Published online by Cambridge University Press: 05 January 2012
Chaperonins – Discovery of the Machines and their Action in Assisting Protein Folding to the Native State
Chaperonin machines are large ring assemblies that mediate ATP-dependent protein folding to the native state by binding and folding proteins in the cavities of their rings. They are present in the cytosol of organisms from all three kingdoms of life and are present also in chloroplasts and mitochondria, Eukaryotic organelles that are endosymbiotically related to Eubacteria. Their biological action in assisting protein folding is essential – deletion of these components is lethal.
The possibility of a protein “folding machine” was entertained by Anfinsen and coworkers as early as 1963 (Epstein et al., 1963) and subsequently considered by others (e.g., Rothman and Kornberg, 1986). The course of experiments that demonstrated such a component was not a linear one, however. In the early 1970s, a role was identified for a Bacterial operon known as groE in enabling productive phage infection of Bacteria. In particular, genetic deficiency in this locus led to an accumulation of aggregated phage head “monsters” inside infected E. coli, suggesting a role for this operon in phage particle assembly (Georgopoulos et al., 1972; Takano and Kakefuda, 1972). A broader role, however, in cellular metabolism was suggested by the observation that groE mutant cells grew poorly even in the absence of phage infection. In the late 1970s, electron microscopy studies of a purified product of the groE operon, the “large” component called GroEL, revealed a remarkable double-ring architecture, with rings composed of seven identical subunits surrounding a central “hole” (Hendrix, 1979; Hohn et al., 1979).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.