Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T20:55:29.765Z Has data issue: false hasContentIssue false

7 - Modular forms for congruence subgroups

from Part I - Modular forms and their variants

Published online by Cambridge University Press:  28 November 2024

Eric D'Hoker
Affiliation:
University of California, Los Angeles
Justin Kaidi
Affiliation:
Kyushu University
Get access

Summary

In this chapter, we shall discuss modular forms for the congruence subgroups introduced in Chapter 6. We shall obtain the dimension formulas for the corresponding rings of modular forms and cusp forms, describe the fields of modular functions on the modular curves introduced in Chapter 6, and construct the associated Eisenstein series. Throughout the chapter, we shall make use of the correspondence between modular forms and differential forms, viewed as sections of holomorphic line bundles on the compact Riemann surface of the modular curve. We shall provide concrete examples of modular forms for the standard congruence subgroups and apply the results to the theorems of Lagrange and Jacobi on counting the number of representations of an integer as a sum of squares.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×