Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T01:17:20.194Z Has data issue: false hasContentIssue false

6 - 13/2 ways of counting curves

Published online by Cambridge University Press:  05 April 2014

R. Pandharipande
Affiliation:
Switzerland
R. P. Thomas
Affiliation:
Imperial College London
Leticia Brambila-Paz
Affiliation:
Centro de Investigación en Matemáticas A.C. (CIMAT), Mexico
Peter Newstead
Affiliation:
University of Liverpool
Richard P. Thomas
Affiliation:
Imperial College of Science, Technology and Medicine, London
Oscar García-Prada
Affiliation:
Consejo Superior de Investigaciones Cientificas, Madrid
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Moduli Spaces , pp. 282 - 333
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Bayer, Polynomial Bridgeland stability conditions and the large volume limit, Geom. Topol. 13, 2389–2425, 2009. arXiv:0712.1083.
[2] A., Beauville, Counting rational curves on K3 surfaces, Duke Math. J. 97, 99–108, 1999. alg-geom/9701019.
[3] K., Behrend, Donaldson-Thomas invariants via microlocal geometry, Ann. of Math. 170, 1307–1338, 2009. math.AG/0507523.
[4] K., Behrend and J., Bryan. Super-rigid Donaldson-Thomas invariants, Math. Res. Lett. 14, 559–571, 2007. math.AG/0601203.
[5] K., Behrend, J., Bryan. and B., Szendrői. Motivic degree zero Donaldson-Thomas invariants, arXiv:0909.5088.
[6] K., Behrend and B., Fantechi, The intrinsic normal cone, Invent. Math., 128, 45–88, 1997. alg-geom/9601010.
[7] K., Behrend and B., Fantechi. Symmetric obstruction theories and Hilbert schemes of points on threefolds, Alg. Numb. Theor. 2, 313–345, 2008. math.AG/0512556.
[8] P., Belorousski and R., Pandharipande, A descendent relation in genus 2, Ann. ScuolaNorm. Sup. Pisa 29, 171–191, 2000. math.AG/9803072.
[9] T., Bridgeland. Stability conditions on triangulated categories, Ann. of Math. 166, 317–345, 2007. math.AG/0212237.
[10] T., Bridgeland. Hall algebras and curve-counting invariants, J. AMS 24, 969–998, 2011. arXiv:1002.4374.
[11] J., Bryan and C., Leung, The enumerative geometry of K3 surfaces and modular forms, J. AMS, 13, 371–410, 2000. math.AG/0009025.
[12] J., Bryan and R., Pandharipande, BPS states of curves in Calabi-Yau 3-folds, Geom. Topol. 5, 287–318, 2001. math.AG/0306316.
[13] J., Bryan and R., Pandharipande, Curves in Calabi-Yau threefolds and TQFT, Duke J. Math. 126, 369–396, 2005.
[14] J., Bryan and R., Pandharipande, On the rigidity of stable maps to Calabi-Yau threefolds, in The interaction of finite-type and Gromov-Witten invariants (BIRS 2003), Geom. Top. Monogr. 8, 97–104, 2006. math.AG/0405204.
[15] P., Candelas, X., de la Ossa, P., Green, and L., Parks, A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. Phys. B359 (1991), 21–74.
[16] L., Caporaso and J., Harris, Counting plane curves of any genus, Invent. Math. 131 (1998), 345–392. alg-geom/9608025.
[17] H.-L., Chang and J., Li, Gromov-Witten invariants of stable maps with fields, arXiv:1101.0914.
[18] X., Chen, Rational curves on K3 surfaces, J. Alg. Geom. 8, 245–278, 1999. math/9804075.
[19] W.-Y., Chuang, D.-E., Diaconescu and G., Pan, BPS states, Donaldson-Thomas invariants and Hitchin pairs, preprint.
[20] I., Ciocan-Fontanine and B., Kim, Moduli stacks of stable toric quasimaps, Adv. in Math. 225, 3022–3051, 2010. arXiv:0908.4446.
[21] I., Ciocan-Fontanine, B., Kim and D., Maulik, Stable quasimaps to GIT quotients, arXiv:1106.3724.
[22] Y., Cooper, The geometry of stable quotients in genus one, arXiv:1109.0331.
[23] D., Cox and S., Katz, Mirror symmetry and algebraic geometry. Mathematical Surveys and Monographs, 68. AMS, Providence, RI, 1999.
[24] H.-J., Fan, T. J., Jarvis, and Y., Ruan, The Witten equation and its virtual fundamental cycle, arXiv:0712.4025.
[25] P. Di, Francesco, C., Itzykson, Quantum intersection rings. in The moduli space of curves, R., Dijkgraaf, C., Faber, and G., van der Geer, eds., Birkhauser, 81–148, 1995.
[26] R., Dijkgraff, E., Verlinde, and H., Verlinde, Topological strings in d < 1, Nucl. Phys. B352 59–86, 1991.
[27] S. K., Donaldson and R. P., Thomas. Gauge theory in higher dimensions. In The geometric universe (Oxford, 1996), 31–47. Oxford Univ. Press, Oxford, 1998.
[28] A., Douady and J.-L., Verdier, Séminaire de géometrie analytique â ENS 1974/1975, Astérisque 36-37, 1976.
[29] C., Faber and R., Pandharipande. Hodge integrals and Gromov-Witten theory, Invent. Math., 139, 173–199, 2000. math.AG/9810173.
[30] W., Fulton, Intersection theory. Springer-Verlag, Berlin, 1984.
[31] W., Fulton and R., MacPherson, A compactification of configuration spaces, Ann. of Math. 139, 183–225, 1994.
[32] W., Fulton and R., Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry (Santa Cruz 1995), 45–96, Proc. Sympos. Pure Math. 62, Part 2, Amer. Math. Soc., Providence, RI, 1997. alg-geom/9608011.
[33] E., Getzler, Intersection theory on M1,4 and elliptic Gromov-Witten invariants, Jour. AMS 10, 973–998, 1997. alg-geom/9612004.
[34] A., Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 13, 613–663, 1996. alg-geom/9603021.
[35] R., Gopakumar and C., Vafa, M-theory and topological strings–I, hepth/9809187.
[36] R., Gopakumar and C., Vafa, M-theory and topological strings–II, hepth/9812127.
[37] L., Göttsche, A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196, 523–533, 1998.
[38] L., Göttsche and R., Pandharipande, The quantum cohomology of blow-ups of ℙ2 and enumerative geometry, J. Diff. Geom. 48, 61–90, 1998. alg-geom/9611012.
[39] M., Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82, 307–347, 1985.
[40] M., Gross, Tropical geometry and mirror symmetry, AMS, 2011.
[41] M., Gross, R., Pandharipande, B., Siebert, The tropical vertex. Duke Math. J. 153, 297–362, 2010. arXiv:0902.0779.
[42] M., Gross and B., Siebert, From real affine geometry to complex geometry, Ann. of Math. 174, 13011428, 2011.math.AG/0703822.
[43] K., Hori, S., Katz, A., Klemm, R., Pandharipande, R., Thomas, C., Vafa, R., Vakil, and E., Zaslow, Mirror Symmetry, AMS: Providence, R.I., 2003.
[44] S., Hosono, M., Saito, and A., Takahashi, Relative Lefschetz action and BPS state counting, Internat. Math. Res. Notices, 15, 783–816, 2001. math.AG/0105148.
[45] E.-N., Ionel and T., Parker, Relative Gromov-Witten Invariants. Ann. of Math. 157, 45–96, 2003. math.SG/9907155.
[46] I., Itenberg, G., Mikhalkin, and E., Shustin, Tropical algebraic geometry. Oberwolfach Seminars, 35. Birkhuser Verlag, Basel, 2007.
[47] D., Joyce, Kuranishi homology and Kuranishi cohomology. arXiv:0707.3572.
[48] D., Joyce and Y., Song, A theory of generalized Donaldson Thomas invariants, to appear in Memoirs of the AMS, 2011. arXiv:0810.5645.
[49] S., Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Diff. Geom. 79, 185–195, 2008. math.AG/0601193.
[50] S., Katz, A., Klemm, and C., Vafa, M-theory, topological strings and spinning black holes, Adv. Theor. Math. Phys., 3, 1445–1537, 1999. hep-th/9910181.
[51] B., Kim, A., Kresch and Y-G., Oh, A compactification of the space of maps from curves, arXiv:1105.6143.
[52] A., Klemm, D., Maulik, R., Pandharipande and E., Scheidegger, Noether-Leftschetz theory and the Yau-Zaslow conjecture J. AMS 23, 1013–1040, 2010. arXiv:0807.2477.
[53] A., Klemm and R., Pandharipande, Enumerative geometry of Calabi-Yau 4-folds. Comm. Math. Phys. 281, 621–653, 2008. math.AG/0702189.
[54] J., Kollár, Rational curves on algebraic varieties, Springer-Verlag: Berlin, 1999.
[55] M., Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys. 147, 1–23, 1992.
[56] M., Kontsevich, Enumeration of rational curves via torus actions,in The moduli space of curves, R., Dijkgraaf, C., Faber, and G. van der, Geer, eds., Birkhauser, 335–368, 1995. hep-th/9405035.
[57] M., Kontsevich and Yu., Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164, 525–562, 1994. hep-th/9402147.
[58] M., Kontsevich and Y., Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
[59] J. Le, Potier, Systèmes cohérents et structures de niveau, Astérisque, 214, 143, 1993.
[60] M., Levine and R., Pandharipande, Algebraic cobordism revisited, Invent. Math. 176, 63–130, 2009. math.AG/0605196.
[61] A-M., Li, and Y., Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds I, Invent. Math. 145, 151–218, 2001. math.AG/9803036.
[62] J., Li, Stable morphisms to singular schemes and relative stable morphisms, J. Diff. Geom. 57, 509–578, 2001. math.AG/0009097.
[63] J., Li. Zero dimensional Donaldson-Thomas invariants of threefolds, Geom. Topol. 10, 2117–2171, 2006. math.AG/0604490.
[64] J., Li. Recent progress in GW-invariants of Calabi-Yau threefolds, In Current Developments in Mathematics, 2007, International Press, 2009.
[65] J., Li and G., Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, Jour. AMS, 11, 119–174, 1998. alg-geom/9602007.
[66] B., Lian, K., Liu, and S.-T., Yau, Mirror principle I, Asian J. Math. 4, 729–763, 1997. alg-geom/9712011.
[67] A., Marian, D., Oprea and R., Pandharipande, The moduli space of stable quotients, Geom. Topol. 15, 1651–1706, 2011. arXiv:0904.2992.
[68] D., Maulik, N., Nekrasov, A., Okounkov, and R., Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142, 1263–1285, 2006. math.AG/0312059.
[69] D., Maulik, N., Nekrasov, A., Okounkov, and R., Pandharipande. Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math., 142, 1286–1304, 2006. math.AG/0406092.
[70] D., Maulik, A., Oblomkov, A., Okounkov, and R., Pandharipande. Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math. 186, 435–479, 2011. arXiv:0809.3976.
[71] D., Maulik and Z., Yun, Macdonald formula for curves with planar singularities. arXiv:1107.2175
[72] L., Migliorini and V., Shende, A support theorem for Hilbert schemes of planar curves. arXiv:1107.2355.
[73] G., Mikhalkin, Enumerative tropical algebraic geometry in ℝ2. J. AMS. 18, 313–377, 2005. math/0312530.
[74] A., Okounkov and R., Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models. Algebraic geometry, Seattle 2005. Proc. Sympos. Pure Math., 80, Part 1, 325–414. math.AG/0101147.
[75] A., Okounkov and R., Pandharipande, Gromov-Witten theory, Hurwitztheory, and completed cycles. Ann. of Math. 163, 517–560, 2006. math.AG/0204305.
[76] R., Pandharipande, Hodge integrals and degenerate contributions, Comm. Math. Phys. 208, 489–506, 1999. math/9811140.
[77] R., Pandharipande. Three questions in Gromov-Witten theory. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)503–512, Beijing, 2002. Higher Ed. Press. math.AG/0302077.
[78] R., Pandharipande, Maps, sheaves, and K3 surfaces, arXiv:0808.0253.
[79] R., Pandharipande, The kappa ring of the moduli of curves of compact type, to appear in Acta. Math. arXiv:0906.2657 and arXiv:0906.2658.
[80] R., Pandharipande and A., Pixton, Descendent theory for stable pairs on toric 3-folds, arXiv:1011.4054.
[81] R., Pandharipande and A., Pixton, Relations in the tautological ring, arXiv:1101.2236.
[82] R., Pandharipande and R. P., Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178, 407–447, 2009. arXiv:0707.2348.
[83] R., Pandharipande and R. P., Thomas, Stable pairs and BPS invariants, J. AMS. 23, 267–297, 2010. arXiv:0711.3899.
[84] R., Pandharipande and R. P., Thomas, Almost closed 1-forms, arXiv:1204.3958.
[85] R., Pandharipande and A., Zinger, Enumerative geometry of Calabi-Yau 5-folds, New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (RIMS, Kyoto, 2008), 239–288, Adv. Stud. Pure Math., 59, Math. Soc. Japan, Tokyo, 2010. arXiv:0802.1640.
[86] R., Piene and M., SchlessingerOn the Hilbert scheme compactification of the space of twisted cubics. Amer. J. Math. 107, 761–774, 1985.
[87] Z., Ran, The degree of a Severi Variety, Bull. AMS, 125–128, 1997.
[88] Y., Ruan, Topological sigma model and Donaldson type invariants in Gromov theory, Duke Math. J. 83, 461–500, 1996.
[89] Y., Ruan and G., Tian, A mathematical theory of quantum cohomology, Math. Res. Lett. 1, 269–278, 1994.
[90] H., Schubert, Kalkül der abzählenden Geometrie, B. G. Teubner, Leipzig, 1879.
[91] I., Setayesh, Multiple cover calculation for the unramified compactification of the moduli space of stable maps, arXiv:1305.3404.
[92] V., Shende, Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation, to appear in Compositio Math. arXiv:1009.0914.
[93] W., Stevens, Thirteen ways of looking at a blackbird, Ateliers Leblanc, 1997.
[94] J., Stoppa and R. P., Thomas, Hilbert schemes and stable pairs: GIT and derived category wall crossings. To appear in Bull. SMF., 2011. arXiv:0903.1444.
[95] C. H., Taubes, SW ⇒ Gr: from the Seiberg-Witten equations to pseudoholomorphic curves. Jour. AMS. 9, 845–918, 1996.
[96] R. P., Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Diff. Geom. 54, 367–438, 2000. math.AG/9806111.
[97] Y., Toda. Birational Calabi-Yau 3-folds and BPS state counting, Comm. Numb. Theor. Phys. 2, 63–112, 2008. math.AG/07071643.
[98] Y., Toda, Limit stable objects on Calabi-Yau 3-folds, Duke Math. J. 149, 157–208, 2009. arXiv:0803.2356.
[99] Y., Toda, Curve counting theories via stable objects I: DT/PT correspondence. J. AMS., 23, 1119–1157, 2010. arXiv:0902.4371.
[100] Y., Toda, Stability conditions and curve counting invariants on Calabi-Yau 3-folds, arXiv:1103.4229.
[101] Y., Toda, Moduli spaces of stable quotients and wall-crossing phenomena, Compositio Math. 147 1479–1518, 2011. arXiv:1005.3743.
[102] R., Vakil and A., Zinger, A desingularization of the main component of the moduli space of genus-one stable maps into ℙn, Geom. Topol. 12, 1–95, 2008. math.AG/0603353.
[103] E., Witten, On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B340, 281–332, 1990.
[104] E., Witten, Two dimensional gravity and intersection theory on moduli space, Surv. Diff. Geom. 1, 243–310, 1991.
[105] E., Witten, Chern-Simons gauge theory as a string theory. In The Floer memorial volume, Progr. Math., 133, 637–678. Birkhuser, Basel, 1995. hep-th/9207094.
[106] S.-T., Yau and E., Zaslow, BPS states, string duality, and nodal curves on K3, Nucl. Phys. B457, 484–512, 1995. hep-th/9512121.
[107] H. G., ZeuthenLehrbuch der abzählenden methoden der geometrie, Teubner, Leipzig, 1914.
[108] A., Zinger, A comparison theorem for Gromov Witten invariants in the symplectic category, Adv. Math. 228, 535–574, 2011. arXiv:0807.0805.
[109] A., Zinger, The reduced genus-one Gromov-Witten invariants of Calabi-Yau hypersurfaces, J.AMS 22, 691–737, 2009. arXiv:0705.2397.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×