Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T04:01:23.978Z Has data issue: false hasContentIssue false

1 - Introduction to algebraic stacks

Published online by Cambridge University Press:  05 April 2014

K. Behrend
Affiliation:
University of British Columbia
Leticia Brambila-Paz
Affiliation:
Centro de Investigación en Matemáticas A.C. (CIMAT), Mexico
Peter Newstead
Affiliation:
University of Liverpool
Richard P. Thomas
Affiliation:
Imperial College of Science, Technology and Medicine, London
Oscar García-Prada
Affiliation:
Consejo Superior de Investigaciones Cientificas, Madrid
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Moduli Spaces , pp. 1 - 131
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Enrico, Arbarello, Maurizio, Cornalba, and Phillip A., Griffiths, with a contribution by Joseph Daniel, Harris. Geometry of Algebraic Curves, Volume II. Grundlehren der mathematischen Wissenschaften, vol. 268. Springer, Heidelberg, 2011.
[2] M., Artin. Versal deformations and algebraic stacks. Invent. Math., 27:165–189, 1974.Google Scholar
[3] K., Behrend. Cohomology of stacks. In Intersection Theory and Moduli, ICTP Lect. Notes, XIX, pp. 249–294 (electronic). Abdus Salam International Centre for Theoretical Physics, Trieste, 2004.
[4] Kai, Behrend and Behrang, Noohi. Uniformization of Deligne-Mumford curves. J. Reine Angew. Math., 599:111–153, 2006.Google Scholar
[5] N., Bourbaki. Éléments de Mathématique. Topologie Générale. Hermann, Paris, 1971, chaps. 1–4.
[6] J.-L., Brylinski. Loop Spaces, Characteristic Classes and Geometric Quantization. Progress in Mathematics, vol. 107. Birkhäuser, Boston, MA, 1993.
[7] J. H., Conway. The orbifold notation for surface groups. In Groups, Combinatorics and geometry (Durham, 1990), M., Liebeck and J., Saxl, eds. London Mathematical Society Lecture Notes Series vol. 165. Cambridge University Press, Cambridge, 1992, pp. 438–447.
[8] P., Deligne. Courbes elliptiques: formulaire d'après J. Tate. In Modular Functions of One Variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), B. J., Birch and W., Kuyk, eds. Lecture Notes in Mathematics, vol. 476. Springer, Berlin, 1975, pp. 53–73.
[9] P., Deligne and D., Mumford. The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math., 36:75–109, 1969.Google Scholar
[10] Barbara, Fantechi, Lothar, Göttsche, Luc, Illusie, Steven L., Kleiman, Nitin, Nitsure, and Angelo, Vistoli. Fundamental Algebraic Geometry. Mathematical Surveys and Monographs, vol. 123. American Mathematical Society, Providence, RI, 2005. [Grothendieck's FGA explained.]
[11] Jean, Giraud. Cohomologie non Abélienne. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 179. Springer, Berlin, 1971.
[12] Alexander, Grothendieck. Technique de descente et théorèmes d'existence en géometrie algébrique. I. Généralités. Descente par morphismes fidèlement plats. In Séminaire N. Bourbaki, Vol. 5, Exp. no. 190. Soc. Math. France, Paris, 1995, pp. 299–327.
[13] Alexander, Grothendieck. Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert. In Séminaire N. Bourbaki, Vol. 6, Exp. no. 221. Soc. Math. France, Paris, 1995, pp. 249–270.
[14] Richard, Hain. Lectures on moduli spaces of elliptic curves. In Transformation Groups and Moduli Spaces of Curves. Adv. Lect. Math. (ALM), vol. 16. International Press, Somerville, MA, 2011, pp. 95–166.
[15] R., Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics no. 52. Springer-Verlag, New York, 1977.
[16] Gérard, Laumon and Laurent, Moret-Bailly. Champs Algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 39. Springer-Verlag, Berlin, 2000.
[17] Kirill C. H., Mackenzie. General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge, 2005.
[18] I., Moerdijk and J., Mrčun. Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge, 2003.
[19] D., Mumford, J., Fogarty, and F., Kirwan. Geometric Invariant Theory 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34. Springer-Verlag, Berlin, 1994.
[20] David, Mumford, with a section by G. M., Bergman. Lectures on Curves on an Algebraic Surface. Annals of Mathematics Studies, no. 59. Princeton University Press, Princeton, NJ, 1966.
[21] B., Noohi. Foundations of topological stacks I. arXiv:math/0503247 [math.AG].

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×