Book contents
- Frontmatter
- Contents
- Preface
- 1 Finite Groups of Lie Type
- 2 Simple Modules
- 3 Weyl Modules and Lusztig's Conjecture
- 4 Computation of Weight Multiplicities
- 5 Other Aspects of Simple Modules
- 6 Tensor Products
- 7 BN-Pairs and Induced Modules
- 8 Blocks
- 9 Projective Modules
- 10 Comparison with Frobenius Kernels
- 11 Cartan Invariants
- 12 Extensions of Simple Modules
- 13 Loewy Series
- 14 Cohomology
- 15 Complexity and Support Varieties
- 16 Ordinary and Modular Representations
- 17 Deligne–Lusztig Characters
- 18 The Groups G2(q)
- 19 General and Special Linear Groups
- 20 Suzuki and Ree Groups
- Bibliography
- Frequently Used Symbols
- Index
9 - Projective Modules
Published online by Cambridge University Press: 23 November 2009
- Frontmatter
- Contents
- Preface
- 1 Finite Groups of Lie Type
- 2 Simple Modules
- 3 Weyl Modules and Lusztig's Conjecture
- 4 Computation of Weight Multiplicities
- 5 Other Aspects of Simple Modules
- 6 Tensor Products
- 7 BN-Pairs and Induced Modules
- 8 Blocks
- 9 Projective Modules
- 10 Comparison with Frobenius Kernels
- 11 Cartan Invariants
- 12 Extensions of Simple Modules
- 13 Loewy Series
- 14 Cohomology
- 15 Complexity and Support Varieties
- 16 Ordinary and Modular Representations
- 17 Deligne–Lusztig Characters
- 18 The Groups G2(q)
- 19 General and Special Linear Groups
- 20 Suzuki and Ree Groups
- Bibliography
- Frequently Used Symbols
- Index
Summary
In the study of a non-semisimple module category, projective modules are an essential ingredient. The general theory of these modules is fairly well-organized for any finite dimensional algebra, with additional features in the case of a group algebra KG. We begin by recalling some standard facts for an arbitrary G in 9.1, then raise a number of questions in 9.2 concerning families of finite groups of Lie type.
A pivotal role is played by Steinberg modules (9.3): simple G-modules having highest weights of the form (pr – 1)ρ, where ρ is the sum of fundamental weights. Unlike other simple modules for the finite group G over a field of pr elements, L((pr –1)ρ) is its own projective cover. Tensoring arbitrary KG-modules with this one produces new projective modules, whose indecomposable summands turn out to exhaust the projective covers of all simple modules (9.4).
In the framework of Brauer characters (9.5–9.6), we see that the Steinberg character “divides” all characters of projective modules. Moreover, there is at least a rough lower bound (9.7) for the dimensions of indecomposable projectives, though this is usually far too small in practice. A more thorough study of projectives is deferred to the following chapter, where the parallel theory for Frobenius kernels comes into play.
Here we just take a detailed look at projective modules for SL(2, p) (9.8). The data can be efficiently encoded in a “Brauer tree” (9.9).
- Type
- Chapter
- Information
- Modular Representations of Finite Groups of Lie Type , pp. 75 - 86Publisher: Cambridge University PressPrint publication year: 2005