Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T01:03:30.373Z Has data issue: false hasContentIssue false

Chapter 10 - The GroEL/GroES Chaperonin Machine

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

Chaperonins – Discovery of the Machines and their Action in Assisting Protein Folding to the Native State

Chaperonin machines are large ring assemblies that mediate ATP-dependent protein folding to the native state by binding and folding proteins in the cavities of their rings. They are present in the cytosol of organisms from all three kingdoms of life and are present also in chloroplasts and mitochondria, Eukaryotic organelles that are endosymbiotically related to Eubacteria. Their biological action in assisting protein folding is essential – deletion of these components is lethal.

The possibility of a protein “folding machine” was entertained by Anfinsen and coworkers as early as 1963 (Epstein et al., 1963) and subsequently considered by others (e.g., Rothman and Kornberg, 1986). The course of experiments that demonstrated such a component was not a linear one, however. In the early 1970s, a role was identified for a Bacterial operon known as groE in enabling productive phage infection of Bacteria. In particular, genetic deficiency in this locus led to an accumulation of aggregated phage head “monsters” inside infected E. coli, suggesting a role for this operon in phage particle assembly (Georgopoulos et al., 1972; Takano and Kakefuda, 1972). A broader role, however, in cellular metabolism was suggested by the observation that groE mutant cells grew poorly even in the absence of phage infection. In the late 1970s, electron microscopy studies of a purified product of the groE operon, the “large” component called GroEL, revealed a remarkable double-ring architecture, with rings composed of seven identical subunits surrounding a central “hole” (Hendrix, 1979; Hohn et al., 1979).

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 191 - 207
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anfinsen, C.B. 1973 Principles that govern the folding of protein chainsScience 181 223CrossRefGoogle ScholarPubMed
Apetri, A.C.Horwich, A.L. 2008 Chaperonin chamber accelerates protein folding through passive action of preventing aggregationProc. Natl. Acad. Sci. USA 105 17351CrossRefGoogle ScholarPubMed
Barraclough, REllis, R.J 1980 Protein synthesis in chloropolasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplastsBiochim. Biophys. Acta 608 19CrossRefGoogle ScholarPubMed
Bhutani, NUdgaonkar, J.B. 2000 A thermodynamic coupling mechanism can explain the GroEL-mediated acceleration of the folding of barstarJ. Mol. Biol 297 1037CrossRefGoogle ScholarPubMed
Boisvert, D.C.Wang, JOtwinowski, ZHorwich, A.L.Sigler, P.B. 1996 Structure of GroEL with bound ATPγS at 2.4 ÅNature Struct Biol 3 170CrossRefGoogle ScholarPubMed
Braig, KAdams, P.DBrunger, A.T. 1995 Conformational variability in the refined structure of the chaperonin GroEL at 2resolution. Nature Struct. Biol 2 1083CrossRefGoogle ScholarPubMed
Braig, KOtwinowski, ZHegde, RBoisvert, DJoachimiak, AHorwich, A.L.Sigler, P.B. 1994 The crystal structure of the bacterial chaperonin GroEL at 2.8 ÅNature 371 578CrossRefGoogle ScholarPubMed
Chakraborty, KChatila, MSinha, JShi, QPoschner, B.C.Sikor, MJiang, GLamb, D.C.Hartl, F.U.Hayer-Hartl, M 2010 Chaperonin-catalyzed rescue of kinetically trapped states in protein foldingCell 142 112CrossRefGoogle ScholarPubMed
Chandrasekhar, G.N.Tilly, KWoolford, CHendrix, RGeorgopoulos, C 1986 Purification and properties of the groES morphogenetic protein of Escherichia coliJ. Biol. Chem 261 12414Google ScholarPubMed
Chaudhry, CFarr, G.W.Todd, M.J.Rye, H.S.Brunger, A.T.Adams, P.D.Horwich, A.L.Sigler, P.B. 2003 Role of the γ-phosphate of ATP in triggering protein folding by GroEL-GroES: Function, structure, and energeticsEMBO J 22 4877CrossRefGoogle ScholarPubMed
Chen, JWalter, SHorwich, A.L.Smith, D.L. 2001 Folding of malate dehydrogenase inside the GroEL-GroES cavityNature Struct. Biol 8 721CrossRefGoogle ScholarPubMed
Chen, SRoseman, A.M.Hunter, A.S.Wood, S.P.Burston, S.G.Ranson, N.A.Clarke, A.R.Saibil, H.R. 1994 Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopyNature 371 261CrossRefGoogle ScholarPubMed
Cheng, M.-Y.Hartl, F.-U.Martin, JPollock, R.AKalousek, FNeupert, WHallberg, E.M.Hallberg, R.L.Horwich, A.L. 1989 Mitochondrial heat shock protein HSP60 is essential for assembly of proteins imported into yeast mitochondriaNature 337 620CrossRefGoogle ScholarPubMed
Clare, D.K.Bakkes, P.J.van Heerikhuizen, HVan Der Vies, S.M.Saibil, H.R. 2009 Chaperonin complex with a newly folded protein encapsulated in the folding chamberNature 457 107CrossRefGoogle ScholarPubMed
Cliff, M.J.Kad, N.M.Hay, NLund, P.A.Webb, M.R.Burston, S.G.Clarke, A.R. 1999 A kinetic analysis of the nucleotide-induced allosteric transitions of GroELJ. Mol. Biol 293 667CrossRefGoogle ScholarPubMed
Cliff, M.J.Limpkin, CCameron, ABurston, S.G.Clarke, A.R. 2006 Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroEJ. Biol. Chem 281 21266CrossRefGoogle ScholarPubMed
Ditzel, LLöwe, JStock, DStetter, K.O.Huber, HHuber, RSteinbacher, S 1998 Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCTCell 93 125CrossRefGoogle ScholarPubMed
Eilers, MSchatz, G 1986 Binding of a specific ligand inhibits import of a purified precursor protein into mitochondriaNature 322 228CrossRefGoogle ScholarPubMed
Elad, NClare, D.K.Saibil, H.R.Orlova, E.V. 2008 Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projectionsJ. Struct. Biol 162 108CrossRefGoogle ScholarPubMed
Elad, NFarr, G.W.Clare, D.K.Orlova, E.V.Horwich, A.L.Saibil, H.R. 2007 Topologies of a substrate protein bound to the chaperonin GroELMol Cell 26 415CrossRefGoogle ScholarPubMed
Epstein, C.J.Goldberger, R.F.Anfinsen, C.B. 1963 The genetic control of tertiary protein structure: Studies with model systemsCold Spring Harb. Symp. Quant. Biol 28 439CrossRefGoogle Scholar
Farr, G.W.Furtak, KRowland, M.C.Ranson, N.A.Saibil, H.R.Kirchhausen, THorwich, A.L. 2000 Multivalent binding of non-native substrate proteins by the chaperonin GroELCell 100 561CrossRefGoogle Scholar
Fenton, W.A.Kashi, YFurtak, KHorwich, A.L. 1994 Residues in chaperonin GroEL required for polypeptide binding and releaseNature 371 614CrossRefGoogle ScholarPubMed
Georgopoulos, C.P.Hendrix, R.W.Kaiser, A.D.Wood, W.B. 1972 Role of the host cell in bacteriophage morphogenesis: Effects of a bacterial mutation on T4 head assemblyNature New Biol 239 38CrossRefGoogle ScholarPubMed
Goloubinoff, PChristeller, J.T.Gatenby, A.A.Lorimer, G.H. 1989 Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATPNature 342 884CrossRefGoogle Scholar
Hemmingsen, S.MWoolford, CVan Der Vies, S.M.Tilly, KDennis, D.T.Georgopoulos, C.P.Hendrix, R.W.Ellis, R.J. 1988 Homologous plant and bacterial proteins chaperone oligomeric protein assemblyNature 333 330CrossRefGoogle ScholarPubMed
Hendrix, R.W. 1979 Purification and properties of groE, a host protein involved in bacteriophage assemblyJ. Mol. Biol 129 375CrossRefGoogle ScholarPubMed
Hofmann, HHillger, FPfeil, S.H.Hoffmann, AStreich, DHaenni, DNettels, DLipman, E.ASchuler, B 2010 Single-molecule spectroscopy of protein folding in a chaperonin cageProc. Natl. Acad. Sci. USA 107 11793CrossRefGoogle Scholar
Hohn, THoh, BEngel, AWurtz, MSmith, P.R. 1979 Isolation and characterization of the host protein groE involved in bacteriophage lambda assemblyJ. Mol. Biol 129 359CrossRefGoogle ScholarPubMed
Horst, RBertelsen, E.BFiaux, JWider, GHorwich, A.LWüthrich, K 2005 Direct NMR observation of a substrate protein bound to the chaperonin GroELProc Natl Acad Sci USA 102 12748CrossRefGoogle ScholarPubMed
Horst, RFenton, W.A.Englander, S.W.Wüthrich, KHorwich, A.L. 2007 Folding trajectories of human dihydrofolate reductase inside the GroEL-GroES chaperonin cavity and free in solutionProc. Natl. Acad. Sci. USA 104 20788CrossRefGoogle ScholarPubMed
Horwich, A.L.Farr, G.W.Fenton, W.A. 2006 GroEL-GroES-mediated protein foldingChem. Rev 106 1917CrossRefGoogle ScholarPubMed
Horwich, A.L.Fenton, W.A. 2009 Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain foldingQ. Rev. Biophys 42 83CrossRefGoogle ScholarPubMed
Horwich, A.L.Fenton, W.A.Chapman, EFarr, G.W. 2007 Two families of chaperonin: Physiology and mechanismAnnu. Rev. Cell Dev. Biol 23 115CrossRefGoogle ScholarPubMed
Jackson, G.S.Staniforth, R.A.Halsall, D.J.Atkinson, THolbrook, J.J.Clarke, A.R.Burston, S.G. 1993 Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: Implications for the mechanism of assisted protein foldingBiochemistry 32 2554CrossRefGoogle ScholarPubMed
Kiser, P.D.Lorimer, G.H.Palczewski, K 2010 Use of thallium to identify monovalent cation binding sites in GroELActa Cryst Sect F 65 967CrossRefGoogle Scholar
Lin, ZRye, H.S. 2004 Expansion and compression of a protein folding intermediate by GroELMol. Cell 16 23CrossRefGoogle ScholarPubMed
Lin, ZMadan, DRye, H.S. 2008 GroEL stimulates protein folding through forced unfoldingNat. Struct. Mol. Biol 15 303CrossRefGoogle ScholarPubMed
Liu, CYoung, A.L.Starling-Windhof, ABracher, ASaschenbrecker, SRao, B.V.Rao, K.V.Berninghausen, OMielke, THartl, F.U.Beckmann, RHayer-Hartl, M 2010 Coupled chaperone action in folding and assembly of hexadecameric RubiscoNature 463 197CrossRefGoogle ScholarPubMed
Ma, JKarplus, M 1998 The allosteric mechanism of the chaperonin GroEL: A dynamic analysisProc. Natl. Acad. Sci. USA 92 8502CrossRefGoogle Scholar
Martin, JLanger, TBoteva, RSchramel, AHorwich, A.L.Hartl, F.-U. 1991 Chaperonin-mediated protein folding occurs at the surface of GroEL via a molten globule-like intermediateNature 352 36CrossRefGoogle Scholar
Mayhew, Mda Silva, A.C.R.Martin, JErdjument-Bromage, HTempst, PHartl, F.U. 1996 Protein folding in the central cavity of the GroEL-GroES chaperonin complexNature 379 420CrossRefGoogle ScholarPubMed
McMullin, T.W.Hallberg, R.L. 1988 A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL geneMol. Cell Biol 8 371CrossRefGoogle ScholarPubMed
Mendoza, J.A.Lorimer, G.H.Horowitz, P.M. 1991 Intermediates in the chaperonin-assisted refolding of rhodanese are trapped at low temperature and show a small stoichiometryJ. Biol. Chem 266 16973Google ScholarPubMed
Miyazaki, TYoshimi, TFurutsu, YHongo, KMizobata, TKanemori, MKawata, Y 2002 GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycleJ. Biol. Chem 277 50621CrossRefGoogle ScholarPubMed
Motojima, FChaudhry, CFenton, W.AFarr, G.WHorwich, A.L. 2004 Substrate polypeptide presents a load on the apical domains of the chaperonin GroELProc. Natl. Acad. Sci. USA 101 15005CrossRefGoogle ScholarPubMed
Nojima, TMurayama, SYoshida, MMotojima, F 2008 Determination of the number of active GroES subunits in the fused heptamer GroES required for interactions with GroELJ. Biol. Chem 283 18385CrossRefGoogle ScholarPubMed
Orlova, ESaibil, H.R. 2010 Methods for three-dimensional reconstruction of heterogeneous assembliesMeth. Enzymol 482 321CrossRefGoogle ScholarPubMed
Park, E.S.Fenton, W.A.Horwich, A.L. 2005 No evidence for a forced-unfolding mechanism during ATP/GroES binding to substrate-bound GroEL: No observable protection of metastable Rubisco intermediate, or GroEL-bound Rubisco from tritium exchangeFEBS Lett 579 1183CrossRefGoogle ScholarPubMed
Pelham, H.R. 1986 Speculations on the functions of the major heat shock and glucose-regulated proteinsCell 46 959CrossRefGoogle ScholarPubMed
Ramakrishnan, CDani, V.S.Ramasarma, T 2002 A conformational analysis of Walker motif A [GXXXXGKT(S)] in nucleotide-binding and other proteinsProtein Eng. Des. Sel 15 783CrossRefGoogle ScholarPubMed
Ranson, N.A.Clare, D.K.Farr, G.W.Houldershaw, DHorwich, A.L.Saibil, H.R. 2006 Allosteric signaling of ATP hydrolysis in GroEL-GroES complexesNat. Struct. Mol. Biol 13 147CrossRefGoogle ScholarPubMed
Ranson, N.A.Dunster, N.J.Burston, S.G.Clarke, A.R 1995 Chaperonins can catalyse the reversal of early aggregation steps when a protein misfoldsJ. Mol. Biol 250 581CrossRefGoogle ScholarPubMed
Ranson, N.A.Farr, G.W.Roseman, A.M.Gowen, BFenton, W.A.Horwich, A.L.Saibil, H.R. 2001 ATP-bound states of GroEL captured by cryo-electron microscopyCell 107 869CrossRefGoogle ScholarPubMed
Roseman, A.M.Chen, SBraig, KSaibil, H.R. 1996 The chaperonin ATPase cycle: Mechanism of allosteric switching and movements of substrate-binding domains in GroELCell 87 241CrossRefGoogle ScholarPubMed
Rothman, J.E.Kornberg, R.D. 1986 An unfolding story of protein translocationNature 322 209CrossRefGoogle ScholarPubMed
Rye, H.S.Burston, S.G.Fenton, W.A.Beechem, J.M.Xu, ZSigler, P.B.Horwich, A.L. 1997 Distinct actions of and ATP within the double ring of the chaperonin GroELNature 388 792CrossRefGoogle ScholarPubMed
Rye, H.S.Roseman, A.M.Furtak, KFenton, W.A.Saibil, H.R.Horwich, A.L. 1999 GroEL-GroES cycling: ATP and non-native polypeptide direct alternation of folding-active ringsCell 97 325CrossRefGoogle Scholar
Saibil, H.R.Zheng, DRoseman, A.M.Hunter, A.S.Watson, G.M.Chen, SAuf der Mauer, AO’Hara, B.P.Wood, S.P.Mann, N.H.Barnett, L.K.Ellis, R.J. 1993 ATP induces large quaternary rearrangements in a cage-like chaperonin structureCur.Biol 3 265CrossRefGoogle Scholar
Sharma, SChakraborty, KMüller, B.K.Astola, NTang, Y.C.Lamb, D.C.Hayer-Hartl, MHartl, F.U. 2008 Monitoring protein conformation along the pathway of chaperonin-assisted foldingCell 133 142CrossRefGoogle ScholarPubMed
Takano, TKakefuda, T 1972 Involvement of a bacterial factor in morphogenesis of bacteriophage capsidNature New Biol 239 34CrossRefGoogle ScholarPubMed
Taniguchi, MYoshimi, THongo, KMizobata, TKawata, Y 2004 Stopped-flow fluorescente análisis of the conformational changes in the GroEL apical domainJ. Biol. Chem 279 16368CrossRefGoogle Scholar
Tian, GVainberg, I.E.Tap, W.D.Lewis, S.A.Cowan, N.J. 1995 Specificity in chaperonin-mediated protein foldingNature 375 250CrossRefGoogle ScholarPubMed
Tilly, KMurialdo, H.Georgopoulos, C 1981 Proc. Natl. Acad. Sci. USA 78 1629CrossRef
Todd, M.J.Viitanen, P.V.Lorimer, G.H. 1993 Hydrolysis of adenosine 5’-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ionBiochemistry 32 8560CrossRefGoogle ScholarPubMed
Todd, M.J.Viitanen, P.V.Lorimer, G.H. 1994 Dynamics of the chaperonin ATPase cycle: Implications for facilitated protein foldingScience 265 659CrossRefGoogle ScholarPubMed
Tyagi, NFenton, W.AHorwich, A.L. 2009 GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native stateProc. Natl. Acad. Sci. USA 106 20264CrossRefGoogle Scholar
Tyagi, N.K.Fenton, W.A.Horwich, A.L. 2010 ATP-triggered ADP release from the asymmetric chaperonin complex GroEL/GroES/ADP7 is not the rate-limiting step of the GroEL/GroES reaction cycleFEBS Lett 584 951CrossRefGoogle Scholar
Viitanen, P.VLubben, T.H.Reed, JGoloubinoff, PO’Keefe, D.PLorimer, G.H. 1990 Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependentBiochemistry 29 5665CrossRefGoogle ScholarPubMed
Weissman, J.S.Hohl, C.M.Kovalenko, OChen, SBraig, KSaibil, H.R.Fenton, W.A.Horwich, A.L. 1995 Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroESCell 83 577CrossRefGoogle ScholarPubMed
Weissman, J.S.Kashi, YFenton, W.A.Horwich, A.L 1994 GroEL-mediated protein folding proceeds by multiple rounds of release and rebinding of non-native formsCell 78 693CrossRefGoogle Scholar
Weissman, J.S.Rye, H.S.Fenton, W.A.Beechem, J.M.Horwich, A.L. 1996 Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reactionCell 84 481CrossRefGoogle ScholarPubMed
White, F.H.Anfinsen, C.B. 1959 Some relationships of structure to function in ribonucleaseAnn. N.Y. Acad. Sci 81 515CrossRefGoogle ScholarPubMed
Xu, ZHorwich, A.L.Sigler, P.B. 1997 The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complexNature 388 741CrossRefGoogle ScholarPubMed
Yifrach, O.Horovitz, A 1995 Nested cooperativity in the ATPase activity in the oligomeric chaperonin GroELBiochemistry 34 9716CrossRefGoogle ScholarPubMed
Yifrach, O.Horovitz, A 1998 Transient kinetic analysis of adenosine 5ʹ triphosphate binding-induced conformational changes in the allosteric chaperonin GroELBiochemistry 37 7083CrossRefGoogle ScholarPubMed
Zahn, RPlückthun, A 1994 Thermodynamic partitioning model for hydrophobic binding of polypeptides by GroEL: II. GroEL recognizes themally unfolded mature β-lactamaseJ. Mol. Biol 242 165CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×