Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T09:08:50.761Z Has data issue: false hasContentIssue false

3 - Representations of Galois Groups and Modular Forms

Published online by Cambridge University Press:  18 December 2009

Haruzo Hida
Affiliation:
University of California, Los Angeles
Get access

Summary

The purpose of this chapter is to identify the GL(2)-Hecke algebras with universal deformation rings with certain additional structures. This fact was first conjectured by B. Mazur and now is a theorem of Wiles in many cases (see Subsection 3.2.7 for a description of the present knowledge to date: October 1999), which is one of the key points of his proof of Fermat's last theorem. In this chapter, we will prove the theorem in a typical case (which covers the case when the weight is bigger than or equal to 2), assuming the knowledge of the modular two-dimensional Galois representations, control theorems of Hecke algebras and the Poitou–Tate duality theorem on Galois cohomology. We will come back later to the duality theorems used here and give a full exposition of them in Chapter 4. As for modular Galois representations and control theorems, we content ourselves only by describing the precise result necessary for the proof and giving some indication of further reading (see Theorem 3.15, Corollary 3.19 and Theorem 3.26). These two results left untouched here will be covered in my forthcoming book [GMF].

Modular Forms on Adele Groups ofGL(2)

We first recall a general theory of elliptic modular forms in the language of adeles.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×