within them lack the rigidity of materials like steel. Perhaps most difficult to conceive by a mind trained on the experience of the macroscopic world, however, is the disintegration of causal connections into a series of sporadic irreversible chemical events that impart directed motion, separated by stretches of “time” where the molecule has no apparent directionality.
Molecular Machines as a concept existed well before Bruce Alberts’ (1998) programmatic essay in the journal Cell, but his article certainly helped in popularizing the term, and in firing up the imagination of students and young scientists equipped with new tools that aim to probe and depict the dynamic nature of the events that constitute life at the most fundamental level. “Machine” is useful as a concept because the molecular assemblies in this category share important properties with their macroscopic counterparts, such as processivity, localized interactions, and the fact that they perform work toward making a defined product. The concept stands in sharp contrast to the long-held view of the cell as a sack, or compendium of sacks, in which molecules engage and disengage one another more or less randomly. In invoking mechanistic imagery, it is also, finally, a view that invites physicists to employ their tools and creative minds in developing models that take into account the reality of the nanoworld in a quantitative way. Thus Bruce Albert's is, as invitations go, the third in the past century, with Werner Schroedinger and Richard Feynman having been the first and second to usher their colleagues into tackling the grand challenges posed by biology.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.