Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T09:50:18.505Z Has data issue: false hasContentIssue false

Chap 5 - MOLECULAR GENETICS OF SOFT TISSUE TUMORS

Published online by Cambridge University Press:  01 March 2011

Markku Miettinen
Affiliation:
Armed Forces Institute of Pathology, Washington DC
Get access

Summary

It is now widely accepted that cancer is caused by accumulation of genetic and epigenetic changes that complement one another. These changes lead to destabilization of cellular growth control and promote uncontrolled clonal proliferation and tumor development.

Many genetic alterations affect the function of growth-controlling genes, often called oncogenes and tumor suppressor genes. The gain of function of oncogenes and loss of function of tumor suppressor genes are among the major molecular events in the development of human cancer. The identification of epigenetic and genetic abnormalities in the cancer genome and the understanding of their functional consequences are leading to the development of new diagnostic approaches and better treatment strategies targeting the affected gene products and their signaling pathways.

The ongoing “genetic revolution” continues to deliver data that have already had an impact on the surgical pathology of soft tissue tumors. Detection of specific translocations and gene fusion products can be used as disease-specific markers to improve the diagnosis and prognosis of soft tissue tumors. Other genetic changes, such as amplification of oncogenes and silencing of tumor suppressor genes, can correlate with favorable or poor clinical outcomes. Finally, specific genetic and epigenetic changes can be used in the molecular staging of diseases by screening peripheral blood, bone marrow, or other fluids for minimal residual disease or micrometastases.

Integration of genetics and epigenetics into surgical pathology of soft tissue tumors is expanding. Further studies will add new diagnostic and prognostic assays and define new approaches to cancer therapy.

Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 127 - 180
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cooper, GM. Oncogenes, ed. 2. Boston: Jones and Bartlett Publishers International, 1995.
Fisher, . Tumor Suppressor Genes in Human Cancer. Totowa, NJ: Humana Press, 2001.Google Scholar
Esteller, M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–1159.CrossRefGoogle Scholar
Medina, PP, Slack, FJ. microRNAs and cancer: an overview. Cell Cycle 2008;7:2485–2492.CrossRefGoogle ScholarPubMed
Der, CJ, Krontiris, TG, Cooper, GM. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kiristen sarcoma viruses. Proc Natl Acad Sci USA 1982;79:3637–3640.CrossRefGoogle ScholarPubMed
Parada, LF, Tabin, CJ, Shih, C, Weinberg, RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 1982;297:474–478.CrossRefGoogle ScholarPubMed
Reddy, EP, Reynolds, RK, Santos, E, Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 1982;300:149–152.CrossRefGoogle ScholarPubMed
Barbacid, M. ras genes. Annu Rev Biochem 1987;56:779–827.CrossRefGoogle ScholarPubMed
Quilliam, , Rebhun, JF, Castro, AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol 2002;71:391–444.CrossRefGoogle ScholarPubMed
Rebollo, A, Martinez-AC, . Ras proteins: recent advances and new functions. Blood 1999;94:2971–2980.Google ScholarPubMed
Reuter, CW, Morgan, MA, Bergmann, L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies?Blood 2000;96:1655–1669.Google ScholarPubMed
Adjei, AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001;93:1062–1074.CrossRefGoogle ScholarPubMed
Guerrero, S, Figueras, A, Casanova, I, Farré, L, Lloveras, B, Capellà, G. Codon 12 and codon 13 mutations at the K-ras gene induce different soft tissue sarcoma types in nude mice. FASEB J 2002;16:1642–1644.CrossRefGoogle ScholarPubMed
Bos, JL. Ras oncogenes in human cancer: a review. Cancer Res 1989;49:4682–4689.Google ScholarPubMed
Bohle, RM, Brettreich, S, Repp, R, Borkhardt, A, Kosmehl, H, Altmannsberger, HM. Single somatic ras gene point mutation in soft tissue malignant fibrous histiocytomas. Am J Pathol 1996;148:731–738.Google ScholarPubMed
Yoo, J, Robinson, RA, Lee, JY. H-ras nad K-ras gene mutations in primary human soft tissue sarcomas: concomitant mutations of the ras genes. Mod Pathol 1999;12:775–780.Google Scholar
Hill, MA, Gong, C, Casey, TJ, Menon, AG, Mera, R, Gillespie, AT. Detection of K-ras mutations in resected primery leiomyosarcoma. Cancer Epidemiol Biomarkers Prev 1997;6:1095–1100.Google Scholar
Marion, MJ, Froment, O, Trepo, C. Activation of Ki-ras gene by point mutation in human liver angiosarcoma associated with vinyl chloride exposure. Mol Carcinog 1991;4:450–454.CrossRefGoogle ScholarPubMed
Przygodzki, RM, Finkelstein, SD, Keohavong, P, Zhun, D, Bakker, A, Swalsky, PA. Sporadic and Thorotrast-induced angiosarcomas of the liver manifest frequent and multiple point mutations in K-ras-2. Lab Invest 1997;76:153–159.Google ScholarPubMed
Stratton, MR, Fisher, C, Gusterson, BA, Cooper, CS. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res 1989;49:6324–6327.Google ScholarPubMed
Estep, AL, Tidyman, WE, Teitell, MA, Cotter, PD, Rauen, KA. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A 2006;140:8–16.CrossRefGoogle ScholarPubMed
Kratz, CP, Steinemann, D, Niemeyer, CM, Schlegelberger, B, Koscielniak, E, Kontny, U. Uniparental disomy at chromosome 11p15.5 followed by HRAS mutations in embryonal rhabdomyosarcoma: lessons from Costello syndrome. Hum Mol Genet 2007;16:374–379.CrossRefGoogle ScholarPubMed
Tidyman, WE, Rauen, KA. Noonan, Costello and cardio-facio-cutaneous syndromes: dysregulation of the Ras-MAPK pathway. Expert Rev Mol Med 2008;10:e37.CrossRefGoogle ScholarPubMed
Aoki, Y, Niihori, T, Narumi, Y, Kure, S, Matsubara, Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat 2008;29:992–1006.CrossRefGoogle ScholarPubMed
Guha, A, Lau, N, Huvar, I, Gutmann, D, Provias, J, Pawson, T. Ras-GTP levels are elevated in human NF1 peripheral nerve tumors. Oncogene 1996;12:507–513.Google ScholarPubMed
Feldkamp, MM, Angelov, L, Guha, A. Neurofibromatosis type 1 peripheral nerve tumors: aberrant activation of the Ras pathway. Surg Neurol 1999;51:211–218.CrossRefGoogle ScholarPubMed
Ladanyi, M. The emerging molecular genetics of sarcoma translocation. Diagnostic Mol Pathol 1995;4:162–173.CrossRefGoogle Scholar
Rabbitts, TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001;20:5763–5777.CrossRefGoogle ScholarPubMed
Xia, SJ, Barr, FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41:2513–2527.CrossRefGoogle ScholarPubMed
Slater, O, Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60:1187–1194.CrossRefGoogle ScholarPubMed
Oda, Y, Tsuneyoshi, M. Recent advances in the molecular pathology of soft tissue sarcoma: Implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2008 Dec 14. [Epub]Google Scholar
Nucci, MR, Weremowicz, S, Neskey, DM, Sornberger, K, Tallini, G, Morton, CC. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva. Genes Chromosomes Cancer 2001;32:172–176.CrossRefGoogle Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15). Virchows Arch 2006;448:838–842.CrossRefGoogle Scholar
Rabban, JT, Dal Cin, P, Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. In J Gynecol Pathol 2006;25:403–407.CrossRefGoogle Scholar
Rawlinson, NJ, West, WW, Nelson, M, Bridge, JA. Aggressive angiomyxoma with t(12;21) and HMGA2 rearrangement: report of a case and review of the literature. Cancer Genet Cytogenet 2008;181:119–124.CrossRefGoogle Scholar
Joyama, S, Ueda, T, Shimizu, K, Kudawara, I, Mano, M, Funai, H. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 1999;86:1246–1250.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Ladanyi, M, Lui, MY, Antonescu, CR, Krause-Boehm, A, Meindl, A, Argani, P. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001;20:48–57.CrossRefGoogle Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109–116.CrossRefGoogle ScholarPubMed
Raddaoui, E, Donner, LR, Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 2002;11:157–162.CrossRefGoogle Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, Teot, , Surti, U, Fletcher, CD. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:1051–1060.CrossRefGoogle ScholarPubMed
Hallor, KH, Micci, F, Meis-Kindblom, JM, Kindblom, LG, Bacchini, P, Mandahl, N. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158–163.CrossRefGoogle ScholarPubMed
Tallini, G, Dorfman, H, Brys, P, Dal Cin, P, Wever, I, Fletcher, CD. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002;196:194–203.CrossRefGoogle ScholarPubMed
Dahlén, A, Mertens, F, Rydholm, A, Brosjö, O, Wejde, J, Mandahl, N. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:1132–1140.CrossRefGoogle ScholarPubMed
Ohkura, N, Yaguchi, H, Tsukada, T, Yamaguchi, K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002;277:535–543.CrossRefGoogle ScholarPubMed
Labelle, Y, Bussières, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:3303–3308.CrossRefGoogle Scholar
Attwooll, C, Tariq, M, Harris, M, Coyne, JD, Telford, N, Varley, JM. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999;18:7599–7601.CrossRefGoogle Scholar
Sjögren, H, Meis-Kindblom, J, Kindblom, LG, Åman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:5064–5067.Google ScholarPubMed
Sjögren, H, Wedell, B, Kindblom, JM, Kindblom, LG, Stenman, G. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res 2000;60:6832–6835.Google Scholar
Morohoshi, F, Arai, K, Takahashi, EI, Tanigami, A, Ohki, M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 1996;38:51–57.CrossRefGoogle ScholarPubMed
Hisaoka, M, Ishida, T, Imamura, T, Hashimoto, H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325–328.CrossRefGoogle ScholarPubMed
Zucman, J, Delattre, O, Desmaze, C, Epstein, AL, Stenman, G, Speleman, F. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nature Genet 1993;4:341–345.CrossRefGoogle Scholar
Panagopoulos, I, Mertens, F, Debiec-Rychter, M, Isaksson, M, Limon, J, Kardas, I. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002;99:560–567.CrossRefGoogle ScholarPubMed
Speleman, F, Delattre, O, Peter, M, Hauben, E, Roy, N, Marck, E. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation. Mod Pathol 1997;10:496–499.Google Scholar
Antonescu, CR, Tschernyavsky, SJ, Woodruff, JM, Jungbluth, AA, Brennan, MF, Ladanyi, M. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002;4:44–52.CrossRefGoogle ScholarPubMed
Covinsky, M, Gong, S, Rajaram, V, Perry, A, Pfeifer, J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol 2005;36:74–81.CrossRefGoogle ScholarPubMed
Antonescu, CR, Nafa, K, Segal, NH, Dal Cin, P, Ladanyi, M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma-association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006;12:5356–5362.CrossRefGoogle ScholarPubMed
Simon, MP, Pedeutour, F, Sirvent, N, Grosgeorge, J, Minoletti, F, Coindre, JM. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nature Genet 1997;15:95–98.CrossRefGoogle ScholarPubMed
Shimizu, A, O'Brien, KP, Sjöblom, T, Pietras, K, Buchdunger, E, Collins, VP. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:3719–3723.Google ScholarPubMed
Simon, MP, Navarro, M, Roux, D, Pouysségur, J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001; 20:2965–2975.CrossRefGoogle Scholar
O'Brien, KP, Seroussi, E, Dal Cin, P, Sciot, R, Mandahl, N, Fletcher, JA. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcoma protuberans and giant cell fibroblastomas. Genes Chromosomes Cancer 1998;23:187–193.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Sirvent, N, Maire, G, Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003; 37:1–19.CrossRefGoogle ScholarPubMed
Bianchini, L, Maire, G, Guillot, B, Joujoux, JM, Follana, P, Simon, MP. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008;452:689–696.CrossRefGoogle Scholar
Ladanyi, M, Gerald, WL. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994;54:2837–2840.Google ScholarPubMed
Gerald, WL, Rosai, J, Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995;14:1028–1032.CrossRefGoogle Scholar
Gerald, WL, Ladanyi, M, Alava, E, Cuatrecasas, M, Kushner, BH, LaQuaglia, MP. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants. J Clin Oncol 1998;16:3028–3036.CrossRefGoogle Scholar
Gerald, WL, Haber, DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 2005;15:197–205.CrossRefGoogle ScholarPubMed
Koontz, JI, Soreng, AL, Nucci, M, Kuo, FC, Pauwels, P, Berghe, H. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Nat Acad Sci 2001;98:6348–6353.CrossRefGoogle ScholarPubMed
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas. Cancer Res 2006;66:107–112.CrossRefGoogle Scholar
Aurias, A, Rimbaut, C, Buffe, D, Zucker, JM, Mazabraud, A. Translocation involving chromosome 22 in Ewing's sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984;12:21–25.CrossRefGoogle ScholarPubMed
Whang-Peng, J, Triche, TJ, Knutsen, T, Miser, J, Douglass, EC, Israel, MA. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584–585.CrossRefGoogle ScholarPubMed
Delattre, O, Zucman, J, Plougastel, B, Desmaze, C, Melot, T, Peter, M. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162–165.CrossRefGoogle Scholar
Zucman, J, Delattre, O, Desmaze, C, Plougastel, B, Joubert, I, Melot, T. Cloning and characterization of the Ewing's sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992;5:271–277.CrossRefGoogle Scholar
Zucman, J, Melot, T, Desmaze, C, Ghysdael, J, Plougastel, B, Peter, M. Combinatorial generation of variable fusion proteins in Ewing family of tumors. EMBO J 1993;12:4481–4487.Google Scholar
Sorensen, PH, Lessnick, SL, Lopez-Terrada, D, Liu, XF, Triche, TJ, Denny, CT. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994;6:146–151.CrossRefGoogle Scholar
Jeon, IS, Davis, JN, Braun, BS, Sublett, JE, Roussel, MF, Denny, CT. A variant Ewing's sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995;10:1229–1234.Google Scholar
Kaneko, Y, Yoshida, K, Handa, M, Toyoda, Y, Nishihira, H, Tanaka, Y. Fusion of an ETS- family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115–121.3.0.CO;2-6>CrossRefGoogle Scholar
Peter, M, Couturier, J, Pacquement, H, Michon, J, Thomas, G, Magdelenat, H. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:1159–1164.CrossRefGoogle ScholarPubMed
Mastrangelo, T, Modena, P, Tornielli, S, Bullrich, F, Testi, MA, Mezzelani, A. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:3799–3804.CrossRefGoogle ScholarPubMed
Wang, L, Bhargava, R, Zheng, T, Wexler, L, Collins, MH, Roulston, D. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498–509.CrossRefGoogle ScholarPubMed
Ng, TL, O'Sullivan, MJ, Pallen, CJ, Hayes, M, Clarkson, PW, Winstanley, M. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459–463.CrossRefGoogle Scholar
Shing, DC, McMullan, DJ, Roberts, P, Smith, K, Chin, SF, Nicholson, J. FUS/ERG gene fusions in Ewing's tumors. Cancer Res 2003;63:4568–4576.Google ScholarPubMed
Knezevich, SR, McFadden, , Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184–187.CrossRefGoogle ScholarPubMed
Knezevich, SR, Garnett, MJ, Pysher, TJ, Beckwith, JB, Grundy, PE, Sorensen, PH. ETV6-NTRK3 gene fusion and trisomy 11 established a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 1998;58:5046–5048.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, Xiao, S, Grier, HE, Kozakewich, HP. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:1451–1458.CrossRefGoogle Scholar
Cools, J, Wlodarska, I, Somers, R, Mentens, N, Pedeutour, F, Maes, B. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002;34:354–362.CrossRefGoogle ScholarPubMed
Bridge, JA, Kanamori, M, Ma, Z, Pickering, D, Hill, DA, Lydiatt, W. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411–415.CrossRefGoogle ScholarPubMed
Ma, Z, Hill, DA, Collins, MH, Morris, SW, Sumegi, J, Zhou, M. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98–105.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Nilsson, T, Domanski, HA, Isaksson, M, Lindblom, P, Mertens, F. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:1181–1186.CrossRefGoogle Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, Rubin, BP, Dal Cin, P, Pinkus, JL. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377–384.CrossRefGoogle ScholarPubMed
Schoenmakers, EF, Huysmans, C, Ven, WJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999;59:19–23.Google Scholar
Moore, SD, Herrick, SR, Ince, TA, Kleinman, MS, Dal Cin, P, Morton, CC. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 2004;64:5570–5577.CrossRefGoogle Scholar
Kurose, K, Mine, N, Doi, D, Ota, Y, Yoneyama, K, Konishi, H. Novel gene fusion COX6C at 8q22–23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 2000;27:303–307.3.0.CO;2-3>CrossRefGoogle Scholar
Mine, N, Kurose, K, Konishi, H, Araki, T, Nagai, H, Emi, M. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res 2001;92:135–139.CrossRefGoogle Scholar
Kazmierczak, B, Hennig, Y, Wanschura, S, Rogalla, P, Bartnitzke, S, Ven, W. Description of a novel fusion transcript between HMGI-C, a gene encoding for a member of the high mobility group proteins, and the mitochondrial aldehyde dehydrogenase gene. Cancer Res 1995;55:6038–6039.Google ScholarPubMed
Kazmierczak, B, Pohnke, Y, Bullerdiek, J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations. Genomics 1996;38:223–226.CrossRefGoogle ScholarPubMed
Astrom, A, D'Amore, ES, Sainati, L, Panarello, C, Morerio, C, Mark, J. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol 2000;16:1107–1110.Google ScholarPubMed
Gisselsson, D, Hibbard, MK, Dal Cin, P, Sciot, R, Hsi, BL, Kozakewich, HP. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60:4869–4872.Google Scholar
Gisselsson, D, Hibbard, MK, Dal Cin, P, Sciot, R, Hsi, BL, Kozakewich, HP. PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and evidence for alternative oncogenic mechanisms. Am J Pathol 2001;159:955–962.CrossRefGoogle ScholarPubMed
Sciot, R, Wever, I, Debiec-Rychter, M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch 2003;442:468–471.Google Scholar
Petit, MM, Swarts, S, Bridge, JA, Ven, WJ. Expression of reciprocal fusion transcripts of the HMGIC and LPP genes in parosteal lipoma. Cancer Genet Cytogenet 1998; 106:18–23.CrossRefGoogle ScholarPubMed
Rogalla, P, Kazmierczak, B, Meyer-Bolte, K, Tran, KH, Bullerdiek, J. The t(3;12)(q27;q14-q15) with underlying HMGIC-LPP fusion is not determining an adipocytic phenotype. Genes Chromosomes Cancer 1998;22:100–104.3.0.CO;2-0>CrossRefGoogle Scholar
Petit, MM, Mols, R, Schoenmakers, EF, Mandahl, N, Ven, WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996;36:118–129.CrossRefGoogle ScholarPubMed
Petit, MM, Schoenmakers, EF, Huysmans, C, Geurts, JM, Mandahl, N, Ven, WJ. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999;57:438–441.CrossRefGoogle Scholar
Broberg, K, Zhang, M, Strömbeck, B, Isaksson, M, Nilsson, M, Mertens, F. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35–37and 12q13–15. Int J Oncol 2002;21:321–326.Google ScholarPubMed
Kazmierczak, B, Dal Cin, P, Wanschura, S, Borrmann, L, Fusco, A, Berghe, H. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 1998;152:431–435.Google ScholarPubMed
Panagopoulos, I, Höglund, M, Mertens, F, Mandahl, N, Mitelman, F, Aman, P. Fusion of EWS and CHOP genes in myxoid liposarcoma. Oncogene 1996;12:489–494.Google ScholarPubMed
Crozat, A, Aman, P, Mandahl, N, Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640–644.CrossRefGoogle ScholarPubMed
Rabbitts, TH, Forster, A, Larson, R, Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175–180.CrossRefGoogle Scholar
Dal Cin, P, Sciot, R, Panagopoulos, I, Aman, P, Samson, I, Mandahl, N. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol 1997;182:437–441.3.0.CO;2-X>CrossRefGoogle Scholar
Storlazzi, CT, Mertens, F, Nascimento, A, Isaksson, M, Wejde, J, Brosjo, O. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 2003;12:2349–2358.CrossRefGoogle ScholarPubMed
Reid, R, Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11). Am J Surg Pathol 2003;27:1229–1236.CrossRefGoogle Scholar
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, Fletcher, JA, Nascimento, A, Domanski, HA. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218–228.CrossRefGoogle ScholarPubMed
Mertens, F, Fletcher, CD, Antonescu, CR, Coindre, JM, Colecchia, M, Domanski, HA. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408–415.CrossRefGoogle ScholarPubMed
Guillou, L, Benhattar, J, Gengler, C, Gallagher, G, Ranchère-Vince, D, Collin, F. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:1387–1402.CrossRefGoogle ScholarPubMed
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Gorunova, L, Skjeldal, S, Micci, F. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008;47:558–564.CrossRefGoogle Scholar
Barr, FG, Galili, N, Holick, J, Biegel, JA, Rovera, G, Emanuel, BS. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nature Genet 1993;3:113–117.CrossRefGoogle ScholarPubMed
Davis, RJ, D'Cruz, CM, Lovell, MA, Biegel, JA, Barr, FG. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54:2869–2872.Google Scholar
Barr, FG, Qualman, SJ, Macris, MH, Melnyk, N, Lawlor, ER, Strzelecki, DM. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62:4704–4710.Google ScholarPubMed
Wachtel, M, Dettling, M, Koscielniak, E, Stegmaier, S, Treuner, J, Simon-Klingenstein, K. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:5539–5545.CrossRefGoogle Scholar
Crew, AJ, Clark, J, Fisher, C, Gill, S, Grimer, R, Chand, A. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995;14:2333–2340.Google ScholarPubMed
Fligman, I, Lonardo, F, Jhanwar, SC, Gerald, WL, Woodruff, J, Ladanyi, M. Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol 1995;147:1592–1599.Google ScholarPubMed
Skytting, B, Nilsson, G, Brodin, B, Xie, Y, Lundeberg, J, Uhlén, M. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J NCI 1999;91:974–975.Google ScholarPubMed
Storlazzi, CT, Mertens, F, Mandahl, N, Gisselsson, D, Isaksson, M, Gustafson, P. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003;37:195–200.CrossRefGoogle ScholarPubMed
West, RB, Rubin, BP, Miller, MA, Subramanian, S, Kaygusuz, G, Montgomery, K. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 2006;103:690–695.CrossRefGoogle Scholar
Cupp, JS, Miller, MA, Montgomery, KD, Nielsen, TO, O'Connell, JX, Huntsman, D. Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial giant cell tumor, rheumatoid arthritis and reactive synovitides. Am J Surg Pathol 2007;31:970–976.CrossRefGoogle ScholarPubMed
Möller, E, Mandahl, N, Mertens, F, Panagopoulos, I. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2008;47:21–25.CrossRefGoogle ScholarPubMed
Turc-Carel, C, Philip, I, Berger, M-P, Philip, T, Lenoir, GM. Chromosomal translocations 11;22 in cell lines of Ewing's sarcoma. N Engl J Med 1983;309:497–498.Google Scholar
Whang-Peng, J, Triche, TJ, Knutsen, T, Miser, J, Kao-Shan, S, Tsai, S. Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet 1986;21:185–208.CrossRefGoogle ScholarPubMed
Law, WJ, Cann, KL, Hicks, GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5:8–14.CrossRefGoogle ScholarPubMed
Truong, AH, Ben-David, Y. The role of Fli-1 in normal cell function and malignant transformation. Oncogene 2000;19:6482–6489.CrossRefGoogle ScholarPubMed
Arvand, A, Denny, CT. Biology of EWS/ETS fusions in Ewing's family tumors. Oncogene 2001;20:5747–5754.CrossRefGoogle ScholarPubMed
Ginsberg, JP, Alava, E, Ladanyi, M, Wexler, LH, Kovar, H, Paulussen, M. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing's sarcomas. J Clin Oncol 1999;17:1809–1814.CrossRefGoogle Scholar
Panagopoulos, I, Aman, P, Fioretos, T, Hoglund, M, Johansson, B, Mandahl, N. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 1994;11:256–262.CrossRefGoogle Scholar
Ichikawa, H, Shimizu, K, Hayashi, Y, Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to erg in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 1994;54:2865–2868.Google Scholar
Tomlins, SA, Rhodes, DR, Perner, S, Dhanasekaran, SM, Mehra, R, Sun, XW. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644–648.CrossRefGoogle ScholarPubMed
Wang, J, Cai, Y, Ren, C, Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66:8347–8351.CrossRefGoogle ScholarPubMed
Tomlins, SA, Mehra, R, Rhodes, DR, Smith, LR, Roulston, D, Helgeson, BE. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66:3396–3400.CrossRefGoogle ScholarPubMed
Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497–511.CrossRefGoogle ScholarPubMed
Rossi, S, Szuhai, K, Ijszenga, M, Tanke, HJ, Zanatta, L, Sciot, R. EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma. Clin Cancer Res 2007;13:7322–7328.CrossRefGoogle ScholarPubMed
Hisaoka, M, Ishida, T, Kuo, TT, Matsuyama, A, Imamura, T, Nishida, K. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol 2008;32:452–460.CrossRefGoogle ScholarPubMed
Clark, J, Benjamin, H, Gill, S, Sidhar, S, Goodwin, G, Crew, J. Fusion of the EWS gene to CHN, a member of the steroid/thyroid receptor gene gene superfamily, in a human myxoid chondrosarcoma. Oncogene 1996;12:229–235.Google Scholar
Labelle, Y, Zucman, J, Stenman, G, Kindblom, L-G, Knight, J, Turc-Carel, C. Oncogenic conversion of the novel orphan nuclear receptor by chromosome translocation. Hum Mol Genet 1995;4:2219–2226.CrossRefGoogle ScholarPubMed
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, Kawaguchi, N, Mukai, H, Nakamura, T. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217–222.CrossRefGoogle Scholar
Hai, T, Hartman, MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:1–11.CrossRefGoogle ScholarPubMed
Brown, AD, Lopez-Terrada, D, Denny, C, Lee, KA. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 1995;10:1749–1756.Google ScholarPubMed
Lee, SB, Haber, DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264: 74–99.CrossRefGoogle ScholarPubMed
Kim, J, Lee, K, Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998;16:1973–1979.CrossRefGoogle Scholar
Lee, SB, Kolquist, KA, Nichols, K, Englert, C, Maheswaran, S, Ladanyi, M. The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour. Nat Genet 1997;17:309–313.CrossRefGoogle ScholarPubMed
Finkeltov, I, Kuhn, S, Glaser, T, Idelman, G, Wright, JJ, Roberts, CT. Transcriptional regulation of IGF-I receptor gene expression by novel isoforms of the EWS-WT1 fusion protein. Oncogene 2002;21:1890–1898.CrossRefGoogle ScholarPubMed
Wong, JC, Lee, SB, Bell, MD, Reynolds, PA, Fiore, E, Stamenkovic, I. Induction of the interleukin-2/15 receptor beta-chain by the EWS-WT1 translocation product. Oncogene 2002;21:2009–2019.CrossRefGoogle ScholarPubMed
Palmer, RE, Lee, SB, Wong, JC, Reynolds, PA, Zhang, H, Truong, V. Induction of BAIAP3 by the EWS-WT1 chimeric fusion implicates regulated exocytosis in tumorigenesis. Cancer Cell 2002;2:497–505.CrossRefGoogle ScholarPubMed
Li, H, Smolen, GA, Beers, LF, Xia, L, Gerald, W, Wang, J. Adenosine transporter ENT4 is a direct target of EWS/WT1 translocation product and is highly expressed in desmoplastic small round cell tumor. PLoS ONE 2008;3:e2353.CrossRefGoogle ScholarPubMed
Ohkura, N, Hijikuro, M, Yamamoto, A, Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:1959–1965.CrossRefGoogle ScholarPubMed
Gan, TI, Rowen, L, Nesbitt, R, Roe, BA, Wu, H, Hu, P. Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res 2002;98:245–248.CrossRefGoogle ScholarPubMed
Mencinger, M, Panagopoulos, I, Andreasson, P, Lassen, C, Mitelman, F, Aman, P. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997;41:327–331.CrossRefGoogle ScholarPubMed
Greco, A, Mariani, C, Miranda, C, Lupas, A, Pagliardini, S, Pomati, M. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:6118–6127.CrossRefGoogle Scholar
Hernández, L, Pinyol, M, Hernández, S, Beà, S, Pulford, K, Rosenwald, A. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:3265–3268.Google ScholarPubMed
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, Kawaguchi, N, Mukai, H, Nakamura, T. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217–222.CrossRefGoogle Scholar
Möller, E, Stenman, G, Mandahl, N, Hamberg, H, Mölne Lvan den Oord, JJ, Brosjö, O. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008;215:78–86.CrossRefGoogle ScholarPubMed
Hunger, SP, Galili, N, Carroll, AJ, Crist, WM, Link, MP, Cleary, ML. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687–693.Google Scholar
Kamps, MP, Murre, C, Sun, XH, Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547–555.CrossRefGoogle Scholar
Turc-Carel, C, Limon, J, Dal Cin, P, Rao, U, Karakousis, C, Sandberg, AA. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 1986;23:291–299.CrossRefGoogle Scholar
Åman, P, Ron, D, Mandahl, N, Fioretos, T, Heim, S, Arheden, K. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5:278–285.CrossRefGoogle Scholar
Heim, S, Mitelman, F. Cancer Cytogenetics: Chromosomal and Molecular Genetic Aberrations of Tumor Cells. New York: John Wiley & Sons, 1976.Google Scholar
Åman, P, Panagopoulos, I, Lassen, C, Fioretos, T, Mencinger, M, Toresson, H. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 1996;37:1–8.CrossRefGoogle ScholarPubMed
Ron, D, Brasier, AR, McGehee, RE Jr, Habener, JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992;89:223–233.CrossRefGoogle Scholar
Ron, D, Habener, JF. CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992;6:439–453.CrossRefGoogle Scholar
Adelmant, G, Gilbert, JD, Freytag, SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:15574–15581.CrossRefGoogle ScholarPubMed
Kuroda, M, Ishida, T, Takanashi, M, Satoh, M, Machinami, R, Watanabe, T. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735–744.Google ScholarPubMed
Zinszner, H, Albalat, R, Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8:2513–2526.CrossRefGoogle ScholarPubMed
Hallor, KH, Micci, F, Meis-Kindblom, JM, Kindblom, LG, Bacchini, P, Mandahl, N. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158–163.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Möller, E, Dahlén, A, Isaksson, M, Mandahl, N, Vlamis-Gardikas, A. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181–191.CrossRefGoogle ScholarPubMed
Barr, FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001;20:5736–5746.CrossRefGoogle ScholarPubMed
Tremblay, P, Gruss, P. Pax: genes for mice and men. Pharmacol Ther 1994;61:205–226.CrossRefGoogle ScholarPubMed
Underhill, DA. Genetic and biochemical diversity in the Pax gene family. Biochem Cell Biol 2000;78:629–638.CrossRefGoogle ScholarPubMed
Chi, N, Epstein, JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet 2002;18:41–47.CrossRefGoogle ScholarPubMed
Buckingham, M, Relaix, F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007;23:645–673.CrossRefGoogle ScholarPubMed
Epstein, DJ, Vekemans, M, Gros, P. Splotch (Sp-2H), a mutation affecting development of the mouse neutral tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991;67:767–774.CrossRefGoogle Scholar
Baldwin, CT, Hoth, CF, Amos, JA, da-Silva, EO, Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 1992;355:637–638.CrossRefGoogle ScholarPubMed
Tassabehji, M, Read, AP, Newton, VE, Harris, R, Balling, R, Gruss, P. Waardenburg's syndrome patients have mutations in the human homologue of the PAX-3 paired box gene. Nature 1992;355:635–636.CrossRefGoogle ScholarPubMed
Tassabehji, M, Read, AP, Newton, VE, Patton, M, Gruss, P, Harris, R. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nature Genet 1993;3:26–30.CrossRefGoogle ScholarPubMed
Hoth, CF, Milunsky, A, Lipsky, N, Sheffer, R, Clarren, SK, Baldwin, CT. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 1993;52:455–462.Google Scholar
Asher, JH Jr, Sommer, A, Morell, R, Friedman, TB. Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome. Hum Mutat 1996;7:30–35.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Kaufmann, E, Knochel, W. Five years on the wings of fork head. Mech Dev 1996;57:3–20.CrossRefGoogle ScholarPubMed
Katoh, M, Katoh, M. Human FOX gene family [review]. Int J Oncol 2004;25:1495–1500.Google Scholar
Durham, SK, Suwanichkul, A, Scheimann, AO, Yee, D, Jackson, JG, Barr, FG. FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology 1999;140:3140–3146.CrossRefGoogle ScholarPubMed
Guo, S, Rena, G, Cichy, S, He, X, Cohen, P, Unterman, T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999;274:17184–17192.CrossRefGoogle Scholar
Brunet, A, Bonni, A, Zigmond, MJ, Lin, MZ, Juo, P, Hu, LS. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.CrossRefGoogle ScholarPubMed
Accili, D, Arden, KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004;117:421–426.CrossRefGoogle Scholar
Hillion, J, Coniat, M, Jonveaux, P, Berger, R, Bernard, OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997;90:3714–3719.Google Scholar
Parry, P, Wei, Y, Evans, G. Cloning and characterization of the t(X;11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes Chromosomes Cancer 1994;11:79–84.CrossRefGoogle Scholar
Barr, FG, Nauta, , Davis, RJ, Schafer, BW, Nycum, LM, Biegel, JA. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 1996;5:15–21.CrossRefGoogle ScholarPubMed
Davis, RJ, Barr, FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1997;94:8047–8051.CrossRefGoogle ScholarPubMed
Weber-Hall, S, McManus, A, Anderson, J, Nojima, T, Abe, S, Pritchard-Jones, K. Novel formation and amplification of the PAX7-FKHR fusion gene in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 1996;17:7–13.3.0.CO;2-0>CrossRefGoogle Scholar
Fitzgerald, JC, Scherr, AM, Barr, FG. Structural analysis of PAX 7 rearrangements in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet 2000;117:37–40.CrossRefGoogle Scholar
del Peso, L, González, VM, Hernández, R, Barr, FG, Núñez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 1999;18:7328–7333.CrossRefGoogle Scholar
Fredericks, WJ, Galili, N, Mukhopadhyay, S, Rovera, G, Bennicelli, J, Barr, FG. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995;15:1522–1535.CrossRefGoogle Scholar
Scheidler, S, Fredericks, WJ, Rauscher, FJ III, Barr, FG, Vogt, PK. The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci USA 1996;93:9805–9809.CrossRefGoogle ScholarPubMed
Lam, PY, Sublett, JE, Hollenbach, AD, Roussel, MF. The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol Cell Biol 1999;19:594–601.CrossRefGoogle Scholar
Xia, SJ, Barr, FG. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 2004;23:6864–6871.CrossRefGoogle ScholarPubMed
Deneen, B, Denny, CT. Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene 2001;20:6731–6741.CrossRefGoogle ScholarPubMed
Ren, YX, Finckenstein, FG, Abdueva, DA, Shahbazian, V, Chung, B, Weinberg, KI. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008;68:6587–6597.CrossRefGoogle ScholarPubMed
Keller, C, Arenkiel, BR, Coffin, CM, El-Bardeesy, N, DePinho, RA, Capecchi, MR. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004;18:2614–2626.CrossRefGoogle ScholarPubMed
Begum, S, Emami, N, Cheung, A, Wilkins, O, Der, S, Hamel, PA. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 2005;24:1860–1872.CrossRefGoogle ScholarPubMed
Wachtel, M, Dettling, M, Koscielniak, E, Stegmaier, S, Treuner, J, Simon-Klingenstein, K. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:5539–5545.CrossRefGoogle Scholar
Jankowski, K, Kucia, M, Wysoczynski, M, Reca, R, Zhao, D, Trzyna, E. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003;63:7926–7935.Google ScholarPubMed
Nabarro, S, Himoudi, N, Papanastasiou, A, Gilmour, K, Gibson, S, Sebire, N. Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 2005;202:1399–1410.CrossRefGoogle ScholarPubMed
Limon, J, Dal Cin, P, Sandberg, AA. Translocations involving the X chromosome in solid tumors: Presentation of of two sarcomas with t(X;18)(q13;p11). Cancer Genet Cytogenet 1986;23:87–91.CrossRefGoogle Scholar
Turc-Carel, C, Dal Cin, P, Limon, J, Rao, U, Li, FP, Corson, JM. Involvment of chromosome X in primary cytogenetic change in human neoplasia: Nonrandom translocation in synovial sarcoma. Proc Natl Acad Sci USA 1987;84:1981–1985.CrossRefGoogle Scholar
Dal Cin, P, Rao, U, Jani-Sait, S, Karakousis, C, Sandberg, AA. Chromosomes in the diagnosis of soft tissue tumors. I. Synovial sarcoma. Mod Pathol 1992;5:357–362.Google Scholar
dos Santos, NR, Bruijn, DR, Kessel, AG. Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer 2001;30:1–14.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Clark, AJ, Rocques, PJ, Crew, AJ, Gill, S, Shipley, J, Chan, AM-L. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 1994;7:502–508.CrossRefGoogle Scholar
Güre, AO, Wei, IJ, Old, LJ, Chen, YT. The SSX gene family: characterization of 9 complete genes. Int J Cancer 2002;101:448–453.CrossRefGoogle ScholarPubMed
Mancuso, T, Mezzelani, A, Riva, C, Fabbri, A, Dal Bo, L, Sampietro, G. Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Lab Invest 2000;80:805–813.CrossRefGoogle ScholarPubMed
Safar, A, Wickert, R, Nelson, M, Neff, JR, Bridge, JA. Characterization of a variant SYT-SSX1 synovial sarcoma fusion transcript. Diagn Mol Pathol 1998;7:283–287.CrossRefGoogle ScholarPubMed
Bruijn, DR, dos Santos, NR, Thijssen, J, Balemans, M, Debernardi, S, Linder, B. The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene 2001;20:3281–3289.CrossRefGoogle ScholarPubMed
Eid, JE, Kung, AL, Scully, R, Livingston, DM. p300 Interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell 2000;102:839–848.CrossRefGoogle ScholarPubMed
Ishida, M, Tanaka, S, Ohki, M, Ohta, T. Transcriptional coactivator activity of SYT is negatively regulated by BRM and Brg1. Genes Cells 2004;9:419–428.CrossRefGoogle Scholar
Ito, T, Ouchida, M, Ito, S, Jitsumori, Y, Morimoto, Y, Ozaki, T. SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Lab Invest 2004;84:1484–1490.CrossRefGoogle ScholarPubMed
Nagai, M, Tanaka, S, Tsuda, M, Endo, S, Kato, H, Sonobe, H. Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF1_lpha. Proc Natl Acad Sci USA 2001;98:3843–3848.CrossRefGoogle Scholar
Thaete, C, Brett, D, Monaghan, P, Whitehouse, S, Rennie, G, Rayner, E. Functional domains of SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet 1999;8:585–591.CrossRefGoogle ScholarPubMed
Hendricks, KB, Shanahan, F, Lees, E. Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 2004;24:362–376.CrossRefGoogle ScholarPubMed
Gure, AO, Türeci, Ö, Sahin, U, Tsang, S, Scanlan, MJ, Jäger, E. SSX: A multigene family with several members transcribed in normal testis and human cancer. Int J Cancer 1997;72:965–971.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Tureci, O, Sahin, U, Schobert, I, Koslowski, M, Scmitt, H, Schild, HJ. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 1996;56:4766–4772.Google Scholar
Bruijn, DR, Nap, JP, Kessel, AG. The (epi)genetics of human synovial sarcoma. Genes Chromosomes Cancer 2007;46:107–117.CrossRefGoogle ScholarPubMed
Bruijn, DR, Allander, SV, Dijk, AH, Willemse, MP, Thijssen, J, Groningen, JJ. The synovial-sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res 2006;66:9474–9482.CrossRefGoogle ScholarPubMed
Ito, T, Ouchida, M, Morimoto, Y, Yoshida, A, Jitsumori, Y, Ozaki, T. Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett 2005;224:311–319.CrossRefGoogle ScholarPubMed
Lubieniecka, JM, Bruijn, DR, Su, L, Dijk, AH, Subramanian, S, Rijn, M. Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 2008;68:4303–4310.CrossRefGoogle ScholarPubMed
Aulmann, S, Longerich, T, Schirmacher, P, Mechtersheimer, G, Penzel, R. Detection of the ASPSCR1-TFE3 gene fusion in paraffin-embedded alveolar soft part sarcomas. Histopathology 2007;50:881–886.CrossRefGoogle ScholarPubMed
Heimann, P, el Housni, H, Ogur, G, Weterman, MAJ, Petty, EM, Vassart, G. Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas. Cancer Res 2001;61:4130–4135.Google Scholar
Sidhar, SK, Clark, J, Gill, S, Hamoudi, R, Crew, AJ, Gwilliam, R. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet 1996;5:1333–1338.CrossRefGoogle Scholar
Clark, J, Lu, YJ, Sidhar, SK, Parker, C, Gill, S, Smedley, D. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 1997;15:2233–2239.CrossRefGoogle ScholarPubMed
Argani, P, Lui, MY, Couturier, J, Bouvier, R, Fournet, JC, Ladanyi, M. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 2003;22:5374–5378.CrossRefGoogle Scholar
Davis, IJ, Hsi, BL, Arroyo, JD, Vargas, SO, Yeh, YA, Motyckova, G. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci U S A 2003;100:6051–6056.CrossRefGoogle Scholar
Argani, P, Antonescu, CR, Illei, PB, Lui, MY, Timmons, CF, Newbury, R. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol 2001;159:179–192.CrossRefGoogle ScholarPubMed
Tsuda, M, Davis, IJ, Argani, P, Shukla, N, McGill, GG, Nagai, M. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 2007;67:919–929.CrossRefGoogle ScholarPubMed
Christensen, JG, Burrows, J, Salgia, R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 2005;225:1–26.CrossRefGoogle ScholarPubMed
Robinson, DR, Wu, YM, Lin, SF. The protein tyrosine kinase family of the human genome. Oncogene 2000;19:5548–5557.CrossRefGoogle ScholarPubMed
Blume-Jensen, P, Hunter, T. Oncogenic kinase signalling. Nature 2001; 411:355–365.CrossRefGoogle ScholarPubMed
Morin, MJ. From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents. Oncogene 2000;19:6574–6582.CrossRefGoogle ScholarPubMed
Demetri, GD. Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol 2001;28:19–26.CrossRefGoogle ScholarPubMed
Tuveson, DA, Fletcher, JA. Signal transduction pathways in sarcoma as targets for therapeutic intervention. Curr Opin Oncol 2001;13:249–255.CrossRefGoogle ScholarPubMed
Morris, SW, Kirstein, MN, Valentine, MB, Dittmer, KG, Shapiro, DN, Saltman, DL. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263:1281–1284.CrossRefGoogle ScholarPubMed
Ladanyi, M. Aberrant ALK tyrosine kinase signaling. Different cellular lineages, common oncogenic mechanisms?Am J Pathol 2000;157:341–345.CrossRefGoogle ScholarPubMed
Duyster, J, Bai, R-Y, Morris, SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 2001;20:5623–5637.CrossRefGoogle Scholar
Bai, RY, Dieter, P, Peschel, C, Morris, SW, Duyster, J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 1998;18:6951–6961.CrossRefGoogle ScholarPubMed
Bai, RY, Ouyang, T, Miething, C, Morris, SW, Peschel, C, Duyster, J. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000;96:4319–4327.Google ScholarPubMed
Kuefer, MU, Look, AT, Pulford, K, Behm, FG, Pattengale, PK, Mason, DY. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 1997;90:2901–2910.Google ScholarPubMed
Chiarle, R, Gong, JZ, Guasparri, I, Pesci, A, Cai, J, Liu, J. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 2003;101:1919–1927.CrossRefGoogle ScholarPubMed
Fujimoto, J, Shiota, M, Iwahara, T, Seki, N, Satoh, H, Mori, S. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci USA 1996;93:4181–4186.CrossRefGoogle Scholar
Zhang, Q, Raghunath, PN, Xue, L, Majewski, M, Carpentieri, DF, Odum, N. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 2002;168:466–474.CrossRefGoogle ScholarPubMed
Zamo, A, Chiarle, R, Piva, R, Howes, J, Fan, Y, Chilosi, M. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002;21:1038–1047.CrossRefGoogle ScholarPubMed
Chiarle, R, Simmons, WJ, Cai, H, Dhall, G, Zamo, A, Raz, R. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005;11:623–629.CrossRefGoogle ScholarPubMed
Slupianek, A, Nieborowska-Skorska, M, Hoser, G, Morrione, A, Majewski, M, Xue, L. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 2001;61:2194–2199.Google ScholarPubMed
Rassidakis, GZ, Feretzaki, M, Atwell, C, Grammatikakis, I, Lin, Q, Lai, R. Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood 2005;105:827–829.CrossRefGoogle ScholarPubMed
Gu, TL, Tothova, Z, Scheijen, B, Griffin, JD, Gilliland, DG, Sternberg, DW. NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 2004;103:4622–4629.CrossRefGoogle ScholarPubMed
Vega, F, Medeiros, LJ, Leventaki, V, Atwell, C, Cho-Vega, JH, Tian, L. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 2006;66:6589–6597.CrossRefGoogle ScholarPubMed
Marzec, M, Kasprzycka, M, Liu, X, Raghunath, PN, Wlodarski, P, Wasik, MA. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene 2007;26:813–821.CrossRefGoogle ScholarPubMed
Leventaki, V, Drakos, E, Medeiros, LJ, Lim, MS, Elenitoba-Johnson, KS, Claret, FX. NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphomaBlood 2007;110:1621–1630.CrossRefGoogle ScholarPubMed
Wlodarska, I, Wolf-Peeters, C, Falini, B, Verhoef, G, Morris, SW, Hagemeijer, A. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998;92:2688–2695.Google ScholarPubMed
Touriol, C, Greenland, C, Lamant, L, Pulford, K, Bernard, F, Rousset, T. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:3204–3207.Google Scholar
Tort, F, Pinyol, M, Pulford, K, Roncador, G, Hernandez, L, Nayach, I. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001;81:419–426.CrossRefGoogle Scholar
Lamant, L, Gascoyne, RD, Duplantier, MM, Armstrong, F, Raghab, A, Chhanabhai, M. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003;37:427–432.CrossRefGoogle ScholarPubMed
Morris, SW, Kirstein, MN, Valentine, MB, Dittmer, KG, Shapiro, DN, Saltman, DL. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263:1281–1284.CrossRefGoogle ScholarPubMed
Hernández, L, Pinyol, M, Hernández, S, Beà, S, Pulford, K, Rosenwald, A. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:3265–3268.Google ScholarPubMed
Lamant, L, Dastugue, N, Pulford, K, Delsol, G, Mariamé, B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93:3088–3095.Google ScholarPubMed
Liang, X, Meech, SJ, Odom, LF, Bitter, MA, Ryder, JW, Hunger, SP. Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol 2004;121:496–506.CrossRefGoogle Scholar
Soda, M, Choi, YL, Enomoto, M, Takada, S, Yamashita, Y, Ishikawa, S. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561–566.CrossRefGoogle ScholarPubMed
Armstrong, F, Duplantier, MM, Trempat, P, Hieblot, C, Lamant, L, Espinos, E. Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 2004;23:6071–6082.CrossRefGoogle ScholarPubMed
Chen, Y, Takita, J, Choi, YL, Kato, M, Ohira, M, Sanada, M. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008;455:971–974.CrossRefGoogle ScholarPubMed
George, RE, Sanda, T, Hanna, M, Fröhling, S, Luther, W 2nd, Zhang, J. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008;455:975–978.CrossRefGoogle ScholarPubMed
Janoueix-Lerosey, I, Lequin, D, Brugières, L, Ribeiro, A, Pontual, L, Combaret, V. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 2008;455:967–970.CrossRefGoogle ScholarPubMed
Mossé, YP, Laudenslager, M, Longo, L, Cole, KA, Wood, A, Attiyeh, EF. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008;455:930–935.CrossRefGoogle ScholarPubMed
Carén, H, Abel, F, Kogner, P, Martinsson, T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 2008;416:153–159.CrossRefGoogle ScholarPubMed
Christensen, JG, Zou, HY, Arango, ME, Li, Q, Lee, JH, McDonnell, SR. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 2007;6:3314–3322.CrossRefGoogle ScholarPubMed
Li, R, Morris, SW. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev 2008;28:372–412.CrossRefGoogle ScholarPubMed
Trochet, D, Bourdeaut, F, Janoueix-Lerosey, I, Deville, A, Pontual, L, Schleiermacher, G. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 2004;74:761–764.CrossRefGoogle ScholarPubMed
Coluccia, AM, Gunby, RH, Tartari, CJ, Scapozza, L, Gambacorti-Passerini, C, Passoni, L. Anaplastic lymphoma kinase and its signalling molecules as novel targets in lymphoma therapy. Expert Opin Ther Targets 2005;9:515–532.CrossRefGoogle ScholarPubMed
Li, R, Morris, SW. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev 2008;28:372–412.CrossRefGoogle ScholarPubMed
Bohlander, SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005;15:162–174.CrossRefGoogle ScholarPubMed
Bibel, M, Barde, YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000;14:2919–2937.CrossRefGoogle ScholarPubMed
Wai, DH, Knezevich, SR, Lucas, T, Jansen, B, Kay, RJ, Sorensen, PH. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 2000;19:906–915.CrossRefGoogle ScholarPubMed
Tognon, C, Garnett, M, Kenward, E, Kay, R, Morrison, K, Sorensen, PH. The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res 2001;61:8909–8916.Google ScholarPubMed
Lannon, CL, Martin, MJ, Tognon, CE, Jin, W, Kim, SJ, Sorensen, PH. A highly conserved NTRK3 C-terminal sequence in the ETV6-NTRK3 oncoprotein binds the phosphotyrosine binding domain of insulin receptor substrate-1: an essential interaction for transformation. J Biol Chem 2004;279:6225–6234.CrossRefGoogle ScholarPubMed
Tognon, C, Knezevich, SR, Huntsman, D, Roskelley, CD, Melnyk, N, Mathers, JA. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367–376.CrossRefGoogle ScholarPubMed
Eguchi, M, Eguchi-Ishimae, M, Tojo, A, Morishita, K, Suzuki, K, Sato, Y. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:1355–1363.Google Scholar
Eguchi, M, Eguchi-Ishimae, M, Green, A, Enver, T, Greaves, M. Directing oncogenic fusion genes into stem cells via an SCL enhancer. Proc Natl Acad Sci USA 2005;102:1133–1138.CrossRefGoogle ScholarPubMed
Lannon, CL, Sorensen, PH. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol 2005;15:215–223.CrossRefGoogle ScholarPubMed
Taylor, ML, Metcalfe, DD. KIT signaling trunsduction. Hematol Oncol Clin North Am 2000;14:517–535.CrossRefGoogle Scholar
Fletcher, JA. Role of KIT and platelet-derived growth factor receptors as oncoproteins. Semin Oncol 2004;31,Suppl 6:4–11.CrossRefGoogle Scholar
Mol, CD, Dougan, DR, Schneider, TR, Skene, RJ, Kraus, ML, Scheibe, DN. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 2004;279:31655–31663.CrossRefGoogle ScholarPubMed
Hirota, S, Isozaki, K, Moriyama, Y, Hashimoto, K, Nishida, T, Ishiguro, S. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279:577–580.CrossRefGoogle ScholarPubMed
Nishida, T, Hirota, S, Taniguchi, M, Hashimoto, K, Isozaki, K, Nakamura, H. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 1998;19:323–324.CrossRefGoogle ScholarPubMed
Ma, Y, Cunningham, M, Wang, X, Ghosh, I, Regan, L, Longley, B. Inhibition of spontaneous receptor phosphorylation by residues in putative alpha-helix in the KIT intracellular juxtamembrane region. J Biol Chem 1999; 274;13399–13402.CrossRefGoogle ScholarPubMed
Chan, PM, Ilangumaran, S, Rose, J, Chakrabartty, A, Rottapel, R. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 2003;23:3067–3078.CrossRefGoogle ScholarPubMed
Nakahara, M, Isozaki, K, Hirota, S, Miyagawa, J, Hase-Sawada, N, Taniguchi, M, Nishida, T. A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology 1998;115:1090–1095.CrossRefGoogle ScholarPubMed
Lasota, J, Miettinen, M. Histopathology. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 2008;53:245–266.CrossRefGoogle ScholarPubMed
Sommer, G, Agosti, V, Ehlers, I, Rossi, F, Corbacioglu, S, Farkas, J. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA 2003;100:6706–6711.CrossRefGoogle Scholar
Rubin, BP, Antonescu, CR, Scott-Browne, JP, Comstock, ML, Gu, Y, Tanas, MR. A knock-in mouse model of gastrointestinal stromal tumor harboring Kit K641E. Cancer Res 2005;65:6631–6639.CrossRefGoogle ScholarPubMed
Joensuu, H, Roberts, PJ, Sarlomo-Rikala, M, Andersson, LC, Tervahartiala, P, Tuveson, D. Effect of the tyrosine kinase inhibitor STI571 in a patient with metastatic gastrointestinal stromal tumor. N Engl J Med 2001;344:1052–1056.CrossRefGoogle Scholar
Oosterom, AT, Judson, I, Verweij, J, Stroobants, S, Donato di Paola, E, Dimitrijevic, S. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 2001;358:1421–1423.CrossRefGoogle ScholarPubMed
Chen, LL, Trent, JC, Wu, EF, Fuller, GN, Ramdas, L, Zhang, W. A missense mutation in KIT domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res 2004;64:5913–5919.CrossRefGoogle ScholarPubMed
Debiec-Rychter, M, Cools, J, Dumez, H, Sciot, R, Stul, M, Mentens, N. Mechanisms of resistence to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroentereology 2005;128:270–279.CrossRefGoogle Scholar
Heinrich, MC, Corless, CL, Blanke, CD, Demetri, GD, Joensuu, H, Roberts, PJ. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 2006;24:4764–4774.CrossRefGoogle ScholarPubMed
Faivre, S, Delbaldo, C, Vera, K, Robert, C, Lozahic, S, Lassau, N. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006;24:25–35.CrossRefGoogle ScholarPubMed
Joensuu, H. Second-line therapies for the treatment of gastrointestinal stromal tumor. Curr Opin Oncol 2007;19:353–358.CrossRefGoogle ScholarPubMed
Maki, RG. Recent advances in therapy for gastrointestinal stromal tumors. Curr Oncol Rep 2007;9:165–169.CrossRefGoogle ScholarPubMed
Roberts, WM, Look, AT, Roussel, MF, Sherr, CJ. Tandem linkage of human CSF-1 receptor (c-fms) and PDGF receptor genes. Cell 1989;55:655–661.CrossRefGoogle Scholar
Stenman, G, Eriksson, A, Claesson-Welsh, L. Human PDGFA receptor gene maps to the same region on chromosome 4 as the KIT oncogene. Genes Chromosomes Cancer 1989;1:155–158.CrossRefGoogle ScholarPubMed
Heinrich, MC, Corless, CL, Duensing, A, McGreevey, L, Chen, CJ, Joseph, N. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299:708–710.CrossRefGoogle ScholarPubMed
Chompret, A, Kannengiesser, C, Barrois, M, Terrier, P, Dahan, P, Tursz, T. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 2004;126:318–321.CrossRefGoogle Scholar
Pedeutour, F, Simon, MP, Minoletti, F, Barcelo, G, Terrier-Lacombe, MJ, Combemale, P. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet 1996;72:171–174.CrossRefGoogle Scholar
Kiuru-Kuhlefelt, S, El-Rifai, W, Fanburg-Smith, J, Kere, J, Miettinen, M, Knuutila, S. Concomitant DNA copy number amplification at 17q and 22q in dermatofibrosarcoma protuberans. Cytogenet Cell Genet 2001;92:192–195.CrossRefGoogle ScholarPubMed
Sjoblom, T, Shimizu, A, O'Brien, KP, Pietras, K, Dal Cin, P, Buchdunger, E. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001;61:5778–5783.Google ScholarPubMed
Abrams, TA, Schuetze, SM. Targeted therapy for dermatofibrosarcoma protuberans. Curr Oncol Rep 2006;8:291–296.CrossRefGoogle ScholarPubMed
Manfioletti, G, Giancotti, V, Bandiera, A, Buratti, E, Sautiere, P, Cary, P. cDNA cloning of the HMGI-C phosphoprotein, a nuclear protein associated with neoplastic and undifferentiated phenotypes. Nucleic Acids Res 1991;19:6793–6797.CrossRefGoogle ScholarPubMed
Johnson, KR, Lehn, DA, Reeves, R. Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol Cell Biol 1989;9:2114–2133.CrossRefGoogle ScholarPubMed
Reeves, R, Nissen, MS. The A-T-DNAbinding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem 1990; 265:8573–8582.Google Scholar
Reeves, R. Structure and function of the HMGI(Y) family of architectural transcription factors. Environ Health Perspect 2000;108:803–809.CrossRefGoogle Scholar
Zhou, X, Benson, KF, Ashar, HR, Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 1995;376:771–774.CrossRefGoogle ScholarPubMed
Chiappetta, G, Avantaggiato, V, Visconti, R, Fedele, M, Battista, S, Trapasso, F. High level expression of the HMGA1 gene during embryonic development. Oncogene 1996;13:2439–2446.Google ScholarPubMed
Chiappetta, G, Bandiera, A, Berlingieri, MT, Visconti, R, Manfioletti, G, Battista, S. 1995. The expression of the high mobility group HMGA1 proteins correlates with the malignant phenotype of human thyroid neoplasms. Oncogene 1995;10:1307–1314.Google Scholar
Fedele, M, Bandiera, A, Chiappetta, G, Battista, S, Viglietto, G, Manfioletti, G. Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins. Cancer Res 1996;56:1896–1901.Google Scholar
Tamimi, Y, Poel, HG, Denyn, MM, Umbas, R, Karthaus, HF, Debruyne, FM. Increased expression of high mobility group protein I(Y) in high grade prostatic cancer determined by in situ hybridization. Cancer Res 1993;53:5512–5516.Google Scholar
Abe, N, Watanabe, T, Izumisato, Y, Masaki, T, Mori, T, Sugiyama, M. Diagnostic significance of high mobility group I(Y) protein expression in intraductal papillary mucinous tumors of the pancreas. Pancreas 2002;25:198–204.CrossRefGoogle Scholar
Bandiera, A, Bonifacio, D, Manfioletti, G, Mantovani, F, Rustighi, A, Zanconati, F. Expression of HMGI(Y) proteins in squamous intraepithelial and invasive lesions of the uterine cervix. Cancer Res 1998;58:426–431.Google Scholar
Masciullo, V, Baldassarre, G, Pentimalli, F, Berlingieri, MT, Boccia, A, Chiappetta, G. HMGA1 protein overexpression is a frequent feature of epithelial ovarian carcinomas. Carcinogenesis 2003;24:1191–1198.CrossRefGoogle Scholar
Chiappetta, G, Botti, G, Monaco, M, Pasquinelli, R, Pentimalli, F, Di Bonito, M. HMGA1 protein overexpression in human breast carcinomas: correlation with ErbB2 expression. Clin Cancer Res 2004;10:7637–7644.CrossRefGoogle ScholarPubMed
Fedele, M, Berlingieri, MT, Scala, S, Chiariotti, L, Viglietto, G, Rippel, V. Truncated and chimeric HMGI-C genes induce neoplastic transformation of NIH3T3 murine fibroblasts. Oncogene 1998;17:413–418.CrossRefGoogle ScholarPubMed
Wood, LJ, Maher, JF, Bunton, TE, Resar, LM. The oncogenic properties of the HMG-I gene family. Cancer Res 2000;60:4256–4261.Google ScholarPubMed
Baldassarre, G, Fedele, M, Battista, S, Vecchione, A, Klein-Szanto, AJ, Santoro, M. Onset of natural killer cell lymphomas in transgenic mice carrying a truncated HMGI-C gene by the chronic stimulation of the IL-2 and IL-15 pathway. Proc Natl Acad Sci USA 2001;98:7970–7975.CrossRefGoogle ScholarPubMed
Xu, Y, Sumter, TF, Bhattacharya, R, Tesfaye, A, Fuchs, EJ, Wood, LJ. The HMG-I oncogene causes highly penetrant, aggressive lymphoid malignancy in transgenic mice and is overexpressed in human leukemia. Cancer Res 2004;64:3371–3375.CrossRefGoogle ScholarPubMed
Fedele, M, Fidanza, V, Battista, S, Pentimalli, F, Klein-Szanto, AJ, Visone, R. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005;24:3427–3435.CrossRefGoogle ScholarPubMed
Berlingieri, MT, Pierantoni, GM, Giancotti, V, Santoro, M, Fusco, A. Thyroid cell transformation requires the expression of the HMGA1 proteins. Oncogene 2002;21:2971–2980.CrossRefGoogle ScholarPubMed
Scala, S, Portella, G, Fedele, M, Chiappetta, G, Fusco, A. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc Natl Acad Sci USA 2000;97:4256–4261.CrossRefGoogle Scholar
Ashar, HR, Schoenberg Fejzo, M, Tkachenko, A, Zhou, X, Fletcher, JA, Weremowicz, S. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 1995;82:57–65.CrossRefGoogle ScholarPubMed
Schoenmakers, EF, Wanschura, S, Mols, R, Bullerdiek, J, Berghe, H, Ven, WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nature Genet 1995;10:436–444.CrossRefGoogle ScholarPubMed
Kazimierczak, B, Rosigkeit, J, Wanschura, S, Meyer-Bolte, K, Ven, W, Kayser, K. HMGI-C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene 1996;12:515–521.Google Scholar
Fedele, M, Battista, S, Manfioletti, G, Croce, CM, Giancotti, V, Fusco, A. Role of the high mobility group A proteins in human lipomas. Carcinogenesis 2001;22:1583–1591.CrossRefGoogle Scholar
Kubo, T, Matsui, Y, Goto, T, Yukata, K, Yasui, N. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the alpha 2 type XI collagen gene. Biochem Biophys Res Commun 2006;340:476–481.CrossRefGoogle ScholarPubMed
Kazimierczak, B, Wanschura, S, Rosigkeit, J, Meyer-Bolte, K, Uschinsky, K, Hampt, R. Molecular characterization of 12q14–15 rearrangements in three pulmonary chondroid hamartomas. Cancer Res 1995;55:2497–2499.Google Scholar
Kools, PF, Ven, WJ. Amplification of the rearranged form of the high mobility group protein gene HMGIC in OsA-CI osteosarcoma cells. Cancer Genet Cytogenet 1996;91:1–7.CrossRefGoogle ScholarPubMed
Hauke, S, Rippe, V, Bullerdiek, J. Chromosomal rearrangements leading to abnormal splicing within intron 4 of HMGIC?Genes Chromosomes Cancer 2001;30:302–304.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Berner, JM, Meza-Zepeda, , Kools, PF, Forus, A, Schoenmakers, EF, Ven, WJ. HMGIC, the gene for an architectural transcription factor, is amplified and rearranged in a subset of human sarcomas. Oncogene 1997;14:2935–2941.CrossRefGoogle Scholar
Meza-Zepeda, , Berner, JM, Henriksen, J, South, AP, Pedeutour, F, Dahlberg, AB. Ectopic sequences from truncated HMGIC in liposarcomas are derived from various amplified chromosomal regions. Genes Chromosomes Cancer 2001;31:264–273.CrossRefGoogle ScholarPubMed
Italiano, A, Bianchini, L, Keslair, F, Bonnafous, S, Cardot-Leccia, N, Coindre, JM. HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int J Cancer 2008;122:2233–2241.CrossRefGoogle ScholarPubMed
Lee, YS, Kim, HK, Chung, S, Kim, KS, Dutta, A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 2005;280:16635–16641.CrossRefGoogle Scholar
Takamizawa, J, Konishi, H, Yanagisawa, K, Tomida, S, Osada, H, Endoh, H. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753–3756.CrossRefGoogle ScholarPubMed
Johnson, SM, Grosshans, H, Shingara, J, Byrom, M, Jarvis, R, Cheng, A. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635–647.CrossRefGoogle ScholarPubMed
Lee, YS, Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007;21:1025–1030.CrossRefGoogle ScholarPubMed
Ligon, AH, Moore, SD, Parisi, MA, Mealiffe, ME, Harris, DJ, Ferguson, HL. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet 2005;76:340–348.CrossRefGoogle ScholarPubMed
Battista, S, Fidanza, V, Fedele, M, Klein-Szanto, AJP, Outwater, E, Brunner, H. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis. Cancer Res 1999;59:4793–4797.Google ScholarPubMed
Arlotta, P, Tai, AK-F, Manfioletti, G, Clifford, C, Jay, G, Ono, SJ. Transgenic mice expressing a truncated form of the high mobility group I-C protein develop adiposity and an abnormally high prevalence of lipomas. J Biol Chem 2000;275:14394–14400.CrossRefGoogle Scholar
Weedon, MN, Lettre, G, Freathy, RM, Lindgren, CM, Voight, BF, Perry, JR. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet 2007;39:1245–1250.CrossRefGoogle ScholarPubMed
Kazimierczak, B, Dal Cin, P, Wanschura, S, Borrmann, L, Fusco, A, Berghe, H. HMGIY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Genes Chromosomes Cancer 1998;23:279–285.3.0.CO;2-1>CrossRefGoogle Scholar
Xiao, S, Lux, ML, Reeves, R, Hudson, TJ, Fletcher, JA. HMGI(Y) activation by chromosome 6p21 rearrangements in multilineage mesenchymal cells from pulmonary hamartoma. Am J Pathol 1997;150:901–910.Google Scholar
Williams, AJ, Powell, WL, Collins, T, Morton, CC. HMGI(Y) expression in human uterine leiomyomata. Involvment of another high-mobility group architectural factor in a benign neoplasm. Am J Pathol 1997;150:911–918.Google Scholar
Tkachenko, A, Ashar, HR, Meloni, AM, Sandberg, AA, Chada, KK. Misexpression of disrupted HMGI architectural factors activates alternative pathways of tumorigenesis. Cancer Res 1997;57:2276–2280.Google ScholarPubMed
Pierantoni, GM, Rinaldo, C, Esposito, F, Mottolese, M, Soddu, S, Fusco, A. High Mobility Group A1 (HMGA1) proteins interact with p53 and inhibit its apoptotic activity. Cell Death Differ 2006;13:1554–1563.CrossRefGoogle ScholarPubMed
Fedele, M, Fidanza, V, Battista, S, Pentimalli, F, Klein-Szanto, AJ, Visone, R. Haploinsufficiency of the Hmga1 gene causes cardiac hypertrophy and myelo-lymphoproliferative disorders in mice. Cancer Res 2006;66:2536–2543.CrossRefGoogle ScholarPubMed
Barr, FG, Nauta, , Davis, RJ, Schäfer, BW, Nycum, LM, Biegel, JA. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 1996;5:15–21.CrossRefGoogle ScholarPubMed
Abbott, JJ, Erickson-Johnson, M, Wang, X, Nascimento, AG, Oliveira, AM. Gains of COL1A1-PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod Pathol 2006;19:1512–1518.CrossRefGoogle ScholarPubMed
Macarenco, RS, Zamolyi, R, Franco, MF, Nascimento, AG, Abott, JJ, Wang, X. Genomic gains of COL1A1-PDFGB occur in the histologic evolution of giant cell fibroblastoma into dermatofibrosarcoma protuberans. Genes Chromosomes Cancer 2008;47:260–265.CrossRefGoogle ScholarPubMed
Schwab, M. Oncogene amplification in solid tumors. Semin Cancer Biol 1999;9:319–325.CrossRefGoogle ScholarPubMed
Sirvent, N, Coindre, JM, Maire, G, Hostein, I, Keslair, F, Guillou, L. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 2007;31:1476–1489.CrossRefGoogle ScholarPubMed
Thorner, PS, Ho, M, Chilton-MacNeill, S, Zielenska, M. Use of chromogenic in situ hybridization to identify MYCN gene copy number in neuroblastoma using routine tissue sections. Am J Surg Pathol 2006;30:635–642.CrossRefGoogle ScholarPubMed
Collins, S, Groudine, M. Amplification of endogenous myc-related sequences in a human myeloid leukaemia cell line. Nature 1982;298:679–681.CrossRefGoogle Scholar
Dalla-Favera, R, Wong-Staal, F, Gallo, RC. Onc gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient. Nature 1982;299:61–63.CrossRefGoogle ScholarPubMed
Yokota, J, Tsunetsugu-Yokota, Y, Battifora, H, Fevre, C, Cline, MJ. Alterations of myc, myb, and ras(Ha) proto-oncogenes in cancers are frequent and show clinical correlation. Science 1986;231:261–265.CrossRefGoogle Scholar
Barrios, C, Castresana, JS, Ruiz, J, Kreicbergs, A. Amplification of the c-myc proto-oncogene in soft tissue sarcomas. Oncology 1994;51:13–17.CrossRefGoogle ScholarPubMed
Kohl, NE, Kanda, N, Schreck, RR, Bruns, G, Latt, SA, Gilbert, F. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 1983;35:359–367.CrossRefGoogle ScholarPubMed
Schwab, M, Varmus, HE, Bishop, JM, Grzeschik, KH, Naylor, SL, Sakaguchi, AY. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 1984;308:288–291.CrossRefGoogle ScholarPubMed
Grandori, C, Cowley, SM, James, LP, Eisenman, RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000;16:653–699.CrossRefGoogle ScholarPubMed
Oster, SK, Ho, CS, Soucie, EL, Penn, LZ. The myc oncogene: MarvelouslY Complex. Adv Cancer Res 2002;84:81–154.CrossRefGoogle ScholarPubMed
Brodeur, GM, Seeger, RC, Schwab, M, Varmus, HE, Bishop, JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1984;224:1121–1124.CrossRefGoogle ScholarPubMed
Seeger, RC, Brodeur, GM, Sather, H, Dalton, A, Siegel, SE, Wong, KY. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985;313:1111–1116.CrossRefGoogle ScholarPubMed
Brodeur, GM, Azar, C, Brother, M, Hiemstra, J, Kaufman, B, Marshall, H. Neuroblastoma: effect of genetic factors on prognosis and treatment. Cancer 1992;70:1685–1694.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Li, XQ, Hisaoka, M, Shi, DR, Zhu, XZ, Hashimoto, H. Expression of anaplastic lymphoma kinase in soft tissue tumors: an immunohistochemical and molecular study of 249 cases. Hum Pathol 2004;35:711–721.CrossRefGoogle ScholarPubMed
Williamson, D, Lu, YJ, Gordon, T, Sciot, R, Kelsey, A, Fisher, C. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol 2005;23:880–888.CrossRefGoogle ScholarPubMed
Ragazzini, P, Gamberi, G, Pazzaglia, L, Serra, M, Magagnoli, G, Ponticelli, F. Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma. Histol Histopathol 2004;19:401–411.Google ScholarPubMed
Wolf, M, Aaltonen, , Szymanska, J, Tarkkanen, M, Blomqvist, C, Berner, JM. Complexity of 12q13–22 amplicon in liposarcoma: microsatellite repeat analysis. Genes Chromosomes Cancer 1997;18:66–70.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Elkahloun, AG, Bittner, M, Hoskins, K, Gemmill, R, Meltzer, PS. Molecular cytogenetic characterization and physical mapping of 12q13–15 amplification in human cancer. Genes Chromosomes Cancer 1996;17:205–214.3.0.CO;2-7>CrossRefGoogle Scholar
Reifenberger, G, Ichimura, K, Reinferberger, G, Elkahloun, AG, Meltzer, PS, Collins, VP. Refined mapping of 12q13–15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 1996;56:5141–5145.Google Scholar
Fakharzadeh, SS, Trusko, SP, George, DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mous tumor cell line. EMBO J 1991; 10:1565–1569.Google Scholar
Berner, JM, Forus, A, Elkahloun, A, Meltzer, PS, Fodstad, O, Myklebost, O. Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes Chromosomes Cancer 1996;17:254–259.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Stein, GS, Baserga, R, Giordano, A, Denhardt, DT (eds). The Molecular Basis of Cell Cycle and Growth Control. New York: Wiley-Liss, 1999.
Kussie, P, Gorina, S, Marechal, V, Elenbaas, B, Moreau, J, Levine, AJ. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996;274:921–922.CrossRefGoogle ScholarPubMed
Buschmann, T, Fuchs, SY, Lee, CG, Pan, ZQ, Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 2000;101:753–762.CrossRefGoogle ScholarPubMed
Xiao, ZX, Chen, J, Levine, AJ, Modjtahedi, N, Xing, J, Sellers, WR. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995;375:694–698.CrossRefGoogle ScholarPubMed
Sdek, P, Ying, H, Chang, DL, Qiu, W, Zheng, H, Touitou, R. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 2005;20:699–708.CrossRefGoogle ScholarPubMed
Bond, GL, Hu, W, Bond, EE, Robins, H, Lutzker, SG, Arva, NC. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004;119:591–602.CrossRefGoogle ScholarPubMed
Bougeard, G, Baert-Desurmont, S, Tournier, I, Vasseur, S, Martin, C, Brugieres, L. Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 2006;43:531–533.CrossRefGoogle ScholarPubMed
Ruijs, MW, Schmidt, MK, Nevanlinna, H, Tommiska, J, Aittomäki, K, Pruntel, R. The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes. Eur J Hum Genet 2007;15:110–114.CrossRefGoogle ScholarPubMed
Kanoe, H, Nakayama, T, Murakami, H, Hosaka, T, Yamamoto, H, Nakashima, Y.: Amplification of the CDK4 gene in sarcomas: tumor specificity and relationship with the RB gene mutation. Anticancer Res 1998;18:2317–2321.Google ScholarPubMed
Nakayama, T, Toguchida, J, Wadayama, B, Kanoe, H, Kotoura, Y, Sasaki, MS. MDM2 gene amplification in bone and soft tissue tumors: association with tumor progression in differentiated adipose tissue tumors. Int J Cancer 1995;64:342–346.CrossRefGoogle ScholarPubMed
Pedeutour, F, Forus, A, Coindre, JM, Berner, JM, Nicolo, G, Michiels, JF. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 1999;24:30–41.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Suijkerbuijk, RF, Olde Weghuis, , Berg, M, Pedeutour, F, Forus, A, Myklebost, O. Comparative genomic hybridization as a tool to define two distinct chromosome 12-derived amplification units in well-differentiated liposarcomas. Genes Chromosomes Cancer 1994;9:292–295.CrossRefGoogle ScholarPubMed
Szymanska, J, Virolainen, M, Tarkkanen, M, Wiklund, T, Asko-Seljavaara, S, Tukiainen, E. Overrepresentation of 1q21–23 and 12q13021 in lipoma-like liposarcomas but not in benign lipomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 1997;99:14–18.CrossRefGoogle Scholar
Pilotti, S, Della Torre, G, Lavarino, C, Di Palma, S, Sozzi, G, Minoletti, F. Distinct mdm2/p53 expression patterns in liposarcoma subgroups: implication for different pathogenetic mechanisms. J Pathol 1997;181:14–24.3.0.CO;2-O>CrossRefGoogle Scholar
Italiano, A, Cardot, N, Dupré, F, Monticelli, I, Keslair, F, Piche, M. Gains and complex rearrangements of the 12q13–15 chromosomal region in ordinary lipomas: the “missing link” between lipomas and liposarcomas?Int J Cancer 2007;121:308–315.CrossRefGoogle ScholarPubMed
Hostein, I, Pelmus, M, Aurias, A, Pedeutour, F, Mathoulin-Pélissier, S, Coindre, JM. Evaluation of MDM2 and CDK4 amplification by real-time PCR on paraffin wax-embedded material: a potential tool for the diagnosis of atypical lipomatous tumours/well-differentiated liposarcomas. J Pathol 2004;202:95–102.CrossRefGoogle Scholar
Binh, MB, Sastre-Garau, X, Guillou, L, Pinieux, G, Terrier, P, Lagacé, R. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol 2005;29:1340–1347.CrossRefGoogle ScholarPubMed
Weaver, J, Downs-Kelly, E, Goldblum, JR, Turner, S, Kulkarni, S, Tubbs, RR. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol 2008;21:943–949.CrossRefGoogle ScholarPubMed
Vassilev, LT, Vu, BT, Graves, B, Carvajal, D, Podlaski, F, Filipovic, Z. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844–848.CrossRefGoogle ScholarPubMed
Tovar, C, Rosinski, J, Filipovic, Z, Higgins, B, Kolinsky, K, Hilton, H. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006;103:1888–1893.CrossRefGoogle ScholarPubMed
Lau, LM, Nugent, JK, Zhao, X, Irwin, MS. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 2008;27:997–1003.CrossRefGoogle ScholarPubMed
Müller, CR, Paulsen, EB, Noordhuis, P, Pedeutour, F, Saeter, G, Myklebost, O. Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A. Int J Cancer 2007;121:199–205.CrossRefGoogle ScholarPubMed
Vassilev, LT. MDM2 inhibitors for cancer therapy. Trends Mol Med 2007;13:23–31.CrossRefGoogle ScholarPubMed
Balmer, A, Zografos, L, Munier, F. Diagnosis and current management of retinoblastoma. Oncogene 2006;25:5341–5349.CrossRefGoogle ScholarPubMed
Knudson, AJ. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820–823.CrossRefGoogle ScholarPubMed
Knudson, AJ, Hethocte, HW, Brown, BW. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Natl Acad Sci USA 1975;72:5116–5120.CrossRefGoogle ScholarPubMed
Friend, SH, Bernards, R, Rogelj, S, Weinberg, RA, Rapaport, JM, Albert, DM. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986;323:643–646.CrossRefGoogle ScholarPubMed
Fung, Y-KT, Murphree, AL, T'Ang, A, Qian, J, Hinrichs, SH, Benedict, WF. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987;236:1657–1661.CrossRefGoogle ScholarPubMed
Hong, FD, Huang, H-JS, To, H, Young, L-JS, Oro, A, Bookstein, R. Structure of the human retinoblastoma gene. Proc Natl Acad Sci USA 1989;86:5502–5506.CrossRefGoogle ScholarPubMed
Dryja, TP, Mukai, S, Petersen, R, Rapaport, JM, Walton, D, Yandell, DW. Parental origin of mutations of the retinoblastoma gene. Nature 1989;339:556–558.CrossRefGoogle ScholarPubMed
Zhu, XP, Dunn, JM, Phillips, RA, Goddard, AD, Paton, KE, Becker, A. Preferential germline mutation of the paternal allele in retinoblastoma. Nature 1989;340:312–313.CrossRefGoogle ScholarPubMed
Horowitz, JM, Yandell, DW, Park, S-H, Canning, S, Whyte, P, Buchkovich, K. Point mutational inactivation of the retinoblastoma antioncogene. Science 1989;243:937–940.CrossRefGoogle ScholarPubMed
Lohmann, DR. RB1 mutations in retinoblastoma. Hum Mutat 1999;14:283–288.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Stirzaker, C, Millar, DS, Paul, CL, Warnecke, PM, Harrison, J, Vincent, PC. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res 1997;57:2229–2237.Google ScholarPubMed
Sherr, CJ. Cancer cell cycles. Science 1996;274:1672–1677.CrossRefGoogle ScholarPubMed
Classon, M, Salama, S, Gorka, C, Mulloy, R, Braun, P, Harlow, E. Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci USA 2000;97:10820–10825.CrossRefGoogle ScholarPubMed
Dei Tos, AP, Maestro, R, Doglioni, C, Piccinin, S, Libera, DD, Boiocchi, M. Tumor suppressor genes and related molecules in leiomyosarcoma. Am J Pathol 1996;148:1037–1045.Google ScholarPubMed
Cohen, JA, Geradts, J. Loss of RB and MTS1/CDKN2 (p16) expression in human sarcomas. Hum Pathol 1997;28:893–898.CrossRefGoogle ScholarPubMed
Stratton, MR, Williams, S, Fisher, C, Ball, A, Westbury, G, Gusterson, BA. Structural alterations of the RB1 gene in human soft tissue tumours. 1989;60:202–205.
Wunder, JS, Czitrom, AA, Kandel, R, Andrulis, IL. Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst 1991;83:194–200.CrossRefGoogle ScholarPubMed
Polsky, D, Mastorides, S, Kim, D, Dudas, M, Leon, L, Leung, D. Altered patterns of RB expression define groups of soft tissue sarcoma patients with distinct biological and clinical behavior. Histol Histopathol 2006;21:743–752.Google ScholarPubMed
Volinia, S, Calin, GA, Liu, CG, Ambs, S, Cimmino, A, Petrocca, F. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006;103:2257–2261.CrossRefGoogle ScholarPubMed
Lane, DP, Crawford, LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261–263.CrossRefGoogle ScholarPubMed
Linzer, DI, Levine, AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;17:43–52.CrossRefGoogle ScholarPubMed
Eliyahu, D, Raz, A, Gruss, P, Givol, D, Oren, M. Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 1984;312:646–649.CrossRefGoogle ScholarPubMed
Parada, LF, Land, H, Weinberg, RA, Wolf, D, Rotter, V. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 1984;312:649–651.CrossRefGoogle ScholarPubMed
Finlay, CA, Hinds, PW, Levine, AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989;57:1083–1093.CrossRefGoogle Scholar
Eliyahu, D, Michalovitz, D, Eliyahu, S, Pinhasi-Kimhi, O, Oren, M. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 1989;86:8763–8767.CrossRefGoogle ScholarPubMed
Clarke, AR, Purdie, CA, Harrison, DJ, Morris, RG, Bird, CC, Hooper, ML. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993;362:849–852.CrossRefGoogle ScholarPubMed
Lowe, SW, Schmitt, EM, Smith, SW, Osborne, BA, Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993;362:847–849.CrossRefGoogle ScholarPubMed
Lowe, SW, Ruley, HE, Jacks, T, Housman, . p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74:957–967.CrossRefGoogle ScholarPubMed
Levine, AJ. p53, the cellular gatekeeper for growth and devision. Cell 1997;88:323–331.CrossRefGoogle Scholar
Isobe, M, Emanuel, BS, Givol, D, Oren, M, Croce, CM. Localization of gene for human p53 antigen to band 17p13. Nature 1986;320:84–85.CrossRefGoogle ScholarPubMed
Bourdon, JC, Fernandes, K, Murray-Zmijewski, F, Liu, G, Diot, A, Xirodimas, DP. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005;19:2122–2137.CrossRefGoogle ScholarPubMed
Laptenko, O, Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 2006;13:951–961.CrossRefGoogle ScholarPubMed
Kho, PS, Wang, Z, Zhuang, L, Li, Y, Chew, JL, Ng, HH. p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem 2004;279:21183–21192.CrossRefGoogle ScholarPubMed
Spurgers, KB, Gold, DL, Coombes, KR, Bohnenstiehl, NL, Mullins, B, Meyn, RE. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 2006;281:25134–142.CrossRefGoogle ScholarPubMed
Oren, M. Regulation of the p53 tumor suppressor protein. J Biol Chem 1999;274:36031–36034.CrossRefGoogle ScholarPubMed
Hemann, MT, Lowe, SW. The p53-Bcl-2 connection. Cell Death Differ 2006;13:1256–1259.CrossRefGoogle ScholarPubMed
He, L, He, X, Lim, LP, Stanchina, E, Xuan, Z, Liang, Y. A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130–1134.CrossRefGoogle ScholarPubMed
Chang, TC, Wentzel, EA, Kent, OA, Ramachandran, K, Mullendore, M, Lee, KH. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26:745–752.CrossRefGoogle ScholarPubMed
Raver-Shapira, N, Marciano, E, Meiri, E, Spector, Y, Rosenfeld, N, Moskovits, N. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007;26:731–743.CrossRefGoogle ScholarPubMed
Tarasov, V, Jung, P, Verdoodt, B, Lodygin, D, Epanchintsev, A, Menssen, A. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007;6:1586–1593.CrossRefGoogle ScholarPubMed
Yamakuchi, M, Ferlito, M, Lowenstein, CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008;105:13421–13426.CrossRefGoogle ScholarPubMed
Welch, C, Chen, Y, Stallings, RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007;26:5017–5022.CrossRefGoogle ScholarPubMed
Baker, SJ, Fearon, ER, Nigro, JM, Hamilton, SR, Preisinger, AC, Jessup, JM. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989;244:217–221.CrossRefGoogle ScholarPubMed
Nigro, JM, Baker, SJ, Preisinger, AC, Jessup, JM, Hostetter, R, Cleary, K. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989;342:705–708.CrossRefGoogle ScholarPubMed
Vogelstein, B, Kinzler, KW. p53 function and dysfunction. Cell 1992;70:523–526.CrossRefGoogle ScholarPubMed
Brooks, CL, Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003;15:164–171.CrossRefGoogle ScholarPubMed
Tang, Y, Zhao, W, Chen, Y, Zhao, Y, Gu, W. Acetylation is indispensable for p53 activation. Cell 2008;133:612–626.CrossRefGoogle ScholarPubMed
Scoumanne, A, Chen, X. Protein methylation: a new mechanism of p53 tumor suppressor regulation. Histol Histopathol 2008;23:1143–1149.Google ScholarPubMed
Hollstein, M, Shomer, B, Greenblatt, M, Soussi, T, Hovig, E, Montesano, R. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res 1996;24:141–146.CrossRefGoogle ScholarPubMed
Lavigueur, A, Maltby, V, Mock, D, Rossant, J, Pawson, T, Bernstein, A. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 1989;9:3982–3991.CrossRefGoogle ScholarPubMed
Donehower, , Harvey, M, Slagle, BL, McArthur, MJ, Montgomery, CA, Butel, JS. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215–221.CrossRefGoogle ScholarPubMed
Harvey, M, McArthur, MJ, Montgomery, CA, Butel, JS, Bradley, A, Donehower, . Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet 1993;5:225–229.CrossRefGoogle ScholarPubMed
Jacks, T, Remington, L, Williams, BO, Schmitt, EM, Halachmi, S, Bronson, RT. Tumor spectrum analysis in p53-deficient mice. Curr Biol 1994;4:1–7.CrossRefGoogle Scholar
Li, FP, Fraumeni, JF. Rhabdomyosarcoma in children; epidemiologic study and identification of a cancer family syndrome. J Natl Cancer Inst 1969;43:1365–1373.Google Scholar
Li, FP, Fraumeni, JF. Soft tissue sarcomas, breast cancer and other neoplasms: a familial syndrome?Ann Int Med 1969;71:747–752.CrossRefGoogle ScholarPubMed
Malkin, D, Li, FP, Strong, LC, Fraumeni, JF, Nelson, CE, Kim, DH. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250:1233–1238.CrossRefGoogle Scholar
Varley, JM, Evans, DGR, Birch, JM. Li-Fraumeni syndrome – a molecular and clinical review. Br J Cancer 1997;76:1–14.CrossRefGoogle ScholarPubMed
Varley, JM, Thorncroft, M, McGown, G, Appleby, J, Kelsey, AM, Tricker, KJ. A detailed study of loss of heterozygosity on chromosome 17 in tumours from Li-Fraumeni patients carrying a mutation to the TP53 gene. Oncogene 1997;14:865–871.CrossRefGoogle ScholarPubMed
Bell, DW, Varley, JM, Szydlo, TE, Kang, DH, Wahrer, DCR, Shannon, KE. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999;286:2528–2531.CrossRefGoogle ScholarPubMed
Vahteristo, P, Tamminen, A, Karvinen, P, Eerola, H, Eklund, C, Aaltonen, . p53, CHK2 and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res 2001;61:5718–5722.Google ScholarPubMed
Matsuoka, S, Huang, M, Elledge, SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998;282:1893–1897.CrossRefGoogle ScholarPubMed
Blasina, A, Weyer, IV, Laus, MC, Luyten, WH, Parker, AE, McGowan, CH. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr Biol 1999;14:1–10.CrossRefGoogle Scholar
Chaturvedi, P, Eng, WK, Zhu, Y, Mattern, MR, Mishra, R, Hurle, MR. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 1999;18:4047–4054.CrossRefGoogle ScholarPubMed
Brown, AL, Lee, C-H, Schwarz, JK, Mitiku, N, Piwnica-Worms, H, Chung, JH. A human Cda1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc Nat Acad Sci 1999;96:3745–3750.CrossRefGoogle Scholar
Chehab, NH, Malikzay, A, Appel, M, Halazonetis, TD. Chk2/hCds1 functions as a DNA damage checkpoint in G-1 by stabilizing p53. Genes Dev 2000;14:278–288.Google ScholarPubMed
Bartkova, J, Horejsí, Z, Koed, K, Krämer, A, Tort, F, Zieger, K. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005;434:864–870.CrossRefGoogle ScholarPubMed
Cordon-Cardo, C. Mutation of cell cycle regulators: Biological and clinical implications for human neoplasia. Am J Pathol 1995;147:545–560.Google ScholarPubMed
Sherr, CJ. Cancer cell cycles. Science 1996;274:1672–1677.CrossRefGoogle ScholarPubMed
Ruas, M, Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998;1378:F115–177.Google ScholarPubMed
Orlow, I, Drobnjak, M, Zhang, ZF, Lewis, J, Woodruff, JM, Brennan, MF. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival. J Natl Cancer Inst 1999;91:73–79.CrossRefGoogle ScholarPubMed
Merlo, A, Herman, JG, Mao, L, Lee, DJ, Gabrielson, E, Burger, PC. 5-prime CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med 1995;1:686–692.CrossRefGoogle Scholar
Kawaguchi, K, Oda, Y, Saito, T, Yamamoto, H, Tamiya, S, Takahira, T. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promotor methylation and poor prognosis. J Pathol 2003;201:487–495.CrossRefGoogle Scholar
Schneider-Stock, R, Boltze, C, Lasota, J, Peters, B, Corless, CL, Ruemmele, P. Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res 2005;11:638–645.Google ScholarPubMed
Obana, K, Yang, HW, Piao, HY, Taki, T, Hashizume, K, Hanada, R. Aberrations of p16INK4A, p14ARF, and p15INK4B genes in pediatric solid tumors. Int J Oncol 2003;23:1151–1157.Google ScholarPubMed
Linardic, CM, Naini, S, Herndon, JE 2nd, Kesserwan, C, Qualman, SJ, Counter, CM. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res 2007;67: 6691–6699.CrossRefGoogle ScholarPubMed
Naini, S, Etheridge, KT, Adam, SJ, Qualman, SJ, Bentley, RC, Counter, CM. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res 2008;68:9583–9588.CrossRefGoogle ScholarPubMed
Hussussian, CJ, Struewing, JP, Goldstein, AM, Higgins, PAT, Ally, DS, Sheahan, MD. Germline p16 mutations in familial melanoma. Nature Genet 1994;8:15–21.CrossRefGoogle ScholarPubMed
Randerson-Moor, JA, Harland, M, Williams, S, Cuthbert-Heavens, D, Sheridan, E, Aveyard, J. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001;10: 55–62.CrossRefGoogle ScholarPubMed
Freedberg, , Rigas, SH, Russak, J, Gai, W, Kaplow, M, Osman, I. Frequent p16-independent inactivation of p14ARF in human melanoma. J Natl Cancer Inst 2008;100:784–795.CrossRefGoogle ScholarPubMed
Hannon, Gj, Beach, D. p15(INK4B) is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994;371:257–261.CrossRefGoogle Scholar
Nabori, T, Miura, K, Wu, DJ, Lois, A, Takabayashi, K, Carson, DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994;368:753–756.CrossRefGoogle Scholar
Serrano, M, Lee, H, Chin, L, Cordon-Cardo, C, Beach, D, DePinho, RA. Role of the INK4a locus in tumor supression and cell mortality. Cell 1996;85:27–37.CrossRefGoogle Scholar
Kamijo, T, Zindy, F, Roussel, MF, Quelle, , Downing, JR, Ashmun, RA. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997;91:649–659.CrossRefGoogle ScholarPubMed
Krimpenfort, P, Ijpenberg, A, Song, JY, Valk, M, Nawijn, M, Zevenhoven, J. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007;448:943–946.CrossRefGoogle ScholarPubMed
Beckwith, JB, Palmer, NF: Histopathology and prognosis of Wilms tumors: results from the First National Wilms' Tumor Study. Cancer 1978;41:1937–1948.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Parham, DM, Weeks, DA, Beckwith, JB. The clinicopathologic spectrum of putative extrarenal rhabdoid tumors: An analysis of 42 cases studied with immunohistochemistry or electron microscopy. Am J Surg Pathol 1994;18:1010–1029.CrossRefGoogle ScholarPubMed
Biegel, JA, Rorke, LB, Packer, RJ, Emanuel, BS. Monosomy 22 in rhabdoid or atypical tumors of the brain. J Neurosurg 1990;73:710–714.CrossRefGoogle ScholarPubMed
Biegel, JA, Burk, CD, Parmiter, AH, Emanuel, BS. Molecular analysis of partial deletion of 22q in a central nervous system rhabdoid tumor. Genes Chromosomes Cancer 1992; 5:104–108.CrossRefGoogle Scholar
Biegel, JA, Allen, CS, Kawasaki, K, Shimizu, N, Budarf, ML, Bell, CJ. Narrowing the critical region for the rhabdoid tumor locus in 22q11. Genes Chromosomes Cancer 1996;16:94–105.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Versteege, I, Sevenet, N, Lange, J, Rousseau-Merck, M-F, Ambros, P, Handgretinger, R. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998;394:203–206.CrossRefGoogle ScholarPubMed
Sevenet, N, Lellouch-Tubiana, A, Schofield, D, Hoang-Xuan, K, Gessler, M, Birnbaum, D. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum Molec Genet 1999;8:2359–2368.CrossRefGoogle ScholarPubMed
Sevenet, N, Sheridan, E, Amram, D, Schneider, P, Handgretinger, R, Delattre, O. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 1999;65:1342–1348.CrossRefGoogle ScholarPubMed
Taylor, MD, Gokgoz, N, Andrulis, IL, Mainprize, TG, Drake, JM, Rutka, JT. Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. Am J Hum Genet 2000;66:1403–1406.CrossRefGoogle ScholarPubMed
Roberts, CW, Galusha, SA, McMenamin, ME, Fletcher, CD, Orkin, SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 2000; 97:13796–13800.CrossRefGoogle ScholarPubMed
Roberts, CW, Leroux, MM, Fleming, MD, Orkin, SH. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2002;2:415–425.CrossRefGoogle ScholarPubMed
Isakoff, MS, Sansam, CG, Tamayo, P, Subramanian, A, Evans, JA, Fillmore, CM. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci USA 2005;102:17745–17750.CrossRefGoogle ScholarPubMed
Sansam, CG, Roberts, CW. Epigenetics and cancer: altered chromatin remodeling via Snf5 loss leads to aberrant cell cycle regulation. Cell Cycle 2006;5:621–624.CrossRefGoogle ScholarPubMed
McKenna, ES, Sansam, CG, Cho, YJ, Greulich, H, Evans, JA, Thom, CS. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol 2008;28:6223–6233.CrossRefGoogle ScholarPubMed
Modena, P, Lualdi, E, Facchinetti, F, Galli, L, Teixeira, MR, Pilotti, S. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res 2005;65:4012–4009.CrossRefGoogle ScholarPubMed
Kohashi, K, Izumi, T, Oda, Y, Yamamoto, H, Tamiya, S, Taguchi, T. Infrequent SMARCB1/INI1 gene alteration in epithelioid sarcoma: a useful tool in distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol 2008 Oct 28. [Epub ahead of print].Google ScholarPubMed
Kohashi, K, Oda, Y, Yamamoto, H, Tamiya, S, Oshiro, Y, Izumi, T. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 2008;32:1168–1174.CrossRefGoogle ScholarPubMed
Fitzgerald, HL, Hardin, HC. Bilateral Wilms' tumor family: case report. J Urol 1955;73:468–474.CrossRefGoogle ScholarPubMed
Knudson, AG Jr, Strong, LC. Mutation and cancer: a model for Wilm's tumor of the kidney. J Nat Cancer Inst 1972;48:313–324.Google Scholar
Fearon, ER, Vogelstein, B, Feinberg, AP. Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature 1984;309:176–178.CrossRefGoogle ScholarPubMed
Koufos, A, Hansen, MF, Lampkin, BC, Workman, ML, Copeland, NG, Jenkins, NA. Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumour. Nature 1984;309:170–172.CrossRefGoogle ScholarPubMed
Orkin, SH, Goldman, DS, Sallan, SE. Development of homozygosity for chromosome 11p markers in Wilms' tumour. Nature 1984;309:172–174.CrossRefGoogle ScholarPubMed
Reeve, AE, Housiaux, PJ, Gardner, RJM, Chewings, WE, Grindley, RM, Millow, LJ. Loss of Harvey ras allele in sporadic Wilms' tumour. Nature 1984;309:174–176.CrossRefGoogle ScholarPubMed
Weissman, BE, Saxon, PJ, Pasquale, SR, Jones, GR, Geiser, AG, Stanbridge, EJ. Introduction of normal human chromosome into Wilms' tumor cell line controls its tumorigenic expression. Science 1987;236:175–180.CrossRefGoogle ScholarPubMed
Call, KM, Glaser, T, Ito, CY, Buckler, AJ, Pelletier, J, Haber, DA. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 1990;60:509–520.CrossRefGoogle ScholarPubMed
Rose, EA, Glaser, T, Jones, C, Smith, CL, Lewis, WH, Call, KM. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms tumor gene. Cell 1990;60:495–508.CrossRefGoogle ScholarPubMed
Haber, DA, Park, S, Maheswaran, S, Englert, C, Re, GG, Hazen-Martin, DJ. WT1-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant. Science 1993;262:2057–2059.CrossRefGoogle ScholarPubMed
Haber, DA, Timmers, HT, Pelletier, J, Sharp, PA, Housman, . A dominant mutation in the Wilms tumor gene WT1 cooperates with the viral oncogene E1A in transformation of primary kidney cells. Proc Natl Acad Sci USA 1992;89:6010–6014.CrossRefGoogle ScholarPubMed
Rauscher, FJ III, Morris, JF, Tournay, OE, Cook, DM, Curran, T. Binding of the Wilms' tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 1990;250:1259–1262.CrossRefGoogle ScholarPubMed
Bickmore, WA, Oghene, K, Little, MH, Seawright, A, Heyningen, V, Hastie, ND. Modulation of DNA binding specificity by alternative splicing of the Wilms' tumor wt1 gene transcript. Science 1992;257:235–237.CrossRefGoogle ScholarPubMed
Reddy, J, Licht, JD. The WT1 Wilms' tumor suppressor gene: how much do we really know?Biochim Biophys Acta 1996;1287:1–28.Google ScholarPubMed
Davies, RC, Calvio, C, Bratt, E, Larsson, SH, Lamond, AI, Hastie, ND. WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 1998;12:3217–3225.CrossRefGoogle Scholar
Armstrong, JF, Pritchard-Jones, K, Bickmore, WA, Hastie, ND, Bard, JB. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech Dev 1993;40:85–97.CrossRefGoogle ScholarPubMed
Moore, AW, McInnes, L, Kreidberg, J, Hastie, ND, Schedl, A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 1999;126:1845–1857.Google Scholar
Rackley, RR, Flenniken, AM, Kuriyan, NP, Kessler, PM, Stoler, MH, Williams, BR. Expression of the Wilms' tumor suppressor gene WT1 during mouse embryogenesis. Cell Growth Differ 1993;4:1023–1031.Google ScholarPubMed
Kreidberg, JA, Sariola, H, Loring, JM, Maeda, M, Pelletier, J, Housman, D. WT-1 is required for early kidney development. Cell 1993;74:679–691.CrossRefGoogle ScholarPubMed
Hastie, ND. Life, sex, and WT1 isoforms-three amino acids can make all the difference. Cell 2001;106:391–394.CrossRefGoogle ScholarPubMed
Barbaux, S, Niaudet, P, Gubler, MC, Grunfeld, JP, Jaubert, F, Kuttenn, F. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997;17:467–470.CrossRefGoogle ScholarPubMed
Pelletier, J, Bruening, W, Kashtan, CE, Mauer, SM, Manivel, JC, Striegel, JE. Germinal mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67:437–447.CrossRefGoogle Scholar
Heyningen, V, Bickmore, WA, Seawright, A, Fletcher, JM, Maule, J, Fekete, G. Role for the Wilms tumor gene in genital development?Proc Nat Acad Sci USA 1990;87:5383–5386.CrossRefGoogle ScholarPubMed
Inoue, K, Sugiyama, H, Ogawa, H, Yamagami, T, Miea, H, Kita, K. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994;84:3071–3079.Google Scholar
Brieger, J, Weidmann, E, Maurer, U, Hoelzer, D, Mitrou, PS, Bergmann, L. The Wilms' tumor gene is frequently expressed in acute myeloblastic leukemias and may provide a marker for residual blast cells detectable by PCR. Ann Oncol 1995;8:811–816.CrossRefGoogle Scholar
Oji, Y, Suzuki, T, Nakano, Y, Maruno, M, Nakatsuka, S, Jomgeow, T. Overexpression of the Wilms' tumor gene W T1 in primary astrocytic tumors. Cancer Sci 2004;95:822–827.CrossRefGoogle ScholarPubMed
Loeb, DM, Evron, E, Patel, CB, Sharma, PM, Niranjan, B, Buluwela, L. Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 2001;61:921–925.Google ScholarPubMed
Koesters, R, Linnebacher, M, Coy, JF, Germann, A, Schwitalle, Y, Findeisen, P. WT1 is a tumor-associated antigen in colon cancer that can be recognized by in vitro stimulated cytotoxic T cells. Int J Cancer 2004;109:385–392.CrossRefGoogle ScholarPubMed
Amini Nik, S, Hohenstein, P, Jadidizadeh, A, Dam, K, Bastidas, A, Berry, RL. Upregulation of Wilms' tumor gene 1 (WT1) in desmoid tumors. Int J Cancer 2005;114:202–208.CrossRefGoogle Scholar
Park, S, Schalling, M, Bernard, A, Maheswaren, S, Shipley, GC, Roberts, D. The Wilms tumor gene WT1 is expressed in murine mesoderm-derived tissues and mutated in a human mesothelioma. Nat Genet 1993;4:415–420.CrossRefGoogle Scholar
Kumar-Singh, S, Segers, K, Rodeck, U, Backhovens, H, Bogers, J, Weyler, J. WT1 mutations in malignant mesothelioma and WT1 immunoreactivity in relation to p53 and growth factor receptor expression, cell-type transition and prognosis. J Pathol 1997;181:67–74.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Ueda, T, Oji, Y, Naka, N, Nakano, Y, Takahashi, E, Koga, S. Overexpression of the Wilms' tumor gene WT1 in human bone and soft-tissue sarcomas. Cancer Sci 2003;94:271–276.CrossRefGoogle ScholarPubMed
Cilloni, D, Gottardi, E, Micheli, D, Serra, A, Volpe, G, Messa, F. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002;16:2115–2121.CrossRefGoogle ScholarPubMed
King-Underwood, L, Renshaw, J, Pritchard-Jones, K. Mutations in the Wilms' tumor gene WT1 in leukemias. Blood 1996;87:2171–2179.Google ScholarPubMed
Hollink, IH, Heuvel-Eibrink, MM, Zimmermann, M, Balgobind, BV, Arentsen-Peters, ST, Alders, M. Clinical relevance of Wilms' tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009 Jan 26. [Epub ahead of print].CrossRefGoogle ScholarPubMed
Kinzler, KW, Nilbert, MC, Su, L-K, Vogelstein, B, Bryan, TM, Levy, DB. Identification of FAP locus genes from chromosome 5q21. Science 1991; 253:661–665.CrossRefGoogle ScholarPubMed
Nishisho, I, Nakamura, Y, Miyoshi, Y, Ando, H, Horii, A, Koyama, K. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665–669.CrossRefGoogle ScholarPubMed
Klemmer, S, Pascoe, L, DeCosse, J. Occurrence of desmoids in patients with familial adenomatous polyposis of the colon. Am J Med Genet 1987;28:385–392.CrossRefGoogle ScholarPubMed
Clark, SK, Neale, KF, Landgrebe, JC, Phillips, RKS. Desmoid tumours complicating familial adenomatous polyposis. Br J Surg 1999;86:1185–1189.CrossRefGoogle ScholarPubMed
Eccles, DM, Luijt, R, Breukel, C, Bullman, H, Bunyan, D, Fisher, A. Hereditary desmoid desease due to a frameshift mutation at codon 1924 of the APC gene. Am J Hum Genet 1996;59:1193–1201.Google Scholar
Scott, RJ, Froggatt, NJ, Trembath, RC, Evans, DG, Hodgson, SV, Maher, ER. Familial infiltrative fibromatosis (desmoid tumours) (MIM135290) caused by a recurrent 3' APC gene mutation. Hum Mol Genet 1996;5:1921–1924.CrossRefGoogle ScholarPubMed
Groden, J, Thliveris, A, Samowitz, W, Carlson, M, Gelbert, L, Albertsen, H. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600.CrossRefGoogle ScholarPubMed
Joslyn, G, Carlson, M, Thliveris, A, Albertsen, H, Gelbert, L, Samowitz, W. Identification of deletion mutation and three new genes at the familial polyposis locus. Cell 1991;66:601–613.CrossRefGoogle ScholarPubMed
Sen-Gupta, S, Luijt, R, Bowles, LV, Meera Khan, P, Delhanty, JDA. Somatic mutation of APC gene in desmoid tumour in familial adenomatous polyposis. Lancet 1993;342:552–553.CrossRefGoogle ScholarPubMed
Lamlum, H, Ilyas, M, Rowan, A, Clark, S, Johnson, V, Bell, J. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's ‘two-hit’ hypothesis. Nat Med 1999;5:1071–1075.CrossRefGoogle ScholarPubMed
Crabtree, M, Sieber, OM, Lipton, L, Hodgson, SV, Lamlum, H, Thomas, HJ. Refining the relation between ‘first hits’ and ‘second hits’ at the APC locus: the ‘loose fit’ model and evidence for differences in somatic mutation spectra among patients. Oncogene 2003;22:4257–4265.CrossRefGoogle ScholarPubMed
Couture, J, Mitri, A, Lagace, R, Smits, R, Berk, T, Bouchard, HL. A germline mutation at the extreme 3' end of the APC gene results in a severe desmoid phenotype and is associated with overexpression of beta-catenin in the desmoid tumor. Clin Genet 2000;57:205–212.CrossRefGoogle Scholar
Laken, SJ, Papadopoulos, N, Petersen, GM, Gruber, SB, Hamilton, SR, Giardiello, FM. Analysis of masked mutations in familial adenomatous polyposis. Proc Natl Acad Sci USA 1999;96:2322–2326.CrossRefGoogle ScholarPubMed
Yan, H, Dobbie, Z, Gruber, SB, Markowitz, S, Romans, K, Giardiello, FM. Small changes in expression affect predisposition to tumorigenesis. Nature Genet 2002;30:25–36.CrossRefGoogle ScholarPubMed
Polakis, P.The many ways of Wnt in cancer. Curr Opin Genet Dev 2007;17:45–51.CrossRefGoogle Scholar
Behrens, J, Kries, JP, Kuhl, M, Bruhn, L, Wedlich, D, Grosschedl, R. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996;382:638–642.CrossRefGoogle ScholarPubMed
Segditsas, S, Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 2006;25:7531–7537.CrossRefGoogle ScholarPubMed
Miyoshi, Y, Iwao, K, Nawa, G, Yoshikawa, H, Ochi, T, Nakamura, Y. Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 1998;10:591–594.Google ScholarPubMed
Tejpar, S, Michils, G, Denys, H, Dam, K, Nik, SA, Jadidizadeh, A. Analysis of Wnt/Beta catenin signalling in desmoid tumors. Acta Gastroenterol Belg 2005;68: 5–9.Google ScholarPubMed
Kotiligam, D, Lazar, AJ, Pollock, RE, Lev, D. Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol 2008;23:117–126.Google ScholarPubMed
Lazar, AJ, Tuvin, D, Hajibashi, S, Habeeb, S, Bolshakov, S, Mayordomo-Aranda, E. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 2008;173:1518–1527.CrossRefGoogle ScholarPubMed
Alman, BA, Li, C, Pajerski, ME, Diaz-Cano, S, Wolfe, HJ. Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 1997;151:329–334.Google Scholar
Luu, HH, Zhang, R, Haydon, RC, Rayburn, E, Kang, Q, Si, W. Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets 2004;4:653–671.CrossRefGoogle ScholarPubMed
Takahashi-Yanaga, F, Sasaguri, T. The Wnt/beta-catenin signaling pathway as a target in drug discovery. J Pharmacol Sci 2007;104:293–302.CrossRefGoogle ScholarPubMed
Rasmussen, SA, Friedman, JM. NF1 gene and neurofibromatosis 1. Am J Epidemiol 2000;151:33–40.CrossRefGoogle ScholarPubMed
Cawthon, RM, Weiss, R, Xu, GF, Viskochil, D, Culver, M, Stevens, J. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990;62:193–201.CrossRefGoogle Scholar
Wallace, MR, Marchuk, DA, Anderson, LB, Letcher, R, Odeh, HM, Saulino, AM. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 1990;249:181–186.CrossRefGoogle ScholarPubMed
Xu, GF, Lin, B, Tanaka, K, Dunn, D, Wood, D, Gesteland, R. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990;63:835–841.CrossRefGoogle ScholarPubMed
Martin, GA, Viskochil, D, Bollag, G, McCabe, PC, Crosier, WJ, Haubruck, H. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990;63:843–849.CrossRefGoogle ScholarPubMed
Tong, J, Hannan, F, Zhu, Y, Bernards, A, Zhong, Y. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 2002;5:95–96.CrossRefGoogle ScholarPubMed
Bollag, G, Clapp, DW, Shih, S, Adler, F, Zhang, YY, Thompson, P. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 1996;12:144–8.CrossRefGoogle ScholarPubMed
Hiatt, KK, Ingram, DA, Zhang, Y, Bollag, G, Clapp, DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf12/2 cells. J Biol Chem 2001;276:7240–7245.CrossRefGoogle Scholar
Dilworth, JT, Kraniak, JM, Wojtkowiak, JW, Gibbs, RA, Borch, RF, Tainsky, MA. Molecular targets for emerging anti-tumor therapies for neurofibromatosis type 1. Biochem Pharmacol 2006;72:1485–1492.CrossRefGoogle ScholarPubMed
Parada, LF, Kwon, CH, Zhu, Y. Modeling neurofibromatosis type 1 tumors in the mouse for therapeutic intervention. Cold Spring Harb Symp Quant Biol 2005;70:173–176.CrossRefGoogle ScholarPubMed
Jacks, T, Shih, TS, Schmitt, EM, Bronson, RT, Bernards, A, Weinberg, RA: Tumor predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 1994;7:353–361.CrossRefGoogle ScholarPubMed
Cichowski, J, Shih, TS, Schmitt, E, Santiago, S, Reilly, K, McLaughlin, ME. Mouse models of tumor development in neurofibromatosis type 1. Science 1999;286:2172–2176.CrossRefGoogle ScholarPubMed
Gottfried, ON, Viskochil, DH, Fults, DW, Couldwell, WT. Molecular, genetic, and cellular pathogenesis of neurofibromas and surgical implications. Neurosurgery 2006;58:1–16.CrossRefGoogle ScholarPubMed
Le, LQ, Parada, LF.Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 2007;26:4609–4616.CrossRefGoogle Scholar
Fahsold, R, Hoffmeyer, S, Mischung, C, Gille, C, Ehlers, C, Kücükceylan, N. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 2000;66:790–818.CrossRefGoogle Scholar
Dorschner, MO, Sybert, VP, Weaver, M, Pletcher, BA, Stephens, K. NF1 microdeletion breakpoints are clustered at flanking repetitive sequences. Hum Mol Genet 2000;9:35–46.CrossRefGoogle ScholarPubMed
Venturin, M, Guarnieri, P, Natacci, F, Stabile, M, Tenconi, R, Clementi, M. Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 2004;41:35–41.CrossRefGoogle ScholarPubMed
Skuse, GR, Kosciolek, BA, Rowley, PT. Molecular genetic analysis of tumors in von Recklinghausen neurofibromatosis: loss of heterozygosity for chromosome 17. Genes Chromosomes Cancer 1989;1:36–41.CrossRefGoogle Scholar
Xu, W, Mulligan, LM, Ponder, MA, Liu, L, Smith, BA, Mathew, CG. Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosomes Cancer 1992;4:337–342.CrossRefGoogle ScholarPubMed
Legius, E, Marchuk, DA, Collins, FS, Glover, TW. Somatic deletion of the neurofibromatosis type 1 gene in neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet 1993;3:122–126.CrossRefGoogle ScholarPubMed
Colman, SD, Williams, CA, Wallace, RW. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nat Genet 1995;11:90–92.CrossRefGoogle ScholarPubMed
Lothe, RA, Slettan, A, Saeter, G, Brøgger, A, Børresen, A-L, Nesland, JM. Alterations at chromosome 17 loci in peripheral nerve sheath tumors. J Neuropathol Exp Neurol 1995;54:65–73.CrossRefGoogle ScholarPubMed
Serra, E, Puig, S, Otero, D, Gaona, A, Kruyer, H, Ars, E. Conformation of a double-hit model for the NF1 gene in benign neurofibromas. Am J Hum Genet 1997;61:512–519.CrossRefGoogle Scholar
Däschner, K, Assum, G, Eisenbarth, I, Krone, W, Hoffmeyer, S, Wortmann, S. Clonal origin of tumor cells in a plexiform neurofibroma with LOH in NF1 intron 38 and in dermal neurofibromas without LOH of the NF1 gene. Biochem Biophys Res Commun 1997;234:346–350.CrossRefGoogle Scholar
Kluwe, L, Friedrich, RE, Mautner, VF. Allelic loss of the NF1 gene in NF1-associated plexiform neurofibromas. Cancer Genet Cytogenet 1999;113:65–69.CrossRefGoogle ScholarPubMed
Eisenbarth, I, Beyer, K, Krone, W, Assum, G. Toward a survey of somatic mutation of the NF1 gene in benign neurofibromas of patients with neurofibromatosis type 1. Am J Hum Genet 2000;66:393–401.CrossRefGoogle Scholar
Rasmussen, SA, Overman, J, Thomson, SAM, Colman, SD, Abernathy, CR, Trimpert, RE. Chromosome 17 loss-of-heterozygosity studies in benign and malignant tumors in neurofibromatosis type I. Genes Chromosomes Cancer, 2000; 28:425–431.3.0.CO;2-E>CrossRefGoogle Scholar
Gutzmer, R, Herbst, RA, Mommert, S, Kiehl, P, Matiaske, F, Rütten, A. Allelic loss at the neurofibromatosis type 1 (NF1) gene locus is frequent in desmoplastic neurotropic melanoma. Hum Genet 2000;107:357–361.CrossRefGoogle ScholarPubMed
Perry, A, Roth, KA, Banerjee, R, Fuller, CE, Gutmann, DH. NF1 deletions in S-100 protein-positive and negative cells of sporadic and neurofibromatosis 1 (NF1)-associated plexiform neurofibromas and malignant peripheral nerve sheath tumors. Am J Pathol 2001;159:57–61.CrossRefGoogle ScholarPubMed
Kluwe, L, Hagel, C, Tatagiba, M, Thomas, S, Stavrou, D, Ostertag, H. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol 2001;60:917–920.CrossRefGoogle ScholarPubMed
Viskochil, DH, in: Uphadhyaya, M, Cooper, DN (eds.). Neurofibromatosis Type 1: From Genotype to Phenotype. Oxford: BIOS Scientific Publishers, 1998.
Messiaen, LM, Callens, T, Mortier, G, Beysen, D, Vandenbroucke, I, Roy, N. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000;15:541–555.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Gutmann, DH. Molecular insights into neurofibromatosis 2. Neurobiol Dis 1997; 3:247–261.CrossRefGoogle ScholarPubMed
Rouleau, GA, Merel, P, Lutchman, M, Sanson, M, Zucman, J, Marineau, C. Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature 1993;363:515–521.CrossRefGoogle Scholar
Trofatter, JA, MacCollin, MM, Rutter, JL, Murrell, JR, Duyao, MP, Parry, DM. Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature 1993;363:515–521.Google Scholar
McCartney, BM, Fehon, RG. The ERM family proteins and their roles in cell-cell interactions, p. 200–210. In Cowijn, P, Klymkowsky, MW (ed.), Cytoskeletal-membrane Interactions and Signal Transduction. Austin, TX: R. G. Landes Bioscience, 1997.Google Scholar
Lutchman, M, Rouleau, GA. The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. Cancer Res 1995;55:2270–2274.Google ScholarPubMed
Tikoo, A, Varga, M, Ramesh, V, Gusella, J, Maruta, H. An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem 1994;269:23387–23390.Google Scholar
Giovannini, M, Robanus-Maandag, E, Niwa-Kawakita, M, Valk, M, Woodruff, JM, Goutebroze, L. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev 1999;13:978–986.CrossRefGoogle ScholarPubMed
McClatchey, AI, Saotome, I, Mercer, K, Crowley, D, Gusella, JF, Bronson, RT. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998;12:1121–1133.CrossRefGoogle ScholarPubMed
Surace, EI, Haipek, CA, Gutmann, DH. Effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene 2004;23:580–587.CrossRefGoogle ScholarPubMed
Scoles, DR. The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta 2008;1785:32–54.Google ScholarPubMed
Merel, P, Hoang-Xuan, K, Sanson, M, Bijlsma, E, Rouleau, G, Laurent-Puig, P. Screening for germ-line mutations in the NF2 gene. Genes Chromosomes Cancer 1995;12:117–127.CrossRefGoogle ScholarPubMed
Ruttledge, MH, Andermann, AA, Phelan, CM, Claudio, JO, Han, FY, Chretien, N. Type of mutation in the neurofibromatosis type 2 gene (NF2) frequently determines severity of disease. Am J Hum Genet 1996;59:331–342.Google ScholarPubMed
Zucman-Rossi, J, Legoix, P, Sarkissian, H, Cheret, G, Sor, F, Bernardi, A. NF2 gene in neurofibromatosis type 2 patients. Hum Mol Genet 1998;7:2095–2101.CrossRefGoogle ScholarPubMed
Kluwe, L, Nygren, AO, Errami, A, Heinrich, B, Matthies, C, Tatagiba, M. Screening for large mutations of the NF2 gene. Genes Chromosomes Cancer 2005;42:384–391.CrossRefGoogle ScholarPubMed
Baser, ME, Contributors to the International NF2 Mutation Database. The distribution of constitutional and somatic mutations in the neurofibromatosis 2 gene. Hum Mutat 2006;27:297–306.CrossRefGoogle ScholarPubMed
Ahronowitz, I, Xin, W, Kiely, R, Sims, K, MacCollin, M, Nunes, FP. Mutational spectrum of the NF2 gene: a meta-analysis of 12 years of research and diagnostic laboratory findings. Hum Mutat 2007;28:1–12.CrossRefGoogle ScholarPubMed
Bianchi, AB, Mitsunaga, SI, Cheng, JQ, Klei, WM, Jhanwar, SC, Seizinger, B. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci USA 1995;92:10854–10858.CrossRefGoogle Scholar
Cheng, JQ, Lee, WC, Klein, MA, Cheng, GZ, Jhanwar, SC, Testa, JR. Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer 1999;24:238–242.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Bijlsma, EK, Merel, P, Bosch, DA, Westerveld, A, Delattre, O, Thomas, G. Analysis of mutations in the SCH gene in schwannomas. Genes Chromosomes Cancer 1994;11:7–14.CrossRefGoogle ScholarPubMed
Twist, EC, Ruttledge, MH, Rousseau, M, Sanson, M, Papi, M, Merel, P. The neurofibromatosis type 2 gene is inactivated in schwannomas. Hum Mol Genet 1994;3:147–151.CrossRefGoogle ScholarPubMed
Jacoby, LB, MacCollin, M, Barone, R, Ramesh, V, Gusella, JF. Frequency and distribution of NF2 mutations in schwannomas. Genes Chromosomes Cancer 1996;17:45–55.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Lasota, JFetsch, JF, Wozniak, A, Wasag, B, Sciot, R, Miettinen, M. The neurofibromatosis type 2 gene is mutated in perineural cell tumors: A molecular genetic study of eight cases. Am J Pathol 2001;158:1223–1229.CrossRefGoogle Scholar
Stemmer-Rachamimov, AO, Xu, L, Gonzalez-Agosti, C, Burwick, JA, Pinney, D, Beauchamp, R. Universal absence of merlin, but not other ERM family members, in schwannomas. Am J Pathol 1997;151:1649–1654.Google Scholar
Gutmann, DH, Giordano, MJ, Fishback, AS, Guha, A. Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology 1997;49:267–270.CrossRefGoogle ScholarPubMed
Lee, JH, Sundaram, V, Stein, DJ, Kinney, SE, Stacey, DW, Golubic, M. Reduced expression of schwannomin/merlin in human sporadic meningiomas. Neurosurgery 1997;40:578–587.Google ScholarPubMed
Kimura, Y, Koga, H, Araki, N, Mugita, N, Fujita, N, Takeshima, H. The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schannomas and meningiomas. Nat Med 1998;4:915–922.CrossRefGoogle ScholarPubMed
Astuti, D, Latif, F, Dallol, A, Dahia, PL, Douglas, F, George, E. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:49–54.CrossRefGoogle ScholarPubMed
Maher, ER, Eng, C. The pressure rises: update on the genetics of phaeochromocytoma. Hum Mol Genet 2002;11:2347–2354.CrossRefGoogle ScholarPubMed
Schiavi, F, Boedeker, CC, Bausch, B, Peçzkowska, M, Gomez, CF, Strassburg, T. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA 2005;294:2057–2063.CrossRefGoogle ScholarPubMed
Bayley, JP, Minderhout, I, Weiss, MM, Jansen, JC, Oomen, PH, Menko, FH. Mutation analysis of SDHB and SDHC: novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma. BMC Med Genet 2006;7:1.CrossRefGoogle ScholarPubMed
Sorensen, PH, Shimada, H, Liu, XF, Lim, JF, Thomas, G, Triche, J. Biphenotypic sarcomas with myogeneic and neural differentiation express the Ewing's sarcoma EWS/FLI1 fusion gene. Cancer Res 1995;55:1385–1392.Google Scholar
Thorner, P, Squire, J, Chilton-MacNeill, S, Marrano, P, Bayani, J, Malkin, D. Is the EWS/FLI-1 fusion transcript specific for Ewing sarcoma and peripheral primitive neuroectodermal tumor? A report of four cases showing this transcript in a wider range of tumor types. Am J Pathol 1996;148:1125–1138.Google Scholar
Alava, E, Lozano, MD, Sola, I, Panizo, A, Idoate, MA, Martínez-Isla, C. Molecular features in a biphenotypic small cell sarcoma with neuroectodermal and muscle differentiation. Hum Pathol 1998;29:181–184.CrossRefGoogle Scholar
Katz, RL, Quezado, M, Senderowicz, AM, Villalba, L, Laskin, WB, Tsokos, M. An intra-abdominal small round cell neoplasm with features of primitive neuroectodermal and desmoplastic round cell tumor and a EWS/FLI-1 fusion transcript. Hum Pathol 1997;28:502–509.CrossRefGoogle Scholar
Ordi, J, Alava, E, Torné, A, Mellado, B, Pardo-Mindan, J, Iglesias, X. Intraabdominal desmoplastic small round cell tumor with EWS/ERG fusion transcript. Am J Surg Pathol 1998;22:1026–1032.CrossRefGoogle ScholarPubMed
Burchill, SA, Wheeldon, J, Cullinane, C, Lewis, IJ. EWS-FLI1 fusion transcripts identified in patients with typical neuroblastoma. Eur J Cancer 1997;33:239–243.CrossRefGoogle ScholarPubMed
Fritsch, MK, Bridge, JA, Schuster, AE, Perlman, EJ, Argani, P. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol 2003;6:43–53.CrossRefGoogle ScholarPubMed
Sorensen, PB, Wu, JK, Berean, KW, Lim, JF, Donn, W, Frierson, HF. Olfactory neuroblastoma is a peripheral primitive neuroectodermal tumor related to Ewing sarcoma. Proc Natl Acad Sci USA 1996;93:1038–1043.CrossRefGoogle ScholarPubMed
Scotlandi, K, Chano, T, Benini, S, Serra, M, Manara, MC, Cerisano, V. Identification of EWS/FLI-1 transcripts in giant-cell tumor of bone. Int J Cancer 2000;87:328–335.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Argani, P, Perez-Ordoñez, B, Xiao, H, Caruana, SM, Huvos, AG, Ladanyi, M. Olfactory neuroblastoma is not related to the Ewing family of tumors: absence of EWS/FLI1 gene fusion and MIC expression. Am J Surg Pathol 1998;22:391–398.CrossRefGoogle ScholarPubMed
Mezzelani, A, Tornielli, S, Minoletti, F, Pierotti, MA, Sozzi, G, Pilotti, S. Esthesioneuroblastoma is not a member of the primitive peripheral neuroectodermal tumour-Ewing's group. Br J Cancer 1999;81:586–591.CrossRefGoogle Scholar
Panagopoulos, I, Mertens, F, Domanski, HA, Isaksson, M, Brosjo, O, Gustafson, P. No EWS/FLI1 fusion transcripts in giant-cell tumors of bone. Int J Cancer 2001;93:769–772.CrossRefGoogle Scholar
O'Sullivan, MJ, Kyriakos, M, Zhu, X, Wick, MR, Swanson, PE, Dehner, LP. Malignant peripheral nerve sheath tumors with t(X;18): A pathologic and molecular genetic study. Mod Pathol 2000;13:1253–1263.CrossRefGoogle Scholar
Ladanyi, M, Woodruff, JM, Scheithauer, BW, Bridge, JA, Barr, FG, Goldblum, JR. Re: O'Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: Malignant peripheral nerve sheath tumors with t(X;18): A pathologic and molecular genetic study. Mod Pathol 2000;13:1336–1346.Google Scholar
Tamborini, E, Agus, V, Perrone, F, Papini, D, Romanò, R, Pasini, B. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002;82:609–618.CrossRefGoogle ScholarPubMed
Stewénius, Y, Jin, Y, Ora, I, Panagopoulos, I, Möller, E, Mertens, F. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008;47:845–852.CrossRefGoogle ScholarPubMed
Sainati, L, Scapinello, A, Montaldi, A, Bolcato, S, Ninfo, V, Carli, M. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144–147.CrossRefGoogle Scholar
Li, H, Wang, J, Mor, G, Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:1357–1361.CrossRefGoogle ScholarPubMed
Zoubek, A, Dockhorn-Dworniczak, B, Delattre, O, Christiansen, H, Niggli, F, Gatterer-Menz, I. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumors patients?J Clin Oncol 1996;14:1245–1251.CrossRefGoogle Scholar
Alava, E, Kawai, A, Healey, JH, Fligman, I, Meyers, PA, Huvos, AG. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J Clin Oncol 1998;16:1248–1255.CrossRefGoogle ScholarPubMed
Ginsberg, JP, Alava, E, Ladanyi, M, Wexler, LH, Kovar, H, Paulussen, M. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing's sarcomas. J Clin Oncol 1999;17:1809–1814.CrossRefGoogle Scholar
Anderson, J, Ramsay, A, Gould, S, Pritchard-Jones, K. PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am J Pathol 2001;159:1089–1096.CrossRefGoogle ScholarPubMed
Collins, MH, Zhao, H, Womer, RB, Barr, FG. Proliferative and apoptotic differences between alveolar rhabdomyosarcoma subtypes: a comparative study of tumors containing PAX3-FKHR gene fusions. Med Pediatr Oncol 2001;37:83–89.CrossRefGoogle ScholarPubMed
Anderson, J, Gordon, T, McManus, A, Mapp, T, Gould, S, Kelsey, A. Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of the outcome?Br J Cancer 2001;85:831–835.CrossRefGoogle Scholar
Kelly, KM, Womer, RB, Sorensen, PH, Xiong, QB, Barr, FG. Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol 1997;15:1831–1836.CrossRefGoogle ScholarPubMed
Sorensen, PH, Lynch, JC, Qualman, SJ, Tirabosco, R, Lim, JF, Maurer, HM. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol 2002;20:2672–2679.CrossRefGoogle ScholarPubMed
dos Santos, NR, Bruijn, DR, Kessel, AG. Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer 2001;30:1–14.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Ladanyi, M. Fusions of the SYT and SSX genes in synovial sarcoma. Oncogene 2001;20:5755–5762.CrossRefGoogle ScholarPubMed
Kawai, A, Woodruff, J, Healey, JH, Brennan, MF, Antonescu, CR, Landanyi, M. SYT-SSX fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 1998;338:153–160.CrossRefGoogle ScholarPubMed
Nilsson, G, Skytting, B, Xie, Y, Brodin, B, Perfect, R, Mandahl, N. The SYT-SSX1 variant of synovial sarcoma is associated with a high rate of tumor cell proliferation and poor clinical outcome. Cancer Res 1999;59:3180–3184.Google ScholarPubMed
Mezzelani, A, Mariani, L, Tamborini, E, Agus, V, Riva, C, Lo Vullo, S. SYT-SSX fusion genes and prognosis in synovial sarcoma. Br J Cancer 2001;85:1535–1539.CrossRefGoogle ScholarPubMed
Guillou, L, Benhattar, J, Bonichon, F, Gallagher, G, Terrier, P, Stauffer, E. Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol 2004;22:4040–4050.CrossRefGoogle Scholar
Geurts van Kessel, A, Bruijn, D, Hermsen, L, Janssen, I, dos Santos, NR, Willems, R. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998; 23:198–201.3.0.CO;2-K>CrossRefGoogle Scholar
Kaneko, Y, Kobayashi, H, Hanada, M, Satake, N, Maseki, N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer 1997;18:228–231.3.0.CO;2-3>CrossRefGoogle Scholar
Lestou, VS, O'Connell, JX, Robichaud, M, Salski, C, Mathers, J, Maguire, J. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002;138:153–156.CrossRefGoogle Scholar
Peter, M, Magdelenat, H, Michon, J, Melot, T, Oberlin, O, Zucker, JM. Sensitive detection of occult Ewing's cells by the reverse transcriptase-polymerase chain reaction. Br J Cancer 1995;72:96–100.CrossRefGoogle ScholarPubMed
Zoubek, A, Pfleiderer, C, Ambros, PF, Kronberger, M, Dworzak, MN, Gruber, B. Minimal metastatic and minimal residual disease in patients with Ewing tumors. Klin Padiatr 1995;207:242–247.CrossRefGoogle ScholarPubMed
Kelly, KM, Womer, RB, Barr, FG. Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer 1996;78:1320–1327.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
West, DC, Grier, HE, Swallow, MM, Demetri, GD, Granowetter, L, Sklar, J. Detection of circulating cells in patients with Ewing's sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol 1997;15:583–588.CrossRefGoogle ScholarPubMed
Alava, E, Lozano, MD, Patino, A, Sierrasesumaga, L, Pardo-Mindan, FJ. Ewing family tumors: potential prognostic value of reverse-transcriptase polymerase chain reaction detection of minimal residual disease in peripheral blood samples. Diagn Mol Pathol 1998; 7:152–157.CrossRefGoogle ScholarPubMed
Fagnou, C, Michon, J, Peter, M, Bernoux, A, Oberlin, O, Zucker, JM. Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing's tumor. J Clin Oncol 1998;16:1707–1711.CrossRefGoogle Scholar
Willeke, F, Ridder, R, Mechtersheimer, G, Schwarzbach, M, Duwe, A, Weitz, J. Analysis of FUS-CHOP fusion transcripts in different types of soft tissue liposarcoma and their diagnostic implications. Clin Cancer Res 1998;4:1779–1784.Google ScholarPubMed
Willeke, F, Mechtersheimer, G, Schwarzbach, M, Weitz, J, Zimmer, D, Lehnert, T. detection of SYT-SSX1/2 fusion transcripts by reverse transcriptase-polymerase chain reaction (RT-PCR) is a valuable diagnostic tool in synovial sarcoma. Eur J Cancer 1998;34:2087–2093.CrossRefGoogle ScholarPubMed
Zoubek, A, Ladenstein, R, Windhager, R, Amann, G, Fischmeister, G, Kager, L, Jugovic, D. Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer 1998;79:56–60.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Panagopoulos, I, Åman, P, Mertens, F, Mandahl, N, Rydholm, A, Bauer, HF. Genomic PCR detects tumor cells in peripheral blood from patients with myxoid liposarcoma. Genes Chromosomes Cancer 1996;17:102–107.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Athale, UH, Shurtleff, SA, Jenkins, JJ, Poquette, CA, Tan, M, Downing, JR. Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor. J Pediatr Hematol Oncol 2001;23:99–104.CrossRefGoogle ScholarPubMed
Montanaro, L, Pession, A, Trere, D, Vici, M, Prete, A, Paolucci, G. Detection of EWS chimeric transcripts by nested RT-PCR to allow reinfusion of uncontaminated peripheral blood stem cells in high-risk Ewing's tumor in childhood. Haematologica 1999;84:1012–1015.Google ScholarPubMed
Thomson, B, Hawkins, D, Felgenhauer, J, Radich, J. RT-PCR evaluation of peripheral blood, bone marrow and peripheral blood stem cells in children and adolescents undergoing VACIME chemotherapy for Ewing's sarcoma and alveolar rhabdomyosarcoma. Bone Marrow Transplant 1999;24:527–533CrossRefGoogle ScholarPubMed
Vermeulen, J, Ballet, S, Oberlin, O, Peter, M, Pierron, G, Longavenne, E. Incidence and prognostic value of tumour cells detected by RT-PCR in peripheral blood stem cell collections from patients with Ewing tumour. Br J Cancer 2006;95:1326–1333.CrossRefGoogle ScholarPubMed
Trumper, L, Pfreundschuh, M, Bonin, FV, Daus, H. Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals. Br J Haematol 1998;103:1138–1144.CrossRefGoogle Scholar
Ji, W, Qu, G, Ye, P, Zhang, X-Y, Halabi, S, Erlich, M. Frequent detection of bcl-2/JH translocations in human blood and organs samples by a quantitative polymerase chain reaction assay. Cancer Res 1995;55:2876–2882.Google Scholar
Biernaux, C, Loos, M, Sels, A, Huez, G, Stryckmans, P. Detection of major bcr-able gene expression at a very low level in blood cells of some healthy individuals. Blood 1995;86:3118–3122.Google Scholar
Schmitt, C, Balogh, B, Grundt, A, Buchholtz, C, Leo, A, Benner, A. The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res 2006;30:745–750.CrossRefGoogle Scholar
Frascella, E, Rosolen, A. Detection of the MyoD1 transcript in rhabdomyosarcoma cell lines and tumor samples by reverse transcription polymerase chain reaction. Am J Pathol 1998;152:577–583.Google ScholarPubMed
Gattenloehner, S, Dockhorn-Dworniczak, B, Leuschner, I, Vincent, A, Müller-Hermelink, HK, Marx, A. A comparison of MyoD1 and fetal acetylcholine receptor expression in childhood tumors and normal tissues: implications for the molecular diagnosis of minimal disease in rhabdomyosarcomas. J Mol Diagn 1999;1:23–31.CrossRefGoogle ScholarPubMed
Michelagnoli, MP, Burchill, SA, Cullinane, C, Selby, PJ, Lewis, IJ. Myogenin–a more specific target for RT-PCR detection of rhabdomyosarcoma than MyoD1. Med Pediatr Oncol 2003;40:1–8.CrossRefGoogle ScholarPubMed
Krsková, L, Mrhalová, M, Sumerauer, D, Kodet, R. Rhabdomyosarcoma: molecular diagnostics of patients classified by morphology and immunohistochemistry with emphasis on bone marrow and purged peripheral blood progenitor cells involvement. Virchows Arch;448:449–458.CrossRef
Sartori, F, Alaggio, R, Zanazzo, G, Garaventa, A, Di Cataldo, A, Carli, M. Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer 2006;106:1766–1775.CrossRefGoogle ScholarPubMed
Gallego, S, Llort, A, Roma, J, Sabado, C, Gros, L, Toledo, JS. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol 2006;132356–132362.Google ScholarPubMed
Naito, H, Kuzumaki, N, Uchino, J, Kobayashi, R, Shikano, T, Ishikawa, Y. Detection of tyrosine hydroxylase mRNA and minimal neuroblastoma cells by the reverse transcription-polymerase chain reaction. Eur J Cancer 1991;27:762–765.CrossRefGoogle ScholarPubMed
Lambooy, LH, Gidding, CE, Heuvel, LP, Hulsbergen-Van De Kaa, CA, Ligtenberg, M, Bökkerink, Jp. Real-time analysis of tyrosine hydroxylase gene expression: a sensitive and semiquantitative marker for minimal residual disease detection of neuroblastoma. Clin Cancer Res 2003;9:812–819.Google ScholarPubMed
Träger, C, Vernby, A, Kullman, A, Ora, I, Kogner, P, Kågedal, B. mRNAs of tyrosine hydroxylase and dopa decarboxylase but not of GD2 synthase are specific for neuroblastoma minimal disease and predicts outcome for children with high-risk disease when measured at diagnosis. Int J Cancer 2008;123:2849–2855.CrossRefGoogle Scholar
Chen, XQ, Stroun, M, Magnenat, JL, Nicod, LP, Kurt, AM, Lyautey, J. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 1996;2:1033–1055.CrossRefGoogle ScholarPubMed
Nawroz, H, Koch, W, Anker, P, Stroun, M, Sidransky, D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med 1996;2:1035–1037.CrossRefGoogle ScholarPubMed
Goessl, C, Heicappell, R, Munker, R, Anker, P, Stroun, M, Krause, H. Microsatellite analysis of plasma DNA from patients with clear cell renal carcinoma. Cancer Res 1998;58:4728–4732.Google ScholarPubMed
Hibi, K, Robinson, CR, Booker, S, Wu, L, Hamilton, SR, Sidransky, D. Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Res 1998;58:1205–1407.Google ScholarPubMed
Chen, X, Bonnefoi, H, Diebold-Berger, S, Lyautey, J, Lederrey, C, Faltin-Traub, E. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res 1999;5:2297–2303.Google ScholarPubMed
Hickey, KP, Boyle, KP, Jepps, HM, Andrew, AC, Buxton, EJ, Burns, PA. Molecular detection of tumour DNA in serum and peritoneal fluid from ovarian cancer patients. Br J Cancer 1999;80:1803–1808.CrossRefGoogle ScholarPubMed
Hibi, K, Nakayama, H, Yamazaki, T, Takase, T, Taguchi, M, Kasai, Y, Ito, K. Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients. Int J Cancer 2001;94:429–431.CrossRefGoogle ScholarPubMed
Lyon, MF. Gene action in the X-chromosome of the mouse (Mus musculus L.)Nature 1961;190:372–373.CrossRefGoogle Scholar
Lyon, MF. The William Allan Memorial Award address: X-chromosome inactivation and the location and expression of X-linked genes. Am J Hum Genet 1988;42:8–16.Google Scholar
Beutler, E, Yeh, M, Fairbanks, VF. Normal human female as a mosaic of X-chromosome activity: studies using the gene for G6PD deficiency as a marker. Proc Natl Acad Sci USA 1962;48:9–16.CrossRefGoogle Scholar
Fialkow, PJ. Clonal origin of human tumors. Biochem Biophys Acta 1976;458:283–321.Google ScholarPubMed
Boyd, Y, Fraser, NJ. Methylation patterns at the hypervariable X-chromosome locus DXS255 (M27β): correlation with X-inactivation status. Genomics 1990;7:182–187.CrossRefGoogle Scholar
Keith, DH, Singer-Sam, J, Riggs, AD. Active X chromosome DNA is unmethylated at eight CCGG sites clustered in a guanine-plus-cytosine-rich island at the 5' end of the gene for phosphoglycerate kinase. Mol Cell Biol 1986;6:4122–4125.CrossRefGoogle Scholar
Vogelstein, B, Fearon, ER, Hamilton, SR, Feinberg, AP. Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science 1985;227:642–645.CrossRefGoogle ScholarPubMed
Fey, MF, Liechti-Gallati, S, Rohr, A, Borisch, B, Theilkäs, L, Schneider, V. Clonality and X-inactivation patterns in hematopoietic cell populations detected by the highly informative M27β DNA probe. Blood 1994;83:931–938.Google Scholar
Diaz-Cano, SJ. Designing a molecular analysis of clonality in tumors. J Pathol 2000;191:343–344.3.0.CO;2-Y>CrossRefGoogle Scholar
Allen, RC, Zoghbi, HY, Moseley, AB, Rosenblatt, HM, Belmont, JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 1992;51:1229–1239.Google ScholarPubMed
Busque, L, Gilliland, DG. Clonal evolution in acute myeloid leukemia. Blood 1993;82:337–342.Google ScholarPubMed
Busque, L, Zhu, J, DeHart, D, Griffith, B, Willman, C, Carroll, R. An expression-based clonality assay at the human androgen receptor locus (HUMARA) on chromosome X. Nucleic Acids Res 1994;22:697–698.CrossRefGoogle ScholarPubMed
Li, M, Cordon-Cardo, C, Gerald, WL, Rosai, J. Desmoid fibromatosis is a clonal process. Hum Pathol 1996;27:939–943.CrossRefGoogle ScholarPubMed
Vogrincic, GS, O'Connell, JX, Gilks, CB. Giant cell tumor of tendon sheath is a polyclonal cellular proliferation. Hum Pathol 1997;28:815–819.CrossRefGoogle ScholarPubMed
Paradis, V, Laurendeau, I, Vieillefond, A, Blanchet, P, Eschwege, P, Benoît, G. Clonal analysis of renal sporadic angiomyolipomas. Hum Pathol 1998;29:1063–1067.CrossRefGoogle ScholarPubMed
Flemming, P, Lehmann, U, Becker, T, Klempnauer, J, Kreipe, H. Common and epithelioid variants of hepatic angiomyolipoma exhibit clonal growth and share a distinctive immunophenotype. Hepatology 2000;32:213–217.CrossRefGoogle Scholar
Saxena, A, Alport, EC, Custead, S, Skinnider, LF. Molecular analysis of clonality of sporadic angiomyolipoma. J Pathol 1999;189:79–84.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Tang, LH, Hui, P, Garcia-Tsao, G, Salem, RR, Jain, D. Multiple angiomyolipomata of the liver: a case report. Mod Pathol 2002;15:167–171.CrossRefGoogle ScholarPubMed
Chetritt, J, Paradis, V, Dargere, D, Adle-Biassette, H, Maurage, CA, Mussini, JM. Chester-Erdheim disease: a neoplastic disorder. Hum Pathol 1999;30:1093–1096.CrossRefGoogle ScholarPubMed
Dickson, BC, Pethe, V, Chung, CT, Howarth, DJ, Bilbao, JM, Fornasier, VL. Systemic Erdheim-Chester disease. Virchows Arch 2008;452:221–227.CrossRefGoogle ScholarPubMed
Al-Quran, S, Reith, J, Bradley, J, Rimsza, L. Erdheim-Chester disease: case report, PCR-based analysis of clonality, and review of literature. Mod Pathol 2002;15:666–672.CrossRefGoogle ScholarPubMed
Klingler, L, Trammell, R, Allan, DG, Butler, MG, Schwartz, HS. Clonality studies in sacral chordoma. Cancer Genet Cytogenet 2006;171:68–71.CrossRefGoogle ScholarPubMed
Lucas, DR, Shroyer, KR, McCarthy, PJ, Markham, NE, Fujita, M, Enomoto, TE. Desmoid tumor is a clonal cellular proliferation: PCR amplification of HUMARA for analysis of patterns of X-chromosome inactivation. Am J Surg Pathol 1997;21:306–311.CrossRefGoogle ScholarPubMed
Middleton, SB, Frayling, IM, Phillips, RK. Desmoids in familial adenomatous polyposis are monoclonal proliferations. Br J Cancer 2000;82:827–832.CrossRefGoogle ScholarPubMed
Chen, TC, Kuo, T, Chan, HL. Dermatofibroma is a clonal proliferative disease. J Cutan Pathol 2000;27:36–39.CrossRefGoogle ScholarPubMed
Hui, P, Glusac, EJ, Sinard, JH, Perkins, AS. Clonal analysis of cutaneous fibrous histiocytoma (dermatofibroma). J Cutan Pathol 2002;29:385–389.CrossRefGoogle Scholar
Willman, CL, Busque, L, Griffith, BB, Favara, BE, McClain, KL, Duncan, MH. Langerhans'-cell histiocytosis (histiocytosis X) – a clonal proliferative disease. N Engl J Med 1994;331:154–160.CrossRefGoogle ScholarPubMed
Rabkin, CS, Bedi, G, Musaba, E, Sunkutu, R, Mwansa, N, Sidransky, D. AIDS-related Kaposi's sarcoma is a clonal neoplasm. Clin Cancer Res 1995;1:257–260.Google ScholarPubMed
Gill, PS, Tsai, YC, Rao, AP, Spruck, CH 3rd, Zheng, T, Harrington, WA. Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc Natl Acad Sci USA 1998;95:8257–8261.CrossRefGoogle ScholarPubMed
Delabesse, E, Oksenhendler, E, Lebbé, C, Vérola, O, Varet, B, Turhan, AG. Molecular analysis of clonality in Kaposi's sarcoma. J Clin Pathol 1997;50:664–668.CrossRefGoogle ScholarPubMed
Quade, BJ, McLachlin, CM, Soto-Wright, V, Zuckerman, J, Mutter, GL, Morton, CC. Disseminated peritoneal leiomyomatosis: Clonality analysis by X chromosome inactivation and cytogenetics of a clinically benign smooth muscle proliferation. Am J Pathol 1997;150:2153–2166.Google ScholarPubMed
Quade, BJ, Dal Cin, P, Neskey, DM, Weremowicz, S, Morton, CC. Intravenous leiomyomatosis: molecular and cytogenetic analysis of a case. Mod Pathol 2002;15:351–356.CrossRefGoogle ScholarPubMed
Indsto, JO, Cachia, AR, Kefford, RF, Mann, GJ. X inactivation, DNA deletion, and microsatellite instability in common acquired melanocytic nevi. Clin Cancer Res 2001;7:4054–4059.Google ScholarPubMed
Sanz Esponera, J. Genetic alterations in the differential diagnosis of melanocytic diseases. Ann R Acad Nac Med (Madr) 2000;117:815–824.Google ScholarPubMed
Koizumi, H, Mikami, M, Doi, M, Tadokoro, M. Clonality analysis of nodular fasciitis by HUMARA-methylation-specific PCR. Histopathology 2005;47:320–321.CrossRefGoogle ScholarPubMed
Wang, L, Zhu, HG. Clonal analysis of palmar fibromatosis: a study whether palmar fibromatosis is a real tumor. J Transl Med 2006;4:21CrossRefGoogle ScholarPubMed
Niho, S, Suzuki, K, Yokose, T, Kodama, T, Nishiwaki, Y, Esumi, H. Monoclonality of both pale cells and cuboidal cells of sclerosing hemangioma of the lung. Am J Pathol 1998;152:1065–1069.Google ScholarPubMed
Pfeifer, JD. Molecular Genetic Testing in Surgical Pathology. Philadelphia: Lippincott-Williams & Wilkins, 2006.Google Scholar
Mies, C. Molecular biology analysis of paraffin-embedded tissues. Hum Pathol 1994;25:555–560.CrossRefGoogle ScholarPubMed
Lewis, F, Maughan, NJ, Smith, V, Hillan, KJ, Quirke, P. Unlocking the archive-gene expression in paraffin-embedded tissue. J Pathol 2001;195:66–71.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Jackson, DP, Lewis, FA, Taylor, GR, Boylston, AW, Quirke, P: Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction. J Clin Pathol 1990;43:499–504.CrossRefGoogle ScholarPubMed
Greer, CE, Peterson, SL, Kiviat, NB, Manos, MM. PCR amplification from paraffin-embedded tissues: Effects of fixative and fixation time. Am J Clin Pathol 1991;95:117–124.CrossRefGoogle ScholarPubMed
Shibata, D. The polymerase chain reaction and the molecular genetic analysis of tissue biopsies. In Herrington, CS, McGee, JOD (eds): Diagnostic Molecular Pathology: A Practical Approach, Vol II. Oxford, England, IRL Press, 1992, pp. 85–111.Google Scholar
Williams, C, Ponten, F, Moberg, C, Soderkvist, P, Uhlen, M, Ponten, J. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 1999;155:1467–1471.CrossRefGoogle ScholarPubMed
Sieben, NL, Haar, NT, Cornelisse, CJ, Fleuren, GJ, Cleton-Jansen, AM. PCR artifacts in LOH and MSI analysis of microdissected tumor cells. Hum Pathol 2000;31:1414–1419.CrossRefGoogle Scholar
Mullis, KB, Faloona, F. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987;155:335–350.CrossRefGoogle Scholar
Saiki, R, Scharf, S, Faloona, F, Mullis, K, Horn, G, Erlich, HA. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1350–1354.CrossRefGoogle ScholarPubMed
Saiki, RK, Bugawan, TL, Horn, GT, Mullis, KB, Erlich, HA. Analysis of enzymatic amplificatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 1986;324:163–166.CrossRefGoogle Scholar
Embury, SH, Scharf, SJ, Saiki, RK, Gholson, MA, Golbus, M, Arnheim, N. Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. N Engl J Med 1987;316:656–661.CrossRefGoogle ScholarPubMed
Downing, JR, Khandekar, A, Shurtleff, SA, Head, DR, Parham, DM, Webber, BL. Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing's sarcoma. Am J Pathol 1995;46:626–634.Google Scholar
Lasota, J, Miettinen, M. Absence of Kaposi's sarcoma-associated virus (human herpesvirus-8) sequences in angiosarcma. Virchows Arch 1999;434:51–56.CrossRefGoogle Scholar
Meier, VS, Kuhne, T, Jundt, G, Gudat, F. Molecular diagnosis of Ewing tumors: improved detection of EWS-FLI-1 and EWS-ERG chimeric transcripts and rapid determination of exon combinations. Diagn Mol Pathol 1998;7:29–35.CrossRefGoogle ScholarPubMed
Lasota, J, Jasinski, M, Debiec-Rychter, M, Szadowska, A, Limon, J, Miettinen, M. Detection of the SYT-SSX fusion transcripts in formaldehyde-fixed, paraffin-embedded tissue: a reverse transcription polymerase chain reaction amplification assay useful in the diagnosis of synovial sarcoma. Mod Pathol 1998;11:626–633.Google Scholar
Frohman, MA, Dush, MK, Martin, GR. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 1988;85:8998–9002.CrossRefGoogle ScholarPubMed
Scotto-Lavino, E, Du, G, Frohman, MA. 5' end cDNA amplification using classic RACE. Nat Protoc 2006;1:2555–2562.CrossRefGoogle ScholarPubMed
Scotto-Lavino, E, Du, G, Frohman, MA. 3' end cDNA amplification using classic RACE. Nat Protoc 2006;1:2742–2745CrossRefGoogle ScholarPubMed
Cotton, RGH. Slowly but surely towards better scanning for mutations. Trends Genet 1997;13:43–46.CrossRefGoogle ScholarPubMed
Fischer, SG, Lerman, LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 1983;80:1579–1583.CrossRefGoogle ScholarPubMed
Fodde, R, Losekoot, M. Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum Mutat 1994; 3:83–94.CrossRefGoogle Scholar
Orita, M, Iwahana, H, Kanazawa, H, Hayashi, K, Sekiya, T. Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1989;86:2766–2770.CrossRefGoogle ScholarPubMed
Hayashi, K. PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl 1992;9:73–79.CrossRefGoogle ScholarPubMed
Oefner, PJ, Underhill, PA. Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC). Am J Hum Genet 1995;57:A266.Google Scholar
Liu, W, Smith, DI, Rechtzigel, KJ, Thibodeau, SN, James, CD. Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res 1998;26:1396–1400.CrossRefGoogle ScholarPubMed
Han, SS, Cooper, DN, Upadhyaya, MN. Evaluation of denaturing high performance liquid chromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. Hum Genet 2001;109:487–497.CrossRefGoogle ScholarPubMed
Livak, KJ, Flood, SJ, Marmaro, J, Giusti, W, Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 1995;4:357–362.CrossRefGoogle ScholarPubMed
Peter, M, Gilbert, E, Delattre, O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001;81:905–912.CrossRefGoogle ScholarPubMed
Bijwaard, KE, Fetsch, JF, Przygodzki, R, Taubenberger, JK, Lichy, JH. Detection of SYT-SSX fusion transcripts in archival synovial sarcomas by real-time reverse transcriptase-polymerase chain reaction. J Mol Diagn 2002;4:59–64.CrossRefGoogle ScholarPubMed
Pongers-Willemse, MJ, Verhagen, OJ, Tibbe, GJ, Wijkhuijs, AJ, Hass, V, Roovers, E. Real-time PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12:2006–2014.CrossRefGoogle ScholarPubMed
Preudhomme, C, Revillion, F, Merlat, A, Hornez, L, Roumier, C, Duflos-Grardel, N. Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a ‘real time’ quantitative RT-PCR assay. Leukemia 1999;13:957–964.CrossRefGoogle ScholarPubMed
Kallioniemi, A, Kallioniemi, O-P, Sudar, D, Rutovitz, D, Gray, JW, Waldman, F. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258:818–821.CrossRefGoogle ScholarPubMed
Kallioniemi, O-P, Kallioniemi, A, Piper, J, Isola, J, Waldman, F, Gray, JW. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Gene Chromosomes Cancer 1994;10:231–243.CrossRefGoogle ScholarPubMed
du Manoir, S, Speicher, MR, Joos, S, Schröck, E, Popp, S, Döhner, H, Kovacs, G. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 1993;90:590–610.CrossRefGoogle ScholarPubMed
Oostlander, AE, Meijer, GA, Ylstra, B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet 2004;66:488–495.CrossRefGoogle ScholarPubMed
Lockwood, WW, Chari, R, Chi, B, Lam, WL. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur J Hum Genet 2006;14:139–148.CrossRefGoogle ScholarPubMed
Knuutila, S, Autio, K, Aalto, Y. On line access to CGH data of DNA sequence copy number changes. Am J Pathol 2000;157:689–690.CrossRefGoogle Scholar
El-Rifai, W, Sarlomo-Rikala, M, Andersson, LC, Knuutila, S, Miettinen, M. DNA sequence copy number changes in gastrointestinal stromal tumors: tumor progression and prognostic significance. Cancer Res 2000;60:3899–3903.Google ScholarPubMed
Duggan, DJ, Bittner, M, Yidong, C, Meltzer, P, Trent, JM. Expression profiling using cDNA microarrays. Nature Genet 1999;21:10–14.CrossRefGoogle ScholarPubMed
Lockhard, DJ, Winzeler, EA. Genomics, gene expression and DNA arrays. Nature 2000;405:827–836.CrossRefGoogle Scholar
Golub, TR, Slonim, DK, Tamayo, , Huard, C, Gassenbeek, M, Mesirov, JP. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531–536.CrossRefGoogle ScholarPubMed
Khan, J, Simon, R, Bittner, M, Chen, Y, Leighton, SB, Pohida, T. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 1998;58:5009–5013.Google ScholarPubMed
Nielsen, TO. Microarray analysis of sarcomas. Adv Anat Pathol 2006;13:166–173.CrossRefGoogle ScholarPubMed
Cooper, GM. Oncogenes, ed. 2. Boston: Jones and Bartlett Publishers International, 1995.
Fisher, . Tumor Suppressor Genes in Human Cancer. Totowa, NJ: Humana Press, 2001.Google Scholar
Esteller, M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–1159.CrossRefGoogle Scholar
Medina, PP, Slack, FJ. microRNAs and cancer: an overview. Cell Cycle 2008;7:2485–2492.CrossRefGoogle ScholarPubMed
Der, CJ, Krontiris, TG, Cooper, GM. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kiristen sarcoma viruses. Proc Natl Acad Sci USA 1982;79:3637–3640.CrossRefGoogle ScholarPubMed
Parada, LF, Tabin, CJ, Shih, C, Weinberg, RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 1982;297:474–478.CrossRefGoogle ScholarPubMed
Reddy, EP, Reynolds, RK, Santos, E, Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 1982;300:149–152.CrossRefGoogle ScholarPubMed
Barbacid, M. ras genes. Annu Rev Biochem 1987;56:779–827.CrossRefGoogle ScholarPubMed
Quilliam, , Rebhun, JF, Castro, AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol 2002;71:391–444.CrossRefGoogle ScholarPubMed
Rebollo, A, Martinez-AC, . Ras proteins: recent advances and new functions. Blood 1999;94:2971–2980.Google ScholarPubMed
Reuter, CW, Morgan, MA, Bergmann, L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies?Blood 2000;96:1655–1669.Google ScholarPubMed
Adjei, AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001;93:1062–1074.CrossRefGoogle ScholarPubMed
Guerrero, S, Figueras, A, Casanova, I, Farré, L, Lloveras, B, Capellà, G. Codon 12 and codon 13 mutations at the K-ras gene induce different soft tissue sarcoma types in nude mice. FASEB J 2002;16:1642–1644.CrossRefGoogle ScholarPubMed
Bos, JL. Ras oncogenes in human cancer: a review. Cancer Res 1989;49:4682–4689.Google ScholarPubMed
Bohle, RM, Brettreich, S, Repp, R, Borkhardt, A, Kosmehl, H, Altmannsberger, HM. Single somatic ras gene point mutation in soft tissue malignant fibrous histiocytomas. Am J Pathol 1996;148:731–738.Google ScholarPubMed
Yoo, J, Robinson, RA, Lee, JY. H-ras nad K-ras gene mutations in primary human soft tissue sarcomas: concomitant mutations of the ras genes. Mod Pathol 1999;12:775–780.Google Scholar
Hill, MA, Gong, C, Casey, TJ, Menon, AG, Mera, R, Gillespie, AT. Detection of K-ras mutations in resected primery leiomyosarcoma. Cancer Epidemiol Biomarkers Prev 1997;6:1095–1100.Google Scholar
Marion, MJ, Froment, O, Trepo, C. Activation of Ki-ras gene by point mutation in human liver angiosarcoma associated with vinyl chloride exposure. Mol Carcinog 1991;4:450–454.CrossRefGoogle ScholarPubMed
Przygodzki, RM, Finkelstein, SD, Keohavong, P, Zhun, D, Bakker, A, Swalsky, PA. Sporadic and Thorotrast-induced angiosarcomas of the liver manifest frequent and multiple point mutations in K-ras-2. Lab Invest 1997;76:153–159.Google ScholarPubMed
Stratton, MR, Fisher, C, Gusterson, BA, Cooper, CS. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res 1989;49:6324–6327.Google ScholarPubMed
Estep, AL, Tidyman, WE, Teitell, MA, Cotter, PD, Rauen, KA. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A 2006;140:8–16.CrossRefGoogle ScholarPubMed
Kratz, CP, Steinemann, D, Niemeyer, CM, Schlegelberger, B, Koscielniak, E, Kontny, U. Uniparental disomy at chromosome 11p15.5 followed by HRAS mutations in embryonal rhabdomyosarcoma: lessons from Costello syndrome. Hum Mol Genet 2007;16:374–379.CrossRefGoogle ScholarPubMed
Tidyman, WE, Rauen, KA. Noonan, Costello and cardio-facio-cutaneous syndromes: dysregulation of the Ras-MAPK pathway. Expert Rev Mol Med 2008;10:e37.CrossRefGoogle ScholarPubMed
Aoki, Y, Niihori, T, Narumi, Y, Kure, S, Matsubara, Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat 2008;29:992–1006.CrossRefGoogle ScholarPubMed
Guha, A, Lau, N, Huvar, I, Gutmann, D, Provias, J, Pawson, T. Ras-GTP levels are elevated in human NF1 peripheral nerve tumors. Oncogene 1996;12:507–513.Google ScholarPubMed
Feldkamp, MM, Angelov, L, Guha, A. Neurofibromatosis type 1 peripheral nerve tumors: aberrant activation of the Ras pathway. Surg Neurol 1999;51:211–218.CrossRefGoogle ScholarPubMed
Ladanyi, M. The emerging molecular genetics of sarcoma translocation. Diagnostic Mol Pathol 1995;4:162–173.CrossRefGoogle Scholar
Rabbitts, TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001;20:5763–5777.CrossRefGoogle ScholarPubMed
Xia, SJ, Barr, FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41:2513–2527.CrossRefGoogle ScholarPubMed
Slater, O, Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60:1187–1194.CrossRefGoogle ScholarPubMed
Oda, Y, Tsuneyoshi, M. Recent advances in the molecular pathology of soft tissue sarcoma: Implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2008 Dec 14. [Epub]Google Scholar
Nucci, MR, Weremowicz, S, Neskey, DM, Sornberger, K, Tallini, G, Morton, CC. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva. Genes Chromosomes Cancer 2001;32:172–176.CrossRefGoogle Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15). Virchows Arch 2006;448:838–842.CrossRefGoogle Scholar
Rabban, JT, Dal Cin, P, Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. In J Gynecol Pathol 2006;25:403–407.CrossRefGoogle Scholar
Rawlinson, NJ, West, WW, Nelson, M, Bridge, JA. Aggressive angiomyxoma with t(12;21) and HMGA2 rearrangement: report of a case and review of the literature. Cancer Genet Cytogenet 2008;181:119–124.CrossRefGoogle Scholar
Joyama, S, Ueda, T, Shimizu, K, Kudawara, I, Mano, M, Funai, H. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 1999;86:1246–1250.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Ladanyi, M, Lui, MY, Antonescu, CR, Krause-Boehm, A, Meindl, A, Argani, P. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001;20:48–57.CrossRefGoogle Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109–116.CrossRefGoogle ScholarPubMed
Raddaoui, E, Donner, LR, Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 2002;11:157–162.CrossRefGoogle Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, Teot, , Surti, U, Fletcher, CD. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:1051–1060.CrossRefGoogle ScholarPubMed
Hallor, KH, Micci, F, Meis-Kindblom, JM, Kindblom, LG, Bacchini, P, Mandahl, N. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158–163.CrossRefGoogle ScholarPubMed
Tallini, G, Dorfman, H, Brys, P, Dal Cin, P, Wever, I, Fletcher, CD. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002;196:194–203.CrossRefGoogle ScholarPubMed
Dahlén, A, Mertens, F, Rydholm, A, Brosjö, O, Wejde, J, Mandahl, N. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:1132–1140.CrossRefGoogle ScholarPubMed
Ohkura, N, Yaguchi, H, Tsukada, T, Yamaguchi, K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002;277:535–543.CrossRefGoogle ScholarPubMed
Labelle, Y, Bussières, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:3303–3308.CrossRefGoogle Scholar
Attwooll, C, Tariq, M, Harris, M, Coyne, JD, Telford, N, Varley, JM. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999;18:7599–7601.CrossRefGoogle Scholar
Sjögren, H, Meis-Kindblom, J, Kindblom, LG, Åman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:5064–5067.Google ScholarPubMed
Sjögren, H, Wedell, B, Kindblom, JM, Kindblom, LG, Stenman, G. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res 2000;60:6832–6835.Google Scholar
Morohoshi, F, Arai, K, Takahashi, EI, Tanigami, A, Ohki, M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 1996;38:51–57.CrossRefGoogle ScholarPubMed
Hisaoka, M, Ishida, T, Imamura, T, Hashimoto, H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325–328.CrossRefGoogle ScholarPubMed
Zucman, J, Delattre, O, Desmaze, C, Epstein, AL, Stenman, G, Speleman, F. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nature Genet 1993;4:341–345.CrossRefGoogle Scholar
Panagopoulos, I, Mertens, F, Debiec-Rychter, M, Isaksson, M, Limon, J, Kardas, I. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002;99:560–567.CrossRefGoogle ScholarPubMed
Speleman, F, Delattre, O, Peter, M, Hauben, E, Roy, N, Marck, E. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation. Mod Pathol 1997;10:496–499.Google Scholar
Antonescu, CR, Tschernyavsky, SJ, Woodruff, JM, Jungbluth, AA, Brennan, MF, Ladanyi, M. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002;4:44–52.CrossRefGoogle ScholarPubMed
Covinsky, M, Gong, S, Rajaram, V, Perry, A, Pfeifer, J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol 2005;36:74–81.CrossRefGoogle ScholarPubMed
Antonescu, CR, Nafa, K, Segal, NH, Dal Cin, P, Ladanyi, M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma-association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006;12:5356–5362.CrossRefGoogle ScholarPubMed
Simon, MP, Pedeutour, F, Sirvent, N, Grosgeorge, J, Minoletti, F, Coindre, JM. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nature Genet 1997;15:95–98.CrossRefGoogle ScholarPubMed
Shimizu, A, O'Brien, KP, Sjöblom, T, Pietras, K, Buchdunger, E, Collins, VP. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:3719–3723.Google ScholarPubMed
Simon, MP, Navarro, M, Roux, D, Pouysségur, J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001; 20:2965–2975.CrossRefGoogle Scholar
O'Brien, KP, Seroussi, E, Dal Cin, P, Sciot, R, Mandahl, N, Fletcher, JA. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcoma protuberans and giant cell fibroblastomas. Genes Chromosomes Cancer 1998;23:187–193.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Sirvent, N, Maire, G, Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003; 37:1–19.CrossRefGoogle ScholarPubMed
Bianchini, L, Maire, G, Guillot, B, Joujoux, JM, Follana, P, Simon, MP. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008;452:689–696.CrossRefGoogle Scholar
Ladanyi, M, Gerald, WL. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994;54:2837–2840.Google ScholarPubMed
Gerald, WL, Rosai, J, Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995;14:1028–1032.CrossRefGoogle Scholar
Gerald, WL, Ladanyi, M, Alava, E, Cuatrecasas, M, Kushner, BH, LaQuaglia, MP. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants. J Clin Oncol 1998;16:3028–3036.CrossRefGoogle Scholar
Gerald, WL, Haber, DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 2005;15:197–205.CrossRefGoogle ScholarPubMed
Koontz, JI, Soreng, AL, Nucci, M, Kuo, FC, Pauwels, P, Berghe, H. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Nat Acad Sci 2001;98:6348–6353.CrossRefGoogle ScholarPubMed
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas. Cancer Res 2006;66:107–112.CrossRefGoogle Scholar
Aurias, A, Rimbaut, C, Buffe, D, Zucker, JM, Mazabraud, A. Translocation involving chromosome 22 in Ewing's sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984;12:21–25.CrossRefGoogle ScholarPubMed
Whang-Peng, J, Triche, TJ, Knutsen, T, Miser, J, Douglass, EC, Israel, MA. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584–585.CrossRefGoogle ScholarPubMed
Delattre, O, Zucman, J, Plougastel, B, Desmaze, C, Melot, T, Peter, M. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162–165.CrossRefGoogle Scholar
Zucman, J, Delattre, O, Desmaze, C, Plougastel, B, Joubert, I, Melot, T. Cloning and characterization of the Ewing's sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992;5:271–277.CrossRefGoogle Scholar
Zucman, J, Melot, T, Desmaze, C, Ghysdael, J, Plougastel, B, Peter, M. Combinatorial generation of variable fusion proteins in Ewing family of tumors. EMBO J 1993;12:4481–4487.Google Scholar
Sorensen, PH, Lessnick, SL, Lopez-Terrada, D, Liu, XF, Triche, TJ, Denny, CT. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994;6:146–151.CrossRefGoogle Scholar
Jeon, IS, Davis, JN, Braun, BS, Sublett, JE, Roussel, MF, Denny, CT. A variant Ewing's sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995;10:1229–1234.Google Scholar
Kaneko, Y, Yoshida, K, Handa, M, Toyoda, Y, Nishihira, H, Tanaka, Y. Fusion of an ETS- family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115–121.3.0.CO;2-6>CrossRefGoogle Scholar
Peter, M, Couturier, J, Pacquement, H, Michon, J, Thomas, G, Magdelenat, H. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:1159–1164.CrossRefGoogle ScholarPubMed
Mastrangelo, T, Modena, P, Tornielli, S, Bullrich, F, Testi, MA, Mezzelani, A. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:3799–3804.CrossRefGoogle ScholarPubMed
Wang, L, Bhargava, R, Zheng, T, Wexler, L, Collins, MH, Roulston, D. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498–509.CrossRefGoogle ScholarPubMed
Ng, TL, O'Sullivan, MJ, Pallen, CJ, Hayes, M, Clarkson, PW, Winstanley, M. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459–463.CrossRefGoogle Scholar
Shing, DC, McMullan, DJ, Roberts, P, Smith, K, Chin, SF, Nicholson, J. FUS/ERG gene fusions in Ewing's tumors. Cancer Res 2003;63:4568–4576.Google ScholarPubMed
Knezevich, SR, McFadden, , Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184–187.CrossRefGoogle ScholarPubMed
Knezevich, SR, Garnett, MJ, Pysher, TJ, Beckwith, JB, Grundy, PE, Sorensen, PH. ETV6-NTRK3 gene fusion and trisomy 11 established a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 1998;58:5046–5048.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, Xiao, S, Grier, HE, Kozakewich, HP. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:1451–1458.CrossRefGoogle Scholar
Cools, J, Wlodarska, I, Somers, R, Mentens, N, Pedeutour, F, Maes, B. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002;34:354–362.CrossRefGoogle ScholarPubMed
Bridge, JA, Kanamori, M, Ma, Z, Pickering, D, Hill, DA, Lydiatt, W. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411–415.CrossRefGoogle ScholarPubMed
Ma, Z, Hill, DA, Collins, MH, Morris, SW, Sumegi, J, Zhou, M. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98–105.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Nilsson, T, Domanski, HA, Isaksson, M, Lindblom, P, Mertens, F. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:1181–1186.CrossRefGoogle Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, Rubin, BP, Dal Cin, P, Pinkus, JL. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377–384.CrossRefGoogle ScholarPubMed
Schoenmakers, EF, Huysmans, C, Ven, WJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999;59:19–23.Google Scholar
Moore, SD, Herrick, SR, Ince, TA, Kleinman, MS, Dal Cin, P, Morton, CC. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 2004;64:5570–5577.CrossRefGoogle Scholar
Kurose, K, Mine, N, Doi, D, Ota, Y, Yoneyama, K, Konishi, H. Novel gene fusion COX6C at 8q22–23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 2000;27:303–307.3.0.CO;2-3>CrossRefGoogle Scholar
Mine, N, Kurose, K, Konishi, H, Araki, T, Nagai, H, Emi, M. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res 2001;92:135–139.CrossRefGoogle Scholar
Kazmierczak, B, Hennig, Y, Wanschura, S, Rogalla, P, Bartnitzke, S, Ven, W. Description of a novel fusion transcript between HMGI-C, a gene encoding for a member of the high mobility group proteins, and the mitochondrial aldehyde dehydrogenase gene. Cancer Res 1995;55:6038–6039.Google ScholarPubMed
Kazmierczak, B, Pohnke, Y, Bullerdiek, J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations. Genomics 1996;38:223–226.CrossRefGoogle ScholarPubMed
Astrom, A, D'Amore, ES, Sainati, L, Panarello, C, Morerio, C, Mark, J. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol 2000;16:1107–1110.Google ScholarPubMed
Gisselsson, D, Hibbard, MK, Dal Cin, P, Sciot, R, Hsi, BL, Kozakewich, HP. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60:4869–4872.Google Scholar
Gisselsson, D, Hibbard, MK, Dal Cin, P, Sciot, R, Hsi, BL, Kozakewich, HP. PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and evidence for alternative oncogenic mechanisms. Am J Pathol 2001;159:955–962.CrossRefGoogle ScholarPubMed
Sciot, R, Wever, I, Debiec-Rychter, M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch 2003;442:468–471.Google Scholar
Petit, MM, Swarts, S, Bridge, JA, Ven, WJ. Expression of reciprocal fusion transcripts of the HMGIC and LPP genes in parosteal lipoma. Cancer Genet Cytogenet 1998; 106:18–23.CrossRefGoogle ScholarPubMed
Rogalla, P, Kazmierczak, B, Meyer-Bolte, K, Tran, KH, Bullerdiek, J. The t(3;12)(q27;q14-q15) with underlying HMGIC-LPP fusion is not determining an adipocytic phenotype. Genes Chromosomes Cancer 1998;22:100–104.3.0.CO;2-0>CrossRefGoogle Scholar
Petit, MM, Mols, R, Schoenmakers, EF, Mandahl, N, Ven, WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996;36:118–129.CrossRefGoogle ScholarPubMed
Petit, MM, Schoenmakers, EF, Huysmans, C, Geurts, JM, Mandahl, N, Ven, WJ. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999;57:438–441.CrossRefGoogle Scholar
Broberg, K, Zhang, M, Strömbeck, B, Isaksson, M, Nilsson, M, Mertens, F. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35–37and 12q13–15. Int J Oncol 2002;21:321–326.Google ScholarPubMed
Kazmierczak, B, Dal Cin, P, Wanschura, S, Borrmann, L, Fusco, A, Berghe, H. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 1998;152:431–435.Google ScholarPubMed
Panagopoulos, I, Höglund, M, Mertens, F, Mandahl, N, Mitelman, F, Aman, P. Fusion of EWS and CHOP genes in myxoid liposarcoma. Oncogene 1996;12:489–494.Google ScholarPubMed
Crozat, A, Aman, P, Mandahl, N, Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640–644.CrossRefGoogle ScholarPubMed
Rabbitts, TH, Forster, A, Larson, R, Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175–180.CrossRefGoogle Scholar
Dal Cin, P, Sciot, R, Panagopoulos, I, Aman, P, Samson, I, Mandahl, N. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol 1997;182:437–441.3.0.CO;2-X>CrossRefGoogle Scholar
Storlazzi, CT, Mertens, F, Nascimento, A, Isaksson, M, Wejde, J, Brosjo, O. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 2003;12:2349–2358.CrossRefGoogle ScholarPubMed
Reid, R, Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11). Am J Surg Pathol 2003;27:1229–1236.CrossRefGoogle Scholar
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, Fletcher, JA, Nascimento, A, Domanski, HA. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218–228.CrossRefGoogle ScholarPubMed
Mertens, F, Fletcher, CD, Antonescu, CR, Coindre, JM, Colecchia, M, Domanski, HA. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408–415.CrossRefGoogle ScholarPubMed
Guillou, L, Benhattar, J, Gengler, C, Gallagher, G, Ranchère-Vince, D, Collin, F. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:1387–1402.CrossRefGoogle ScholarPubMed
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Gorunova, L, Skjeldal, S, Micci, F. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008;47:558–564.CrossRefGoogle Scholar
Barr, FG, Galili, N, Holick, J, Biegel, JA, Rovera, G, Emanuel, BS. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nature Genet 1993;3:113–117.CrossRefGoogle ScholarPubMed
Davis, RJ, D'Cruz, CM, Lovell, MA, Biegel, JA, Barr, FG. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54:2869–2872.Google Scholar
Barr, FG, Qualman, SJ, Macris, MH, Melnyk, N, Lawlor, ER, Strzelecki, DM. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62:4704–4710.Google ScholarPubMed
Wachtel, M, Dettling, M, Koscielniak, E, Stegmaier, S, Treuner, J, Simon-Klingenstein, K. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:5539–5545.CrossRefGoogle Scholar
Crew, AJ, Clark, J, Fisher, C, Gill, S, Grimer, R, Chand, A. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995;14:2333–2340.Google ScholarPubMed
Fligman, I, Lonardo, F, Jhanwar, SC, Gerald, WL, Woodruff, J, Ladanyi, M. Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol 1995;147:1592–1599.Google ScholarPubMed
Skytting, B, Nilsson, G, Brodin, B, Xie, Y, Lundeberg, J, Uhlén, M. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J NCI 1999;91:974–975.Google ScholarPubMed
Storlazzi, CT, Mertens, F, Mandahl, N, Gisselsson, D, Isaksson, M, Gustafson, P. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003;37:195–200.CrossRefGoogle ScholarPubMed
West, RB, Rubin, BP, Miller, MA, Subramanian, S, Kaygusuz, G, Montgomery, K. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 2006;103:690–695.CrossRefGoogle Scholar
Cupp, JS, Miller, MA, Montgomery, KD, Nielsen, TO, O'Connell, JX, Huntsman, D. Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial giant cell tumor, rheumatoid arthritis and reactive synovitides. Am J Surg Pathol 2007;31:970–976.CrossRefGoogle ScholarPubMed
Möller, E, Mandahl, N, Mertens, F, Panagopoulos, I. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2008;47:21–25.CrossRefGoogle ScholarPubMed
Turc-Carel, C, Philip, I, Berger, M-P, Philip, T, Lenoir, GM. Chromosomal translocations 11;22 in cell lines of Ewing's sarcoma. N Engl J Med 1983;309:497–498.Google Scholar
Whang-Peng, J, Triche, TJ, Knutsen, T, Miser, J, Kao-Shan, S, Tsai, S. Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet 1986;21:185–208.CrossRefGoogle ScholarPubMed
Law, WJ, Cann, KL, Hicks, GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5:8–14.CrossRefGoogle ScholarPubMed
Truong, AH, Ben-David, Y. The role of Fli-1 in normal cell function and malignant transformation. Oncogene 2000;19:6482–6489.CrossRefGoogle ScholarPubMed
Arvand, A, Denny, CT. Biology of EWS/ETS fusions in Ewing's family tumors. Oncogene 2001;20:5747–5754.CrossRefGoogle ScholarPubMed
Ginsberg, JP, Alava, E, Ladanyi, M, Wexler, LH, Kovar, H, Paulussen, M. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing's sarcomas. J Clin Oncol 1999;17:1809–1814.CrossRefGoogle Scholar
Panagopoulos, I, Aman, P, Fioretos, T, Hoglund, M, Johansson, B, Mandahl, N. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 1994;11:256–262.CrossRefGoogle Scholar
Ichikawa, H, Shimizu, K, Hayashi, Y, Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to erg in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 1994;54:2865–2868.Google Scholar
Tomlins, SA, Rhodes, DR, Perner, S, Dhanasekaran, SM, Mehra, R, Sun, XW. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644–648.CrossRefGoogle ScholarPubMed
Wang, J, Cai, Y, Ren, C, Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66:8347–8351.CrossRefGoogle ScholarPubMed
Tomlins, SA, Mehra, R, Rhodes, DR, Smith, LR, Roulston, D, Helgeson, BE. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66:3396–3400.CrossRefGoogle ScholarPubMed
Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497–511.CrossRefGoogle ScholarPubMed
Rossi, S, Szuhai, K, Ijszenga, M, Tanke, HJ, Zanatta, L, Sciot, R. EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma. Clin Cancer Res 2007;13:7322–7328.CrossRefGoogle ScholarPubMed
Hisaoka, M, Ishida, T, Kuo, TT, Matsuyama, A, Imamura, T, Nishida, K. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol 2008;32:452–460.CrossRefGoogle ScholarPubMed
Clark, J, Benjamin, H, Gill, S, Sidhar, S, Goodwin, G, Crew, J. Fusion of the EWS gene to CHN, a member of the steroid/thyroid receptor gene gene superfamily, in a human myxoid chondrosarcoma. Oncogene 1996;12:229–235.Google Scholar
Labelle, Y, Zucman, J, Stenman, G, Kindblom, L-G, Knight, J, Turc-Carel, C. Oncogenic conversion of the novel orphan nuclear receptor by chromosome translocation. Hum Mol Genet 1995;4:2219–2226.CrossRefGoogle ScholarPubMed
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, Kawaguchi, N, Mukai, H, Nakamura, T. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217–222.CrossRefGoogle Scholar
Hai, T, Hartman, MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:1–11.CrossRefGoogle ScholarPubMed
Brown, AD, Lopez-Terrada, D, Denny, C, Lee, KA. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 1995;10:1749–1756.Google ScholarPubMed
Lee, SB, Haber, DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264: 74–99.CrossRefGoogle ScholarPubMed
Kim, J, Lee, K, Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998;16:1973–1979.CrossRefGoogle Scholar
Lee, SB, Kolquist, KA, Nichols, K, Englert, C, Maheswaran, S, Ladanyi, M. The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour. Nat Genet 1997;17:309–313.CrossRefGoogle ScholarPubMed
Finkeltov, I, Kuhn, S, Glaser, T, Idelman, G, Wright, JJ, Roberts, CT. Transcriptional regulation of IGF-I receptor gene expression by novel isoforms of the EWS-WT1 fusion protein. Oncogene 2002;21:1890–1898.CrossRefGoogle ScholarPubMed
Wong, JC, Lee, SB, Bell, MD, Reynolds, PA, Fiore, E, Stamenkovic, I. Induction of the interleukin-2/15 receptor beta-chain by the EWS-WT1 translocation product. Oncogene 2002;21:2009–2019.CrossRefGoogle ScholarPubMed
Palmer, RE, Lee, SB, Wong, JC, Reynolds, PA, Zhang, H, Truong, V. Induction of BAIAP3 by the EWS-WT1 chimeric fusion implicates regulated exocytosis in tumorigenesis. Cancer Cell 2002;2:497–505.CrossRefGoogle ScholarPubMed
Li, H, Smolen, GA, Beers, LF, Xia, L, Gerald, W, Wang, J. Adenosine transporter ENT4 is a direct target of EWS/WT1 translocation product and is highly expressed in desmoplastic small round cell tumor. PLoS ONE 2008;3:e2353.CrossRefGoogle ScholarPubMed
Ohkura, N, Hijikuro, M, Yamamoto, A, Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:1959–1965.CrossRefGoogle ScholarPubMed
Gan, TI, Rowen, L, Nesbitt, R, Roe, BA, Wu, H, Hu, P. Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res 2002;98:245–248.CrossRefGoogle ScholarPubMed
Mencinger, M, Panagopoulos, I, Andreasson, P, Lassen, C, Mitelman, F, Aman, P. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997;41:327–331.CrossRefGoogle ScholarPubMed
Greco, A, Mariani, C, Miranda, C, Lupas, A, Pagliardini, S, Pomati, M. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:6118–6127.CrossRefGoogle Scholar
Hernández, L, Pinyol, M, Hernández, S, Beà, S, Pulford, K, Rosenwald, A. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:3265–3268.Google ScholarPubMed
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, Kawaguchi, N, Mukai, H, Nakamura, T. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217–222.CrossRefGoogle Scholar
Möller, E, Stenman, G, Mandahl, N, Hamberg, H, Mölne Lvan den Oord, JJ, Brosjö, O. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008;215:78–86.CrossRefGoogle ScholarPubMed
Hunger, SP, Galili, N, Carroll, AJ, Crist, WM, Link, MP, Cleary, ML. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687–693.Google Scholar
Kamps, MP, Murre, C, Sun, XH, Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547–555.CrossRefGoogle Scholar
Turc-Carel, C, Limon, J, Dal Cin, P, Rao, U, Karakousis, C, Sandberg, AA. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 1986;23:291–299.CrossRefGoogle Scholar
Åman, P, Ron, D, Mandahl, N, Fioretos, T, Heim, S, Arheden, K. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5:278–285.CrossRefGoogle Scholar
Heim, S, Mitelman, F. Cancer Cytogenetics: Chromosomal and Molecular Genetic Aberrations of Tumor Cells. New York: John Wiley & Sons, 1976.Google Scholar
Åman, P, Panagopoulos, I, Lassen, C, Fioretos, T, Mencinger, M, Toresson, H. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 1996;37:1–8.CrossRefGoogle ScholarPubMed
Ron, D, Brasier, AR, McGehee, RE Jr, Habener, JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992;89:223–233.CrossRefGoogle Scholar
Ron, D, Habener, JF. CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992;6:439–453.CrossRefGoogle Scholar
Adelmant, G, Gilbert, JD, Freytag, SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:15574–15581.CrossRefGoogle ScholarPubMed
Kuroda, M, Ishida, T, Takanashi, M, Satoh, M, Machinami, R, Watanabe, T. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735–744.Google ScholarPubMed
Zinszner, H, Albalat, R, Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8:2513–2526.CrossRefGoogle ScholarPubMed
Hallor, KH, Micci, F, Meis-Kindblom, JM, Kindblom, LG, Bacchini, P, Mandahl, N. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158–163.CrossRefGoogle ScholarPubMed
Panagopoulos, I, Möller, E, Dahlén, A, Isaksson, M, Mandahl, N, Vlamis-Gardikas, A. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181–191.CrossRefGoogle ScholarPubMed
Barr, FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001;20:5736–5746.CrossRefGoogle ScholarPubMed
Tremblay, P, Gruss, P. Pax: genes for mice and men. Pharmacol Ther 1994;61:205–226.CrossRefGoogle ScholarPubMed
Underhill, DA. Genetic and biochemical diversity in the Pax gene family. Biochem Cell Biol 2000;78:629–638.CrossRefGoogle ScholarPubMed
Chi, N, Epstein, JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet 2002;18:41–47.CrossRefGoogle ScholarPubMed
Buckingham, M, Relaix, F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007;23:645–673.CrossRefGoogle ScholarPubMed
Epstein, DJ, Vekemans, M, Gros, P. Splotch (Sp-2H), a mutation affecting development of the mouse neutral tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991;67:767–774.CrossRefGoogle Scholar
Baldwin, CT, Hoth, CF, Amos, JA, da-Silva, EO, Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 1992;355:637–638.CrossRefGoogle ScholarPubMed
Tassabehji, M, Read, AP, Newton, VE, Harris, R, Balling, R, Gruss, P. Waardenburg's syndrome patients have mutations in the human homologue of the PAX-3 paired box gene. Nature 1992;355:635–636.CrossRefGoogle ScholarPubMed
Tassabehji, M, Read, AP, Newton, VE, Patton, M, Gruss, P, Harris, R. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nature Genet 1993;3:26–30.CrossRefGoogle ScholarPubMed
Hoth, CF, Milunsky, A, Lipsky, N, Sheffer, R, Clarren, SK, Baldwin, CT. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 1993;52:455–462.Google Scholar
Asher, JH Jr, Sommer, A, Morell, R, Friedman, TB. Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome. Hum Mutat 1996;7:30–35.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Kaufmann, E, Knochel, W. Five years on the wings of fork head. Mech Dev 1996;57:3–20.CrossRefGoogle ScholarPubMed
Katoh, M, Katoh, M. Human FOX gene family [review]. Int J Oncol 2004;25:1495–1500.Google Scholar
Durham, SK, Suwanichkul, A, Scheimann, AO, Yee, D, Jackson, JG, Barr, FG. FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology 1999;140:3140–3146.CrossRefGoogle ScholarPubMed
Guo, S, Rena, G, Cichy, S, He, X, Cohen, P, Unterman, T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999;274:17184–17192.CrossRefGoogle Scholar
Brunet, A, Bonni, A, Zigmond, MJ, Lin, MZ, Juo, P, Hu, LS. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.CrossRefGoogle ScholarPubMed
Accili, D, Arden, KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004;117:421–426.CrossRefGoogle Scholar
Hillion, J, Coniat, M, Jonveaux, P, Berger, R, Bernard, OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997;90:3714–3719.Google Scholar
Parry, P, Wei, Y, Evans, G. Cloning and characterization of the t(X;11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes Chromosomes Cancer 1994;11:79–84.CrossRefGoogle Scholar
Barr, FG, Nauta, , Davis, RJ, Schafer, BW, Nycum, LM, Biegel, JA. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 1996;5:15–21.CrossRefGoogle ScholarPubMed
Davis, RJ, Barr, FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1997;94:8047–8051.CrossRefGoogle ScholarPubMed
Weber-Hall, S, McManus, A, Anderson, J, Nojima, T, Abe, S, Pritchard-Jones, K. Novel formation and amplification of the PAX7-FKHR fusion gene in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 1996;17:7–13.3.0.CO;2-0>CrossRefGoogle Scholar
Fitzgerald, JC, Scherr, AM, Barr, FG. Structural analysis of PAX 7 rearrangements in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet 2000;117:37–40.CrossRefGoogle Scholar
del Peso, L, González, VM, Hernández, R, Barr, FG, Núñez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 1999;18:7328–7333.CrossRefGoogle Scholar
Fredericks, WJ, Galili, N, Mukhopadhyay, S, Rovera, G, Bennicelli, J, Barr, FG. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995;15:1522–1535.CrossRefGoogle Scholar
Scheidler, S, Fredericks, WJ, Rauscher, FJ III, Barr, FG, Vogt, PK. The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci USA 1996;93:9805–9809.CrossRefGoogle ScholarPubMed
Lam, PY, Sublett, JE, Hollenbach, AD, Roussel, MF. The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol Cell Biol 1999;19:594–601.CrossRefGoogle Scholar
Xia, SJ, Barr, FG. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 2004;23:6864–6871.CrossRefGoogle ScholarPubMed
Deneen, B, Denny, CT. Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene 2001;20:6731–6741.CrossRefGoogle ScholarPubMed
Ren, YX, Finckenstein, FG, Abdueva, DA, Shahbazian, V, Chung, B, Weinberg, KI. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008;68:6587–6597.CrossRefGoogle ScholarPubMed
Keller, C, Arenkiel, BR, Coffin, CM, El-Bardeesy, N, DePinho, RA, Capecchi, MR. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004;18:2614–2626.CrossRefGoogle ScholarPubMed
Begum, S, Emami, N, Cheung, A, Wilkins, O, Der, S, Hamel, PA. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 2005;24:1860–1872.CrossRefGoogle ScholarPubMed
Wachtel, M, Dettling, M, Koscielniak, E, Stegmaier, S, Treuner, J, Simon-Klingenstein, K. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:5539–5545.CrossRefGoogle Scholar
Jankowski, K, Kucia, M, Wysoczynski, M, Reca, R, Zhao, D, Trzyna, E. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003;63:7926–7935.Google ScholarPubMed
Nabarro, S, Himoudi, N, Papanastasiou, A, Gilmour, K, Gibson, S, Sebire, N. Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 2005;202:1399–1410.CrossRefGoogle ScholarPubMed
Limon, J, Dal Cin, P, Sandberg, AA. Translocations involving the X chromosome in solid tumors: Presentation of of two sarcomas with t(X;18)(q13;p11). Cancer Genet Cytogenet 1986;23:87–91.CrossRefGoogle Scholar
Turc-Carel, C, Dal Cin, P, Limon, J, Rao, U, Li, FP, Corson, JM. Involvment of chromosome X in primary cytogenetic change in human neoplasia: Nonrandom translocation in synovial sarcoma. Proc Natl Acad Sci USA 1987;84:1981–1985.CrossRefGoogle Scholar
Dal Cin, P, Rao, U, Jani-Sait, S, Karakousis, C, Sandberg, AA. Chromosomes in the diagnosis of soft tissue tumors. I. Synovial sarcoma. Mod Pathol 1992;5:357–362.Google Scholar
dos Santos, NR, Bruijn, DR, Kessel, AG. Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer 2001;30:1–14.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Clark, AJ, Rocques, PJ, Crew, AJ, Gill, S, Shipley, J, Chan, AM-L. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 1994;7:502–508.CrossRefGoogle Scholar
Güre, AO, Wei, IJ, Old, LJ, Chen, YT. The SSX gene family: characterization of 9 complete genes. Int J Cancer 2002;101:448–453.CrossRefGoogle ScholarPubMed
Mancuso, T, Mezzelani, A, Riva, C, Fabbri, A, Dal Bo, L, Sampietro, G. Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Lab Invest 2000;80:805–813.CrossRefGoogle ScholarPubMed
Safar, A, Wickert, R, Nelson, M, Neff, JR, Bridge, JA. Characterization of a variant SYT-SSX1 synovial sarcoma fusion transcript. Diagn Mol Pathol 1998;7:283–287.CrossRefGoogle ScholarPubMed
Bruijn, DR, dos Santos, NR, Thijssen, J, Balemans, M, Debernardi, S, Linder, B. The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene 2001;20:3281–3289.CrossRefGoogle ScholarPubMed
Eid, JE, Kung, AL, Scully, R, Livingston, DM. p300 Interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell 2000;102:839–848.CrossRefGoogle ScholarPubMed
Ishida, M, Tanaka, S, Ohki, M, Ohta, T. Transcriptional coactivator activity of SYT is negatively regulated by BRM and Brg1. Genes Cells 2004;9:419–428.CrossRefGoogle Scholar
Ito, T, Ouchida, M, Ito, S, Jitsumori, Y, Morimoto, Y, Ozaki, T. SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Lab Invest 2004;84:1484–1490.CrossRefGoogle ScholarPubMed
Nagai, M, Tanaka, S, Tsuda, M, Endo, S, Kato, H, Sonobe, H. Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF1_lpha. Proc Natl Acad Sci USA 2001;98:3843–3848.CrossRefGoogle Scholar
Thaete, C, Brett, D, Monaghan, P, Whitehouse, S, Rennie, G, Rayner, E. Functional domains of SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet 1999;8:585–591.CrossRefGoogle ScholarPubMed
Hendricks, KB, Shanahan, F, Lees, E. Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 2004;24:362–376.CrossRefGoogle ScholarPubMed
Gure, AO, Türeci, Ö, Sahin, U, Tsang, S, Scanlan, MJ, Jäger, E. SSX: A multigene family with several members transcribed in normal testis and human cancer. Int J Cancer 1997;72:965–971.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Tureci, O, Sahin, U, Schobert, I, Koslowski, M, Scmitt, H, Schild, HJ. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 1996;56:4766–4772.Google Scholar
Bruijn, DR, Nap, JP, Kessel, AG. The (epi)genetics of human synovial sarcoma. Genes Chromosomes Cancer 2007;46:107–117.CrossRefGoogle ScholarPubMed
Bruijn, DR, Allander, SV, Dijk, AH, Willemse, MP, Thijssen, J, Groningen, JJ. The synovial-sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res 2006;66:9474–9482.CrossRefGoogle ScholarPubMed
Ito, T, Ouchida, M, Morimoto, Y, Yoshida, A, Jitsumori, Y, Ozaki, T. Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett 2005;224:311–319.CrossRefGoogle ScholarPubMed
Lubieniecka, JM, Bruijn, DR, Su, L, Dijk, AH, Subramanian, S, Rijn, M. Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 2008;68:4303–4310.CrossRefGoogle ScholarPubMed
Aulmann, S, Longerich, T, Schirmacher, P, Mechtersheimer, G, Penzel, R. Detection of the ASPSCR1-TFE3 gene fusion in paraffin-embedded alveolar soft part sarcomas. Histopathology 2007;50:881–886.CrossRefGoogle ScholarPubMed
Heimann, P, el Housni, H, Ogur, G, Weterman, MAJ, Petty, EM, Vassart, G. Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas. Cancer Res 2001;61:4130–4135.Google Scholar
Sidhar, SK, Clark, J, Gill, S, Hamoudi, R, Crew, AJ, Gwilliam, R. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet 1996;5:1333–1338.CrossRefGoogle Scholar
Clark, J, Lu, YJ, Sidhar, SK, Parker, C, Gill, S, Smedley, D. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 1997;15:2233–2239.CrossRefGoogle ScholarPubMed
Argani, P, Lui, MY, Couturier, J, Bouvier, R, Fournet, JC, Ladanyi, M. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 2003;22:5374–5378.CrossRefGoogle Scholar
Davis, IJ, Hsi, BL, Arroyo, JD, Vargas, SO, Yeh, YA, Motyckova, G. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci U S A 2003;100:6051–6056.CrossRefGoogle Scholar
Argani, P, Antonescu, CR, Illei, PB, Lui, MY, Timmons, CF, Newbury, R. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol 2001;159:179–192.CrossRefGoogle ScholarPubMed
Tsuda, M, Davis, IJ, Argani, P, Shukla, N, McGill, GG, Nagai, M. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 2007;67:919–929.CrossRefGoogle ScholarPubMed
Christensen, JG, Burrows, J, Salgia, R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 2005;225:1–26.CrossRefGoogle ScholarPubMed
Robinson, DR, Wu, YM, Lin, SF. The protein tyrosine kinase family of the human genome. Oncogene 2000;19:5548–5557.CrossRefGoogle ScholarPubMed
Blume-Jensen, P, Hunter, T. Oncogenic kinase signalling. Nature 2001; 411:355–365.CrossRefGoogle ScholarPubMed
Morin, MJ. From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents. Oncogene 2000;19:6574–6582.CrossRefGoogle ScholarPubMed
Demetri, GD. Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol 2001;28:19–26.CrossRefGoogle ScholarPubMed
Tuveson, DA, Fletcher, JA. Signal transduction pathways in sarcoma as targets for therapeutic intervention. Curr Opin Oncol 2001;13:249–255.CrossRefGoogle ScholarPubMed
Morris, SW, Kirstein, MN, Valentine, MB, Dittmer, KG, Shapiro, DN, Saltman, DL. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263:1281–1284.CrossRefGoogle ScholarPubMed
Ladanyi, M. Aberrant ALK tyrosine kinase signaling. Different cellular lineages, common oncogenic mechanisms?Am J Pathol 2000;157:341–345.CrossRefGoogle ScholarPubMed
Duyster, J, Bai, R-Y, Morris, SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 2001;20:5623–5637.CrossRefGoogle Scholar
Bai, RY, Dieter, P, Peschel, C, Morris, SW, Duyster, J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 1998;18:6951–6961.CrossRefGoogle ScholarPubMed
Bai, RY, Ouyang, T, Miething, C, Morris, SW, Peschel, C, Duyster, J. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000;96:4319–4327.Google ScholarPubMed
Kuefer, MU, Look, AT, Pulford, K, Behm, FG, Pattengale, PK, Mason, DY. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 1997;90:2901–2910.Google ScholarPubMed
Chiarle, R, Gong, JZ, Guasparri, I, Pesci, A, Cai, J, Liu, J. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 2003;101:1919–1927.CrossRefGoogle ScholarPubMed
Fujimoto, J, Shiota, M, Iwahara, T, Seki, N, Satoh, H, Mori, S. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci USA 1996;93:4181–4186.CrossRefGoogle Scholar
Zhang, Q, Raghunath, PN, Xue, L, Majewski, M, Carpentieri, DF, Odum, N. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 2002;168:466–474.CrossRefGoogle ScholarPubMed
Zamo, A, Chiarle, R, Piva, R, Howes, J, Fan, Y, Chilosi, M. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002;21:1038–1047.CrossRefGoogle ScholarPubMed
Chiarle, R, Simmons, WJ, Cai, H, Dhall, G, Zamo, A, Raz, R. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005;11:623–629.CrossRefGoogle ScholarPubMed
Slupianek, A, Nieborowska-Skorska, M, Hoser, G, Morrione, A, Majewski, M, Xue, L. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 2001;61:2194–2199.Google ScholarPubMed
Rassidakis, GZ, Feretzaki, M, Atwell, C, Grammatikakis, I, Lin, Q, Lai, R. Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood 2005;105:827–829.CrossRefGoogle ScholarPubMed
Gu, TL, Tothova, Z, Scheijen, B, Griffin, JD, Gilliland, DG, Sternberg, DW. NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 2004;103:4622–4629.CrossRefGoogle ScholarPubMed
Vega, F, Medeiros, LJ, Leventaki, V, Atwell, C, Cho-Vega, JH, Tian, L. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 2006;66:6589–6597.CrossRefGoogle ScholarPubMed
Marzec, M, Kasprzycka, M, Liu, X, Raghunath, PN, Wlodarski, P, Wasik, MA. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene 2007;26:813–821.CrossRefGoogle ScholarPubMed
Leventaki, V, Drakos, E, Medeiros, LJ, Lim, MS, Elenitoba-Johnson, KS, Claret, FX. NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphomaBlood 2007;110:1621–1630.CrossRefGoogle ScholarPubMed
Wlodarska, I, Wolf-Peeters, C, Falini, B, Verhoef, G, Morris, SW, Hagemeijer, A. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998;92:2688–2695.Google ScholarPubMed
Touriol, C, Greenland, C, Lamant, L, Pulford, K, Bernard, F, Rousset, T. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:3204–3207.Google Scholar
Tort, F, Pinyol, M, Pulford, K, Roncador, G, Hernandez, L, Nayach, I. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001;81:419–426.CrossRefGoogle Scholar
Lamant, L, Gascoyne, RD, Duplantier, MM, Armstrong, F, Raghab, A, Chhanabhai, M. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003;37:427–432.CrossRefGoogle ScholarPubMed
Morris, SW, Kirstein, MN, Valentine, MB, Dittmer, KG, Shapiro, DN, Saltman, DL. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263:1281–1284.CrossRefGoogle ScholarPubMed
Hernández, L, Pinyol, M, Hernández, S, Beà, S, Pulford, K, Rosenwald, A. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:3265–3268.Google ScholarPubMed
Lamant, L, Dastugue, N, Pulford, K, Delsol, G, Mariamé, B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93:3088–3095.Google ScholarPubMed
Liang, X, Meech, SJ, Odom, LF, Bitter, MA, Ryder, JW, Hunger, SP. Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol 2004;121:496–506.CrossRefGoogle Scholar
Soda, M, Choi, YL, Enomoto, M, Takada, S, Yamashita, Y, Ishikawa, S. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561–566.CrossRefGoogle ScholarPubMed
Armstrong, F, Duplantier, MM, Trempat, P, Hieblot, C, Lamant, L, Espinos, E. Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 2004;23:6071–6082.CrossRefGoogle ScholarPubMed
Chen, Y, Takita, J, Choi, YL, Kato, M, Ohira, M, Sanada, M. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008;455:971–974.CrossRefGoogle ScholarPubMed
George, RE, Sanda, T, Hanna, M, Fröhling, S, Luther, W 2nd, Zhang, J. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008;455:975–978.CrossRefGoogle ScholarPubMed
Janoueix-Lerosey, I, Lequin, D, Brugières, L, Ribeiro, A, Pontual, L, Combaret, V. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 2008;455:967–970.CrossRefGoogle ScholarPubMed
Mossé, YP, Laudenslager, M, Longo, L, Cole, KA, Wood, A, Attiyeh, EF. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008;455:930–935.CrossRefGoogle ScholarPubMed
Carén, H, Abel, F, Kogner, P, Martinsson, T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 2008;416:153–159.CrossRefGoogle ScholarPubMed
Christensen, JG, Zou, HY, Arango, ME, Li, Q, Lee, JH, McDonnell, SR. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 2007;6:3314–3322.CrossRefGoogle ScholarPubMed
Li, R, Morris, SW. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev 2008;28:372–412.CrossRefGoogle ScholarPubMed
Trochet, D, Bourdeaut, F, Janoueix-Lerosey, I, Deville, A, Pontual, L, Schleiermacher, G. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 2004;74:761–764.CrossRefGoogle ScholarPubMed
Coluccia, AM, Gunby, RH, Tartari, CJ, Scapozza, L, Gambacorti-Passerini, C, Passoni, L. Anaplastic lymphoma kinase and its signalling molecules as novel targets in lymphoma therapy. Expert Opin Ther Targets 2005;9:515–532.CrossRefGoogle ScholarPubMed
Li, R, Morris, SW. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev 2008;28:372–412.CrossRefGoogle ScholarPubMed
Bohlander, SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005;15:162–174.CrossRefGoogle ScholarPubMed
Bibel, M, Barde, YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000;14:2919–2937.CrossRefGoogle ScholarPubMed
Wai, DH, Knezevich, SR, Lucas, T, Jansen, B, Kay, RJ, Sorensen, PH. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 2000;19:906–915.CrossRefGoogle ScholarPubMed
Tognon, C, Garnett, M, Kenward, E, Kay, R, Morrison, K, Sorensen, PH. The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res 2001;61:8909–8916.Google ScholarPubMed
Lannon, CL, Martin, MJ, Tognon, CE, Jin, W, Kim, SJ, Sorensen, PH. A highly conserved NTRK3 C-terminal sequence in the ETV6-NTRK3 oncoprotein binds the phosphotyrosine binding domain of insulin receptor substrate-1: an essential interaction for transformation. J Biol Chem 2004;279:6225–6234.CrossRefGoogle ScholarPubMed
Tognon, C, Knezevich, SR, Huntsman, D, Roskelley, CD, Melnyk, N, Mathers, JA. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367–376.CrossRefGoogle ScholarPubMed
Eguchi, M, Eguchi-Ishimae, M, Tojo, A, Morishita, K, Suzuki, K, Sato, Y. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:1355–1363.Google Scholar
Eguchi, M, Eguchi-Ishimae, M, Green, A, Enver, T, Greaves, M. Directing oncogenic fusion genes into stem cells via an SCL enhancer. Proc Natl Acad Sci USA 2005;102:1133–1138.CrossRefGoogle ScholarPubMed
Lannon, CL, Sorensen, PH. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol 2005;15:215–223.CrossRefGoogle ScholarPubMed
Taylor, ML, Metcalfe, DD. KIT signaling trunsduction. Hematol Oncol Clin North Am 2000;14:517–535.CrossRefGoogle Scholar
Fletcher, JA. Role of KIT and platelet-derived growth factor receptors as oncoproteins. Semin Oncol 2004;31,Suppl 6:4–11.CrossRefGoogle Scholar
Mol, CD, Dougan, DR, Schneider, TR, Skene, RJ, Kraus, ML, Scheibe, DN. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 2004;279:31655–31663.CrossRefGoogle ScholarPubMed
Hirota, S, Isozaki, K, Moriyama, Y, Hashimoto, K, Nishida, T, Ishiguro, S. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279:577–580.CrossRefGoogle ScholarPubMed
Nishida, T, Hirota, S, Taniguchi, M, Hashimoto, K, Isozaki, K, Nakamura, H. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 1998;19:323–324.CrossRefGoogle ScholarPubMed
Ma, Y, Cunningham, M, Wang, X, Ghosh, I, Regan, L, Longley, B. Inhibition of spontaneous receptor phosphorylation by residues in putative alpha-helix in the KIT intracellular juxtamembrane region. J Biol Chem 1999; 274;13399–13402.CrossRefGoogle ScholarPubMed
Chan, PM, Ilangumaran, S, Rose, J, Chakrabartty, A, Rottapel, R. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 2003;23:3067–3078.CrossRefGoogle ScholarPubMed
Nakahara, M, Isozaki, K, Hirota, S, Miyagawa, J, Hase-Sawada, N, Taniguchi, M, Nishida, T. A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology 1998;115:1090–1095.CrossRefGoogle ScholarPubMed
Lasota, J, Miettinen, M. Histopathology. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 2008;53:245–266.CrossRefGoogle ScholarPubMed
Sommer, G, Agosti, V, Ehlers, I, Rossi, F, Corbacioglu, S, Farkas, J. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA 2003;100:6706–6711.CrossRefGoogle Scholar
Rubin, BP, Antonescu, CR, Scott-Browne, JP, Comstock, ML, Gu, Y, Tanas, MR. A knock-in mouse model of gastrointestinal stromal tumor harboring Kit K641E. Cancer Res 2005;65:6631–6639.CrossRefGoogle ScholarPubMed
Joensuu, H, Roberts, PJ, Sarlomo-Rikala, M, Andersson, LC, Tervahartiala, P, Tuveson, D. Effect of the tyrosine kinase inhibitor STI571 in a patient with metastatic gastrointestinal stromal tumor. N Engl J Med 2001;344:1052–1056.CrossRefGoogle Scholar
Oosterom, AT, Judson, I, Verweij, J, Stroobants, S, Donato di Paola, E, Dimitrijevic, S. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 2001;358:1421–1423.CrossRefGoogle ScholarPubMed
Chen, LL, Trent, JC, Wu, EF, Fuller, GN, Ramdas, L, Zhang, W. A missense mutation in KIT domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res 2004;64:5913–5919.CrossRefGoogle ScholarPubMed
Debiec-Rychter, M, Cools, J, Dumez, H, Sciot, R, Stul, M, Mentens, N. Mechanisms of resistence to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroentereology 2005;128:270–279.CrossRefGoogle Scholar
Heinrich, MC, Corless, CL, Blanke, CD, Demetri, GD, Joensuu, H, Roberts, PJ. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 2006;24:4764–4774.CrossRefGoogle ScholarPubMed
Faivre, S, Delbaldo, C, Vera, K, Robert, C, Lozahic, S, Lassau, N. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006;24:25–35.CrossRefGoogle ScholarPubMed
Joensuu, H. Second-line therapies for the treatment of gastrointestinal stromal tumor. Curr Opin Oncol 2007;19:353–358.CrossRefGoogle ScholarPubMed
Maki, RG. Recent advances in therapy for gastrointestinal stromal tumors. Curr Oncol Rep 2007;9:165–169.CrossRefGoogle ScholarPubMed
Roberts, WM, Look, AT, Roussel, MF, Sherr, CJ. Tandem linkage of human CSF-1 receptor (c-fms) and PDGF receptor genes. Cell 1989;55:655–661.CrossRefGoogle Scholar
Stenman, G, Eriksson, A, Claesson-Welsh, L. Human PDGFA receptor gene maps to the same region on chromosome 4 as the KIT oncogene. Genes Chromosomes Cancer 1989;1:155–158.CrossRefGoogle ScholarPubMed
Heinrich, MC, Corless, CL, Duensing, A, McGreevey, L, Chen, CJ, Joseph, N. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299:708–710.CrossRefGoogle ScholarPubMed
Chompret, A, Kannengiesser, C, Barrois, M, Terrier, P, Dahan, P, Tursz, T. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 2004;126:318–321.CrossRefGoogle Scholar
Pedeutour, F, Simon, MP, Minoletti, F, Barcelo, G, Terrier-Lacombe, MJ, Combemale, P. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet 1996;72:171–174.CrossRefGoogle Scholar
Kiuru-Kuhlefelt, S, El-Rifai, W, Fanburg-Smith, J, Kere, J, Miettinen, M, Knuutila, S. Concomitant DNA copy number amplification at 17q and 22q in dermatofibrosarcoma protuberans. Cytogenet Cell Genet 2001;92:192–195.CrossRefGoogle ScholarPubMed
Sjoblom, T, Shimizu, A, O'Brien, KP, Pietras, K, Dal Cin, P, Buchdunger, E. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001;61:5778–5783.Google ScholarPubMed
Abrams, TA, Schuetze, SM. Targeted therapy for dermatofibrosarcoma protuberans. Curr Oncol Rep 2006;8:291–296.CrossRefGoogle ScholarPubMed
Manfioletti, G, Giancotti, V, Bandiera, A, Buratti, E, Sautiere, P, Cary, P. cDNA cloning of the HMGI-C phosphoprotein, a nuclear protein associated with neoplastic and undifferentiated phenotypes. Nucleic Acids Res 1991;19:6793–6797.CrossRefGoogle ScholarPubMed
Johnson, KR, Lehn, DA, Reeves, R. Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol Cell Biol 1989;9:2114–2133.CrossRefGoogle ScholarPubMed
Reeves, R, Nissen, MS. The A-T-DNAbinding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem 1990; 265:8573–8582.Google Scholar
Reeves, R. Structure and function of the HMGI(Y) family of architectural transcription factors. Environ Health Perspect 2000;108:803–809.CrossRefGoogle Scholar
Zhou, X, Benson, KF, Ashar, HR, Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 1995;376:771–774.CrossRefGoogle ScholarPubMed
Chiappetta, G, Avantaggiato, V, Visconti, R, Fedele, M, Battista, S, Trapasso, F. High level expression of the HMGA1 gene during embryonic development. Oncogene 1996;13:2439–2446.Google ScholarPubMed
Chiappetta, G, Bandiera, A, Berlingieri, MT, Visconti, R, Manfioletti, G, Battista, S. 1995. The expression of the high mobility group HMGA1 proteins correlates with the malignant phenotype of human thyroid neoplasms. Oncogene 1995;10:1307–1314.Google Scholar
Fedele, M, Bandiera, A, Chiappetta, G, Battista, S, Viglietto, G, Manfioletti, G. Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins. Cancer Res 1996;56:1896–1901.Google Scholar
Tamimi, Y, Poel, HG, Denyn, MM, Umbas, R, Karthaus, HF, Debruyne, FM. Increased expression of high mobility group protein I(Y) in high grade prostatic cancer determined by in situ hybridization. Cancer Res 1993;53:5512–5516.Google Scholar
Abe, N, Watanabe, T, Izumisato, Y, Masaki, T, Mori, T, Sugiyama, M. Diagnostic significance of high mobility group I(Y) protein expression in intraductal papillary mucinous tumors of the pancreas. Pancreas 2002;25:198–204.CrossRefGoogle Scholar
Bandiera, A, Bonifacio, D, Manfioletti, G, Mantovani, F, Rustighi, A, Zanconati, F. Expression of HMGI(Y) proteins in squamous intraepithelial and invasive lesions of the uterine cervix. Cancer Res 1998;58:426–431.Google Scholar
Masciullo, V, Baldassarre, G, Pentimalli, F, Berlingieri, MT, Boccia, A, Chiappetta, G. HMGA1 protein overexpression is a frequent feature of epithelial ovarian carcinomas. Carcinogenesis 2003;24:1191–1198.CrossRefGoogle Scholar
Chiappetta, G, Botti, G, Monaco, M, Pasquinelli, R, Pentimalli, F, Di Bonito, M. HMGA1 protein overexpression in human breast carcinomas: correlation with ErbB2 expression. Clin Cancer Res 2004;10:7637–7644.CrossRefGoogle ScholarPubMed
Fedele, M, Berlingieri, MT, Scala, S, Chiariotti, L, Viglietto, G, Rippel, V. Truncated and chimeric HMGI-C genes induce neoplastic transformation of NIH3T3 murine fibroblasts. Oncogene 1998;17:413–418.CrossRefGoogle ScholarPubMed
Wood, LJ, Maher, JF, Bunton, TE, Resar, LM. The oncogenic properties of the HMG-I gene family. Cancer Res 2000;60:4256–4261.Google ScholarPubMed
Baldassarre, G, Fedele, M, Battista, S, Vecchione, A, Klein-Szanto, AJ, Santoro, M. Onset of natural killer cell lymphomas in transgenic mice carrying a truncated HMGI-C gene by the chronic stimulation of the IL-2 and IL-15 pathway. Proc Natl Acad Sci USA 2001;98:7970–7975.CrossRefGoogle ScholarPubMed
Xu, Y, Sumter, TF, Bhattacharya, R, Tesfaye, A, Fuchs, EJ, Wood, LJ. The HMG-I oncogene causes highly penetrant, aggressive lymphoid malignancy in transgenic mice and is overexpressed in human leukemia. Cancer Res 2004;64:3371–3375.CrossRefGoogle ScholarPubMed
Fedele, M, Fidanza, V, Battista, S, Pentimalli, F, Klein-Szanto, AJ, Visone, R. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005;24:3427–3435.CrossRefGoogle ScholarPubMed
Berlingieri, MT, Pierantoni, GM, Giancotti, V, Santoro, M, Fusco, A. Thyroid cell transformation requires the expression of the HMGA1 proteins. Oncogene 2002;21:2971–2980.CrossRefGoogle ScholarPubMed
Scala, S, Portella, G, Fedele, M, Chiappetta, G, Fusco, A. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc Natl Acad Sci USA 2000;97:4256–4261.CrossRefGoogle Scholar
Ashar, HR, Schoenberg Fejzo, M, Tkachenko, A, Zhou, X, Fletcher, JA, Weremowicz, S. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 1995;82:57–65.CrossRefGoogle ScholarPubMed
Schoenmakers, EF, Wanschura, S, Mols, R, Bullerdiek, J, Berghe, H, Ven, WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nature Genet 1995;10:436–444.CrossRefGoogle ScholarPubMed
Kazimierczak, B, Rosigkeit, J, Wanschura, S, Meyer-Bolte, K, Ven, W, Kayser, K. HMGI-C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene 1996;12:515–521.Google Scholar
Fedele, M, Battista, S, Manfioletti, G, Croce, CM, Giancotti, V, Fusco, A. Role of the high mobility group A proteins in human lipomas. Carcinogenesis 2001;22:1583–1591.CrossRefGoogle Scholar
Kubo, T, Matsui, Y, Goto, T, Yukata, K, Yasui, N. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the alpha 2 type XI collagen gene. Biochem Biophys Res Commun 2006;340:476–481.CrossRefGoogle ScholarPubMed
Kazimierczak, B, Wanschura, S, Rosigkeit, J, Meyer-Bolte, K, Uschinsky, K, Hampt, R. Molecular characterization of 12q14–15 rearrangements in three pulmonary chondroid hamartomas. Cancer Res 1995;55:2497–2499.Google Scholar
Kools, PF, Ven, WJ. Amplification of the rearranged form of the high mobility group protein gene HMGIC in OsA-CI osteosarcoma cells. Cancer Genet Cytogenet 1996;91:1–7.CrossRefGoogle ScholarPubMed
Hauke, S, Rippe, V, Bullerdiek, J. Chromosomal rearrangements leading to abnormal splicing within intron 4 of HMGIC?Genes Chromosomes Cancer 2001;30:302–304.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Berner, JM, Meza-Zepeda, , Kools, PF, Forus, A, Schoenmakers, EF, Ven, WJ. HMGIC, the gene for an architectural transcription factor, is amplified and rearranged in a subset of human sarcomas. Oncogene 1997;14:2935–2941.CrossRefGoogle Scholar
Meza-Zepeda, , Berner, JM, Henriksen, J, South, AP, Pedeutour, F, Dahlberg, AB. Ectopic sequences from truncated HMGIC in liposarcomas are derived from various amplified chromosomal regions. Genes Chromosomes Cancer 2001;31:264–273.CrossRefGoogle ScholarPubMed
Italiano, A, Bianchini, L, Keslair, F, Bonnafous, S, Cardot-Leccia, N, Coindre, JM. HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int J Cancer 2008;122:2233–2241.CrossRefGoogle ScholarPubMed
Lee, YS, Kim, HK, Chung, S, Kim, KS, Dutta, A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 2005;280:16635–16641.CrossRefGoogle Scholar
Takamizawa, J, Konishi, H, Yanagisawa, K, Tomida, S, Osada, H, Endoh, H. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753–3756.CrossRefGoogle ScholarPubMed
Johnson, SM, Grosshans, H, Shingara, J, Byrom, M, Jarvis, R, Cheng, A. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635–647.CrossRefGoogle ScholarPubMed
Lee, YS, Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007;21:1025–1030.CrossRefGoogle ScholarPubMed
Ligon, AH, Moore, SD, Parisi, MA, Mealiffe, ME, Harris, DJ, Ferguson, HL. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet 2005;76:340–348.CrossRefGoogle ScholarPubMed
Battista, S, Fidanza, V, Fedele, M, Klein-Szanto, AJP, Outwater, E, Brunner, H. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis. Cancer Res 1999;59:4793–4797.Google ScholarPubMed
Arlotta, P, Tai, AK-F, Manfioletti, G, Clifford, C, Jay, G, Ono, SJ. Transgenic mice expressing a truncated form of the high mobility group I-C protein develop adiposity and an abnormally high prevalence of lipomas. J Biol Chem 2000;275:14394–14400.CrossRefGoogle Scholar
Weedon, MN, Lettre, G, Freathy, RM, Lindgren, CM, Voight, BF, Perry, JR. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet 2007;39:1245–1250.CrossRefGoogle ScholarPubMed
Kazimierczak, B, Dal Cin, P, Wanschura, S, Borrmann, L, Fusco, A, Berghe, H. HMGIY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Genes Chromosomes Cancer 1998;23:279–285.3.0.CO;2-1>CrossRefGoogle Scholar
Xiao, S, Lux, ML, Reeves, R, Hudson, TJ, Fletcher, JA. HMGI(Y) activation by chromosome 6p21 rearrangements in multilineage mesenchymal cells from pulmonary hamartoma. Am J Pathol 1997;150:901–910.Google Scholar
Williams, AJ, Powell, WL, Collins, T, Morton, CC. HMGI(Y) expression in human uterine leiomyomata. Involvment of another high-mobility group architectural factor in a benign neoplasm. Am J Pathol 1997;150:911–918.Google Scholar
Tkachenko, A, Ashar, HR, Meloni, AM, Sandberg, AA, Chada, KK. Misexpression of disrupted HMGI architectural factors activates alternative pathways of tumorigenesis. Cancer Res 1997;57:2276–2280.Google ScholarPubMed
Pierantoni, GM, Rinaldo, C, Esposito, F, Mottolese, M, Soddu, S, Fusco, A. High Mobility Group A1 (HMGA1) proteins interact with p53 and inhibit its apoptotic activity. Cell Death Differ 2006;13:1554–1563.CrossRefGoogle ScholarPubMed
Fedele, M, Fidanza, V, Battista, S, Pentimalli, F, Klein-Szanto, AJ, Visone, R. Haploinsufficiency of the Hmga1 gene causes cardiac hypertrophy and myelo-lymphoproliferative disorders in mice. Cancer Res 2006;66:2536–2543.CrossRefGoogle ScholarPubMed
Barr, FG, Nauta, , Davis, RJ, Schäfer, BW, Nycum, LM, Biegel, JA. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 1996;5:15–21.CrossRefGoogle ScholarPubMed
Abbott, JJ, Erickson-Johnson, M, Wang, X, Nascimento, AG, Oliveira, AM. Gains of COL1A1-PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod Pathol 2006;19:1512–1518.CrossRefGoogle ScholarPubMed
Macarenco, RS, Zamolyi, R, Franco, MF, Nascimento, AG, Abott, JJ, Wang, X. Genomic gains of COL1A1-PDFGB occur in the histologic evolution of giant cell fibroblastoma into dermatofibrosarcoma protuberans. Genes Chromosomes Cancer 2008;47:260–265.CrossRefGoogle ScholarPubMed
Schwab, M. Oncogene amplification in solid tumors. Semin Cancer Biol 1999;9:319–325.CrossRefGoogle ScholarPubMed
Sirvent, N, Coindre, JM, Maire, G, Hostein, I, Keslair, F, Guillou, L. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 2007;31:1476–1489.CrossRefGoogle ScholarPubMed
Thorner, PS, Ho, M, Chilton-MacNeill, S, Zielenska, M. Use of chromogenic in situ hybridization to identify MYCN gene copy number in neuroblastoma using routine tissue sections. Am J Surg Pathol 2006;30:635–642.CrossRefGoogle ScholarPubMed
Collins, S, Groudine, M. Amplification of endogenous myc-related sequences in a human myeloid leukaemia cell line. Nature 1982;298:679–681.CrossRefGoogle Scholar
Dalla-Favera, R, Wong-Staal, F, Gallo, RC. Onc gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient. Nature 1982;299:61–63.CrossRefGoogle ScholarPubMed
Yokota, J, Tsunetsugu-Yokota, Y, Battifora, H, Fevre, C, Cline, MJ. Alterations of myc, myb, and ras(Ha) proto-oncogenes in cancers are frequent and show clinical correlation. Science 1986;231:261–265.CrossRefGoogle Scholar
Barrios, C, Castresana, JS, Ruiz, J, Kreicbergs, A. Amplification of the c-myc proto-oncogene in soft tissue sarcomas. Oncology 1994;51:13–17.CrossRefGoogle ScholarPubMed
Kohl, NE, Kanda, N, Schreck, RR, Bruns, G, Latt, SA, Gilbert, F. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 1983;35:359–367.CrossRefGoogle ScholarPubMed
Schwab, M, Varmus, HE, Bishop, JM, Grzeschik, KH, Naylor, SL, Sakaguchi, AY. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 1984;308:288–291.CrossRefGoogle ScholarPubMed
Grandori, C, Cowley, SM, James, LP, Eisenman, RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000;16:653–699.CrossRefGoogle ScholarPubMed
Oster, SK, Ho, CS, Soucie, EL, Penn, LZ. The myc oncogene: MarvelouslY Complex. Adv Cancer Res 2002;84:81–154.CrossRefGoogle ScholarPubMed
Brodeur, GM, Seeger, RC, Schwab, M, Varmus, HE, Bishop, JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1984;224:1121–1124.CrossRefGoogle ScholarPubMed
Seeger, RC, Brodeur, GM, Sather, H, Dalton, A, Siegel, SE, Wong, KY. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985;313:1111–1116.CrossRefGoogle ScholarPubMed
Brodeur, GM, Azar, C, Brother, M, Hiemstra, J, Kaufman, B, Marshall, H. Neuroblastoma: effect of genetic factors on prognosis and treatment. Cancer 1992;70:1685–1694.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Li, XQ, Hisaoka, M, Shi, DR, Zhu, XZ, Hashimoto, H. Expression of anaplastic lymphoma kinase in soft tissue tumors: an immunohistochemical and molecular study of 249 cases. Hum Pathol 2004;35:711–721.CrossRefGoogle ScholarPubMed
Williamson, D, Lu, YJ, Gordon, T, Sciot, R, Kelsey, A, Fisher, C. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol 2005;23:880–888.CrossRefGoogle ScholarPubMed
Ragazzini, P, Gamberi, G, Pazzaglia, L, Serra, M, Magagnoli, G, Ponticelli, F. Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma. Histol Histopathol 2004;19:401–411.Google ScholarPubMed
Wolf, M, Aaltonen, , Szymanska, J, Tarkkanen, M, Blomqvist, C, Berner, JM. Complexity of 12q13–22 amplicon in liposarcoma: microsatellite repeat analysis. Genes Chromosomes Cancer 1997;18:66–70.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Elkahloun, AG, Bittner, M, Hoskins, K, Gemmill, R, Meltzer, PS. Molecular cytogenetic characterization and physical mapping of 12q13–15 amplification in human cancer. Genes Chromosomes Cancer 1996;17:205–214.3.0.CO;2-7>CrossRefGoogle Scholar
Reifenberger, G, Ichimura, K, Reinferberger, G, Elkahloun, AG, Meltzer, PS, Collins, VP. Refined mapping of 12q13–15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 1996;56:5141–5145.Google Scholar
Fakharzadeh, SS, Trusko, SP, George, DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mous tumor cell line. EMBO J 1991; 10:1565–1569.Google Scholar
Berner, JM, Forus, A, Elkahloun, A, Meltzer, PS, Fodstad, O, Myklebost, O. Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes Chromosomes Cancer 1996;17:254–259.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Stein, GS, Baserga, R, Giordano, A, Denhardt, DT (eds). The Molecular Basis of Cell Cycle and Growth Control. New York: Wiley-Liss, 1999.
Kussie, P, Gorina, S, Marechal, V, Elenbaas, B, Moreau, J, Levine, AJ. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996;274:921–922.CrossRefGoogle ScholarPubMed
Buschmann, T, Fuchs, SY, Lee, CG, Pan, ZQ, Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 2000;101:753–762.CrossRefGoogle ScholarPubMed
Xiao, ZX, Chen, J, Levine, AJ, Modjtahedi, N, Xing, J, Sellers, WR. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995;375:694–698.CrossRefGoogle ScholarPubMed
Sdek, P, Ying, H, Chang, DL, Qiu, W, Zheng, H, Touitou, R. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 2005;20:699–708.CrossRefGoogle ScholarPubMed
Bond, GL, Hu, W, Bond, EE, Robins, H, Lutzker, SG, Arva, NC. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004;119:591–602.CrossRefGoogle ScholarPubMed
Bougeard, G, Baert-Desurmont, S, Tournier, I, Vasseur, S, Martin, C, Brugieres, L. Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 2006;43:531–533.CrossRefGoogle ScholarPubMed
Ruijs, MW, Schmidt, MK, Nevanlinna, H, Tommiska, J, Aittomäki, K, Pruntel, R. The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes. Eur J Hum Genet 2007;15:110–114.CrossRefGoogle ScholarPubMed
Kanoe, H, Nakayama, T, Murakami, H, Hosaka, T, Yamamoto, H, Nakashima, Y.: Amplification of the CDK4 gene in sarcomas: tumor specificity and relationship with the RB gene mutation. Anticancer Res 1998;18:2317–2321.Google ScholarPubMed
Nakayama, T, Toguchida, J, Wadayama, B, Kanoe, H, Kotoura, Y, Sasaki, MS. MDM2 gene amplification in bone and soft tissue tumors: association with tumor progression in differentiated adipose tissue tumors. Int J Cancer 1995;64:342–346.CrossRefGoogle ScholarPubMed
Pedeutour, F, Forus, A, Coindre, JM, Berner, JM, Nicolo, G, Michiels, JF. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 1999;24:30–41.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Suijkerbuijk, RF, Olde Weghuis, , Berg, M, Pedeutour, F, Forus, A, Myklebost, O. Comparative genomic hybridization as a tool to define two distinct chromosome 12-derived amplification units in well-differentiated liposarcomas. Genes Chromosomes Cancer 1994;9:292–295.CrossRefGoogle ScholarPubMed
Szymanska, J, Virolainen, M, Tarkkanen, M, Wiklund, T, Asko-Seljavaara, S, Tukiainen, E. Overrepresentation of 1q21–23 and 12q13021 in lipoma-like liposarcomas but not in benign lipomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 1997;99:14–18.CrossRefGoogle Scholar
Pilotti, S, Della Torre, G, Lavarino, C, Di Palma, S, Sozzi, G, Minoletti, F. Distinct mdm2/p53 expression patterns in liposarcoma subgroups: implication for different pathogenetic mechanisms. J Pathol 1997;181:14–24.3.0.CO;2-O>CrossRefGoogle Scholar
Italiano, A, Cardot, N, Dupré, F, Monticelli, I, Keslair, F, Piche, M. Gains and complex rearrangements of the 12q13–15 chromosomal region in ordinary lipomas: the “missing link” between lipomas and liposarcomas?Int J Cancer 2007;121:308–315.CrossRefGoogle ScholarPubMed
Hostein, I, Pelmus, M, Aurias, A, Pedeutour, F, Mathoulin-Pélissier, S, Coindre, JM. Evaluation of MDM2 and CDK4 amplification by real-time PCR on paraffin wax-embedded material: a potential tool for the diagnosis of atypical lipomatous tumours/well-differentiated liposarcomas. J Pathol 2004;202:95–102.CrossRefGoogle Scholar
Binh, MB, Sastre-Garau, X, Guillou, L, Pinieux, G, Terrier, P, Lagacé, R. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol 2005;29:1340–1347.CrossRefGoogle ScholarPubMed
Weaver, J, Downs-Kelly, E, Goldblum, JR, Turner, S, Kulkarni, S, Tubbs, RR. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol 2008;21:943–949.CrossRefGoogle ScholarPubMed
Vassilev, LT, Vu, BT, Graves, B, Carvajal, D, Podlaski, F, Filipovic, Z. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844–848.CrossRefGoogle ScholarPubMed
Tovar, C, Rosinski, J, Filipovic, Z, Higgins, B, Kolinsky, K, Hilton, H. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006;103:1888–1893.CrossRefGoogle ScholarPubMed
Lau, LM, Nugent, JK, Zhao, X, Irwin, MS. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 2008;27:997–1003.CrossRefGoogle ScholarPubMed
Müller, CR, Paulsen, EB, Noordhuis, P, Pedeutour, F, Saeter, G, Myklebost, O. Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A. Int J Cancer 2007;121:199–205.CrossRefGoogle ScholarPubMed
Vassilev, LT. MDM2 inhibitors for cancer therapy. Trends Mol Med 2007;13:23–31.CrossRefGoogle ScholarPubMed
Balmer, A, Zografos, L, Munier, F. Diagnosis and current management of retinoblastoma. Oncogene 2006;25:5341–5349.CrossRefGoogle ScholarPubMed
Knudson, AJ. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820–823.CrossRefGoogle ScholarPubMed
Knudson, AJ, Hethocte, HW, Brown, BW. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Natl Acad Sci USA 1975;72:5116–5120.CrossRefGoogle ScholarPubMed
Friend, SH, Bernards, R, Rogelj, S, Weinberg, RA, Rapaport, JM, Albert, DM. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986;323:643–646.CrossRefGoogle ScholarPubMed
Fung, Y-KT, Murphree, AL, T'Ang, A, Qian, J, Hinrichs, SH, Benedict, WF. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987;236:1657–1661.CrossRefGoogle ScholarPubMed
Hong, FD, Huang, H-JS, To, H, Young, L-JS, Oro, A, Bookstein, R. Structure of the human retinoblastoma gene. Proc Natl Acad Sci USA 1989;86:5502–5506.CrossRefGoogle ScholarPubMed
Dryja, TP, Mukai, S, Petersen, R, Rapaport, JM, Walton, D, Yandell, DW. Parental origin of mutations of the retinoblastoma gene. Nature 1989;339:556–558.CrossRefGoogle ScholarPubMed
Zhu, XP, Dunn, JM, Phillips, RA, Goddard, AD, Paton, KE, Becker, A. Preferential germline mutation of the paternal allele in retinoblastoma. Nature 1989;340:312–313.CrossRefGoogle ScholarPubMed
Horowitz, JM, Yandell, DW, Park, S-H, Canning, S, Whyte, P, Buchkovich, K. Point mutational inactivation of the retinoblastoma antioncogene. Science 1989;243:937–940.CrossRefGoogle ScholarPubMed
Lohmann, DR. RB1 mutations in retinoblastoma. Hum Mutat 1999;14:283–288.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Stirzaker, C, Millar, DS, Paul, CL, Warnecke, PM, Harrison, J, Vincent, PC. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res 1997;57:2229–2237.Google ScholarPubMed
Sherr, CJ. Cancer cell cycles. Science 1996;274:1672–1677.CrossRefGoogle ScholarPubMed
Classon, M, Salama, S, Gorka, C, Mulloy, R, Braun, P, Harlow, E. Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci USA 2000;97:10820–10825.CrossRefGoogle ScholarPubMed
Dei Tos, AP, Maestro, R, Doglioni, C, Piccinin, S, Libera, DD, Boiocchi, M. Tumor suppressor genes and related molecules in leiomyosarcoma. Am J Pathol 1996;148:1037–1045.Google ScholarPubMed
Cohen, JA, Geradts, J. Loss of RB and MTS1/CDKN2 (p16) expression in human sarcomas. Hum Pathol 1997;28:893–898.CrossRefGoogle ScholarPubMed
Stratton, MR, Williams, S, Fisher, C, Ball, A, Westbury, G, Gusterson, BA. Structural alterations of the RB1 gene in human soft tissue tumours. 1989;60:202–205.
Wunder, JS, Czitrom, AA, Kandel, R, Andrulis, IL. Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst 1991;83:194–200.CrossRefGoogle ScholarPubMed
Polsky, D, Mastorides, S, Kim, D, Dudas, M, Leon, L, Leung, D. Altered patterns of RB expression define groups of soft tissue sarcoma patients with distinct biological and clinical behavior. Histol Histopathol 2006;21:743–752.Google ScholarPubMed
Volinia, S, Calin, GA, Liu, CG, Ambs, S, Cimmino, A, Petrocca, F. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006;103:2257–2261.CrossRefGoogle ScholarPubMed
Lane, DP, Crawford, LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261–263.CrossRefGoogle ScholarPubMed
Linzer, DI, Levine, AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;17:43–52.CrossRefGoogle ScholarPubMed
Eliyahu, D, Raz, A, Gruss, P, Givol, D, Oren, M. Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 1984;312:646–649.CrossRefGoogle ScholarPubMed
Parada, LF, Land, H, Weinberg, RA, Wolf, D, Rotter, V. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 1984;312:649–651.CrossRefGoogle ScholarPubMed
Finlay, CA, Hinds, PW, Levine, AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989;57:1083–1093.CrossRefGoogle Scholar
Eliyahu, D, Michalovitz, D, Eliyahu, S, Pinhasi-Kimhi, O, Oren, M. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 1989;86:8763–8767.CrossRefGoogle ScholarPubMed
Clarke, AR, Purdie, CA, Harrison, DJ, Morris, RG, Bird, CC, Hooper, ML. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993;362:849–852.CrossRefGoogle ScholarPubMed
Lowe, SW, Schmitt, EM, Smith, SW, Osborne, BA, Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993;362:847–849.CrossRefGoogle ScholarPubMed
Lowe, SW, Ruley, HE, Jacks, T, Housman, . p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74:957–967.CrossRefGoogle ScholarPubMed
Levine, AJ. p53, the cellular gatekeeper for growth and devision. Cell 1997;88:323–331.CrossRefGoogle Scholar
Isobe, M, Emanuel, BS, Givol, D, Oren, M, Croce, CM. Localization of gene for human p53 antigen to band 17p13. Nature 1986;320:84–85.CrossRefGoogle ScholarPubMed
Bourdon, JC, Fernandes, K, Murray-Zmijewski, F, Liu, G, Diot, A, Xirodimas, DP. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005;19:2122–2137.CrossRefGoogle ScholarPubMed
Laptenko, O, Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 2006;13:951–961.CrossRefGoogle ScholarPubMed
Kho, PS, Wang, Z, Zhuang, L, Li, Y, Chew, JL, Ng, HH. p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem 2004;279:21183–21192.CrossRefGoogle ScholarPubMed
Spurgers, KB, Gold, DL, Coombes, KR, Bohnenstiehl, NL, Mullins, B, Meyn, RE. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 2006;281:25134–142.CrossRefGoogle ScholarPubMed
Oren, M. Regulation of the p53 tumor suppressor protein. J Biol Chem 1999;274:36031–36034.CrossRefGoogle ScholarPubMed
Hemann, MT, Lowe, SW. The p53-Bcl-2 connection. Cell Death Differ 2006;13:1256–1259.CrossRefGoogle ScholarPubMed
He, L, He, X, Lim, LP, Stanchina, E, Xuan, Z, Liang, Y. A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130–1134.CrossRefGoogle ScholarPubMed
Chang, TC, Wentzel, EA, Kent, OA, Ramachandran, K, Mullendore, M, Lee, KH. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26:745–752.CrossRefGoogle ScholarPubMed
Raver-Shapira, N, Marciano, E, Meiri, E, Spector, Y, Rosenfeld, N, Moskovits, N. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007;26:731–743.CrossRefGoogle ScholarPubMed
Tarasov, V, Jung, P, Verdoodt, B, Lodygin, D, Epanchintsev, A, Menssen, A. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007;6:1586–1593.CrossRefGoogle ScholarPubMed
Yamakuchi, M, Ferlito, M, Lowenstein, CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008;105:13421–13426.CrossRefGoogle ScholarPubMed
Welch, C, Chen, Y, Stallings, RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007;26:5017–5022.CrossRefGoogle ScholarPubMed
Baker, SJ, Fearon, ER, Nigro, JM, Hamilton, SR, Preisinger, AC, Jessup, JM. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989;244:217–221.CrossRefGoogle ScholarPubMed
Nigro, JM, Baker, SJ, Preisinger, AC, Jessup, JM, Hostetter, R, Cleary, K. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989;342:705–708.CrossRefGoogle ScholarPubMed
Vogelstein, B, Kinzler, KW. p53 function and dysfunction. Cell 1992;70:523–526.CrossRefGoogle ScholarPubMed
Brooks, CL, Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003;15:164–171.CrossRefGoogle ScholarPubMed
Tang, Y, Zhao, W, Chen, Y, Zhao, Y, Gu, W. Acetylation is indispensable for p53 activation. Cell 2008;133:612–626.CrossRefGoogle ScholarPubMed
Scoumanne, A, Chen, X. Protein methylation: a new mechanism of p53 tumor suppressor regulation. Histol Histopathol 2008;23:1143–1149.Google ScholarPubMed
Hollstein, M, Shomer, B, Greenblatt, M, Soussi, T, Hovig, E, Montesano, R. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res 1996;24:141–146.CrossRefGoogle ScholarPubMed
Lavigueur, A, Maltby, V, Mock, D, Rossant, J, Pawson, T, Bernstein, A. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 1989;9:3982–3991.CrossRefGoogle ScholarPubMed
Donehower, , Harvey, M, Slagle, BL, McArthur, MJ, Montgomery, CA, Butel, JS. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215–221.CrossRefGoogle ScholarPubMed
Harvey, M, McArthur, MJ, Montgomery, CA, Butel, JS, Bradley, A, Donehower, . Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet 1993;5:225–229.CrossRefGoogle ScholarPubMed
Jacks, T, Remington, L, Williams, BO, Schmitt, EM, Halachmi, S, Bronson, RT. Tumor spectrum analysis in p53-deficient mice. Curr Biol 1994;4:1–7.CrossRefGoogle Scholar
Li, FP, Fraumeni, JF. Rhabdomyosarcoma in children; epidemiologic study and identification of a cancer family syndrome. J Natl Cancer Inst 1969;43:1365–1373.Google Scholar
Li, FP, Fraumeni, JF. Soft tissue sarcomas, breast cancer and other neoplasms: a familial syndrome?Ann Int Med 1969;71:747–752.CrossRefGoogle ScholarPubMed
Malkin, D, Li, FP, Strong, LC, Fraumeni, JF, Nelson, CE, Kim, DH. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250:1233–1238.CrossRefGoogle Scholar
Varley, JM, Evans, DGR, Birch, JM. Li-Fraumeni syndrome – a molecular and clinical review. Br J Cancer 1997;76:1–14.CrossRefGoogle ScholarPubMed
Varley, JM, Thorncroft, M, McGown, G, Appleby, J, Kelsey, AM, Tricker, KJ. A detailed study of loss of heterozygosity on chromosome 17 in tumours from Li-Fraumeni patients carrying a mutation to the TP53 gene. Oncogene 1997;14:865–871.CrossRefGoogle ScholarPubMed
Bell, DW, Varley, JM, Szydlo, TE, Kang, DH, Wahrer, DCR, Shannon, KE. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999;286:2528–2531.CrossRefGoogle ScholarPubMed
Vahteristo, P, Tamminen, A, Karvinen, P, Eerola, H, Eklund, C, Aaltonen, . p53, CHK2 and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res 2001;61:5718–5722.Google ScholarPubMed
Matsuoka, S, Huang, M, Elledge, SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998;282:1893–1897.CrossRefGoogle ScholarPubMed
Blasina, A, Weyer, IV, Laus, MC, Luyten, WH, Parker, AE, McGowan, CH. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr Biol 1999;14:1–10.CrossRefGoogle Scholar
Chaturvedi, P, Eng, WK, Zhu, Y, Mattern, MR, Mishra, R, Hurle, MR. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 1999;18:4047–4054.CrossRefGoogle ScholarPubMed
Brown, AL, Lee, C-H, Schwarz, JK, Mitiku, N, Piwnica-Worms, H, Chung, JH. A human Cda1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc Nat Acad Sci 1999;96:3745–3750.CrossRefGoogle Scholar
Chehab, NH, Malikzay, A, Appel, M, Halazonetis, TD. Chk2/hCds1 functions as a DNA damage checkpoint in G-1 by stabilizing p53. Genes Dev 2000;14:278–288.Google ScholarPubMed
Bartkova, J, Horejsí, Z, Koed, K, Krämer, A, Tort, F, Zieger, K. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005;434:864–870.CrossRefGoogle ScholarPubMed
Cordon-Cardo, C. Mutation of cell cycle regulators: Biological and clinical implications for human neoplasia. Am J Pathol 1995;147:545–560.Google ScholarPubMed
Sherr, CJ. Cancer cell cycles. Science 1996;274:1672–1677.CrossRefGoogle ScholarPubMed
Ruas, M, Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998;1378:F115–177.Google ScholarPubMed
Orlow, I, Drobnjak, M, Zhang, ZF, Lewis, J, Woodruff, JM, Brennan, MF. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival. J Natl Cancer Inst 1999;91:73–79.CrossRefGoogle ScholarPubMed
Merlo, A, Herman, JG, Mao, L, Lee, DJ, Gabrielson, E, Burger, PC. 5-prime CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med 1995;1:686–692.CrossRefGoogle Scholar
Kawaguchi, K, Oda, Y, Saito, T, Yamamoto, H, Tamiya, S, Takahira, T. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promotor methylation and poor prognosis. J Pathol 2003;201:487–495.CrossRefGoogle Scholar
Schneider-Stock, R, Boltze, C, Lasota, J, Peters, B, Corless, CL, Ruemmele, P. Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res 2005;11:638–645.Google ScholarPubMed
Obana, K, Yang, HW, Piao, HY, Taki, T, Hashizume, K, Hanada, R. Aberrations of p16INK4A, p14ARF, and p15INK4B genes in pediatric solid tumors. Int J Oncol 2003;23:1151–1157.Google ScholarPubMed
Linardic, CM, Naini, S, Herndon, JE 2nd, Kesserwan, C, Qualman, SJ, Counter, CM. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res 2007;67: 6691–6699.CrossRefGoogle ScholarPubMed
Naini, S, Etheridge, KT, Adam, SJ, Qualman, SJ, Bentley, RC, Counter, CM. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res 2008;68:9583–9588.CrossRefGoogle ScholarPubMed
Hussussian, CJ, Struewing, JP, Goldstein, AM, Higgins, PAT, Ally, DS, Sheahan, MD. Germline p16 mutations in familial melanoma. Nature Genet 1994;8:15–21.CrossRefGoogle ScholarPubMed
Randerson-Moor, JA, Harland, M, Williams, S, Cuthbert-Heavens, D, Sheridan, E, Aveyard, J. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001;10: 55–62.CrossRefGoogle ScholarPubMed
Freedberg, , Rigas, SH, Russak, J, Gai, W, Kaplow, M, Osman, I. Frequent p16-independent inactivation of p14ARF in human melanoma. J Natl Cancer Inst 2008;100:784–795.CrossRefGoogle ScholarPubMed
Hannon, Gj, Beach, D. p15(INK4B) is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994;371:257–261.CrossRefGoogle Scholar
Nabori, T, Miura, K, Wu, DJ, Lois, A, Takabayashi, K, Carson, DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994;368:753–756.CrossRefGoogle Scholar
Serrano, M, Lee, H, Chin, L, Cordon-Cardo, C, Beach, D, DePinho, RA. Role of the INK4a locus in tumor supression and cell mortality. Cell 1996;85:27–37.CrossRefGoogle Scholar
Kamijo, T, Zindy, F, Roussel, MF, Quelle, , Downing, JR, Ashmun, RA. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997;91:649–659.CrossRefGoogle ScholarPubMed
Krimpenfort, P, Ijpenberg, A, Song, JY, Valk, M, Nawijn, M, Zevenhoven, J. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007;448:943–946.CrossRefGoogle ScholarPubMed
Beckwith, JB, Palmer, NF: Histopathology and prognosis of Wilms tumors: results from the First National Wilms' Tumor Study. Cancer 1978;41:1937–1948.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Parham, DM, Weeks, DA, Beckwith, JB. The clinicopathologic spectrum of putative extrarenal rhabdoid tumors: An analysis of 42 cases studied with immunohistochemistry or electron microscopy. Am J Surg Pathol 1994;18:1010–1029.CrossRefGoogle ScholarPubMed
Biegel, JA, Rorke, LB, Packer, RJ, Emanuel, BS. Monosomy 22 in rhabdoid or atypical tumors of the brain. J Neurosurg 1990;73:710–714.CrossRefGoogle ScholarPubMed
Biegel, JA, Burk, CD, Parmiter, AH, Emanuel, BS. Molecular analysis of partial deletion of 22q in a central nervous system rhabdoid tumor. Genes Chromosomes Cancer 1992; 5:104–108.CrossRefGoogle Scholar
Biegel, JA, Allen, CS, Kawasaki, K, Shimizu, N, Budarf, ML, Bell, CJ. Narrowing the critical region for the rhabdoid tumor locus in 22q11. Genes Chromosomes Cancer 1996;16:94–105.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Versteege, I, Sevenet, N, Lange, J, Rousseau-Merck, M-F, Ambros, P, Handgretinger, R. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998;394:203–206.CrossRefGoogle ScholarPubMed
Sevenet, N, Lellouch-Tubiana, A, Schofield, D, Hoang-Xuan, K, Gessler, M, Birnbaum, D. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum Molec Genet 1999;8:2359–2368.CrossRefGoogle ScholarPubMed
Sevenet, N, Sheridan, E, Amram, D, Schneider, P, Handgretinger, R, Delattre, O. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 1999;65:1342–1348.CrossRefGoogle ScholarPubMed
Taylor, MD, Gokgoz, N, Andrulis, IL, Mainprize, TG, Drake, JM, Rutka, JT. Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. Am J Hum Genet 2000;66:1403–1406.CrossRefGoogle ScholarPubMed
Roberts, CW, Galusha, SA, McMenamin, ME, Fletcher, CD, Orkin, SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 2000; 97:13796–13800.CrossRefGoogle ScholarPubMed
Roberts, CW, Leroux, MM, Fleming, MD, Orkin, SH. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2002;2:415–425.CrossRefGoogle ScholarPubMed
Isakoff, MS, Sansam, CG, Tamayo, P, Subramanian, A, Evans, JA, Fillmore, CM. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci USA 2005;102:17745–17750.CrossRefGoogle ScholarPubMed
Sansam, CG, Roberts, CW. Epigenetics and cancer: altered chromatin remodeling via Snf5 loss leads to aberrant cell cycle regulation. Cell Cycle 2006;5:621–624.CrossRefGoogle ScholarPubMed
McKenna, ES, Sansam, CG, Cho, YJ, Greulich, H, Evans, JA, Thom, CS. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol 2008;28:6223–6233.CrossRefGoogle ScholarPubMed
Modena, P, Lualdi, E, Facchinetti, F, Galli, L, Teixeira, MR, Pilotti, S. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res 2005;65:4012–4009.CrossRefGoogle ScholarPubMed
Kohashi, K, Izumi, T, Oda, Y, Yamamoto, H, Tamiya, S, Taguchi, T. Infrequent SMARCB1/INI1 gene alteration in epithelioid sarcoma: a useful tool in distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol 2008 Oct 28. [Epub ahead of print].Google ScholarPubMed
Kohashi, K, Oda, Y, Yamamoto, H, Tamiya, S, Oshiro, Y, Izumi, T. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 2008;32:1168–1174.CrossRefGoogle ScholarPubMed
Fitzgerald, HL, Hardin, HC. Bilateral Wilms' tumor family: case report. J Urol 1955;73:468–474.CrossRefGoogle ScholarPubMed
Knudson, AG Jr, Strong, LC. Mutation and cancer: a model for Wilm's tumor of the kidney. J Nat Cancer Inst 1972;48:313–324.Google Scholar
Fearon, ER, Vogelstein, B, Feinberg, AP. Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature 1984;309:176–178.CrossRefGoogle ScholarPubMed
Koufos, A, Hansen, MF, Lampkin, BC, Workman, ML, Copeland, NG, Jenkins, NA. Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumour. Nature 1984;309:170–172.CrossRefGoogle ScholarPubMed
Orkin, SH, Goldman, DS, Sallan, SE. Development of homozygosity for chromosome 11p markers in Wilms' tumour. Nature 1984;309:172–174.CrossRefGoogle ScholarPubMed
Reeve, AE, Housiaux, PJ, Gardner, RJM, Chewings, WE, Grindley, RM, Millow, LJ. Loss of Harvey ras allele in sporadic Wilms' tumour. Nature 1984;309:174–176.CrossRefGoogle ScholarPubMed
Weissman, BE, Saxon, PJ, Pasquale, SR, Jones, GR, Geiser, AG, Stanbridge, EJ. Introduction of normal human chromosome into Wilms' tumor cell line controls its tumorigenic expression. Science 1987;236:175–180.CrossRefGoogle ScholarPubMed
Call, KM, Glaser, T, Ito, CY, Buckler, AJ, Pelletier, J, Haber, DA. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 1990;60:509–520.CrossRefGoogle ScholarPubMed
Rose, EA, Glaser, T, Jones, C, Smith, CL, Lewis, WH, Call, KM. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms tumor gene. Cell 1990;60:495–508.CrossRefGoogle ScholarPubMed
Haber, DA, Park, S, Maheswaran, S, Englert, C, Re, GG, Hazen-Martin, DJ. WT1-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant. Science 1993;262:2057–2059.CrossRefGoogle ScholarPubMed
Haber, DA, Timmers, HT, Pelletier, J, Sharp, PA, Housman, . A dominant mutation in the Wilms tumor gene WT1 cooperates with the viral oncogene E1A in transformation of primary kidney cells. Proc Natl Acad Sci USA 1992;89:6010–6014.CrossRefGoogle ScholarPubMed
Rauscher, FJ III, Morris, JF, Tournay, OE, Cook, DM, Curran, T. Binding of the Wilms' tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 1990;250:1259–1262.CrossRefGoogle ScholarPubMed
Bickmore, WA, Oghene, K, Little, MH, Seawright, A, Heyningen, V, Hastie, ND. Modulation of DNA binding specificity by alternative splicing of the Wilms' tumor wt1 gene transcript. Science 1992;257:235–237.CrossRefGoogle ScholarPubMed
Reddy, J, Licht, JD. The WT1 Wilms' tumor suppressor gene: how much do we really know?Biochim Biophys Acta 1996;1287:1–28.Google ScholarPubMed
Davies, RC, Calvio, C, Bratt, E, Larsson, SH, Lamond, AI, Hastie, ND. WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 1998;12:3217–3225.CrossRefGoogle Scholar
Armstrong, JF, Pritchard-Jones, K, Bickmore, WA, Hastie, ND, Bard, JB. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech Dev 1993;40:85–97.CrossRefGoogle ScholarPubMed
Moore, AW, McInnes, L, Kreidberg, J, Hastie, ND, Schedl, A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 1999;126:1845–1857.Google Scholar
Rackley, RR, Flenniken, AM, Kuriyan, NP, Kessler, PM, Stoler, MH, Williams, BR. Expression of the Wilms' tumor suppressor gene WT1 during mouse embryogenesis. Cell Growth Differ 1993;4:1023–1031.Google ScholarPubMed
Kreidberg, JA, Sariola, H, Loring, JM, Maeda, M, Pelletier, J, Housman, D. WT-1 is required for early kidney development. Cell 1993;74:679–691.CrossRefGoogle ScholarPubMed
Hastie, ND. Life, sex, and WT1 isoforms-three amino acids can make all the difference. Cell 2001;106:391–394.CrossRefGoogle ScholarPubMed
Barbaux, S, Niaudet, P, Gubler, MC, Grunfeld, JP, Jaubert, F, Kuttenn, F. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997;17:467–470.CrossRefGoogle ScholarPubMed
Pelletier, J, Bruening, W, Kashtan, CE, Mauer, SM, Manivel, JC, Striegel, JE. Germinal mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67:437–447.CrossRefGoogle Scholar
Heyningen, V, Bickmore, WA, Seawright, A, Fletcher, JM, Maule, J, Fekete, G. Role for the Wilms tumor gene in genital development?Proc Nat Acad Sci USA 1990;87:5383–5386.CrossRefGoogle ScholarPubMed
Inoue, K, Sugiyama, H, Ogawa, H, Yamagami, T, Miea, H, Kita, K. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994;84:3071–3079.Google Scholar
Brieger, J, Weidmann, E, Maurer, U, Hoelzer, D, Mitrou, PS, Bergmann, L. The Wilms' tumor gene is frequently expressed in acute myeloblastic leukemias and may provide a marker for residual blast cells detectable by PCR. Ann Oncol 1995;8:811–816.CrossRefGoogle Scholar
Oji, Y, Suzuki, T, Nakano, Y, Maruno, M, Nakatsuka, S, Jomgeow, T. Overexpression of the Wilms' tumor gene W T1 in primary astrocytic tumors. Cancer Sci 2004;95:822–827.CrossRefGoogle ScholarPubMed
Loeb, DM, Evron, E, Patel, CB, Sharma, PM, Niranjan, B, Buluwela, L. Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 2001;61:921–925.Google ScholarPubMed
Koesters, R, Linnebacher, M, Coy, JF, Germann, A, Schwitalle, Y, Findeisen, P. WT1 is a tumor-associated antigen in colon cancer that can be recognized by in vitro stimulated cytotoxic T cells. Int J Cancer 2004;109:385–392.CrossRefGoogle ScholarPubMed
Amini Nik, S, Hohenstein, P, Jadidizadeh, A, Dam, K, Bastidas, A, Berry, RL. Upregulation of Wilms' tumor gene 1 (WT1) in desmoid tumors. Int J Cancer 2005;114:202–208.CrossRefGoogle Scholar
Park, S, Schalling, M, Bernard, A, Maheswaren, S, Shipley, GC, Roberts, D. The Wilms tumor gene WT1 is expressed in murine mesoderm-derived tissues and mutated in a human mesothelioma. Nat Genet 1993;4:415–420.CrossRefGoogle Scholar
Kumar-Singh, S, Segers, K, Rodeck, U, Backhovens, H, Bogers, J, Weyler, J. WT1 mutations in malignant mesothelioma and WT1 immunoreactivity in relation to p53 and growth factor receptor expression, cell-type transition and prognosis. J Pathol 1997;181:67–74.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Ueda, T, Oji, Y, Naka, N, Nakano, Y, Takahashi, E, Koga, S. Overexpression of the Wilms' tumor gene WT1 in human bone and soft-tissue sarcomas. Cancer Sci 2003;94:271–276.CrossRefGoogle ScholarPubMed
Cilloni, D, Gottardi, E, Micheli, D, Serra, A, Volpe, G, Messa, F. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002;16:2115–2121.CrossRefGoogle ScholarPubMed
King-Underwood, L, Renshaw, J, Pritchard-Jones, K. Mutations in the Wilms' tumor gene WT1 in leukemias. Blood 1996;87:2171–2179.Google ScholarPubMed
Hollink, IH, Heuvel-Eibrink, MM, Zimmermann, M, Balgobind, BV, Arentsen-Peters, ST, Alders, M. Clinical relevance of Wilms' tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009 Jan 26. [Epub ahead of print].CrossRefGoogle ScholarPubMed
Kinzler, KW, Nilbert, MC, Su, L-K, Vogelstein, B, Bryan, TM, Levy, DB. Identification of FAP locus genes from chromosome 5q21. Science 1991; 253:661–665.CrossRefGoogle ScholarPubMed
Nishisho, I, Nakamura, Y, Miyoshi, Y, Ando, H, Horii, A, Koyama, K. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665–669.CrossRefGoogle ScholarPubMed
Klemmer, S, Pascoe, L, DeCosse, J. Occurrence of desmoids in patients with familial adenomatous polyposis of the colon. Am J Med Genet 1987;28:385–392.CrossRefGoogle ScholarPubMed
Clark, SK, Neale, KF, Landgrebe, JC, Phillips, RKS. Desmoid tumours complicating familial adenomatous polyposis. Br J Surg 1999;86:1185–1189.CrossRefGoogle ScholarPubMed
Eccles, DM, Luijt, R, Breukel, C, Bullman, H, Bunyan, D, Fisher, A. Hereditary desmoid desease due to a frameshift mutation at codon 1924 of the APC gene. Am J Hum Genet 1996;59:1193–1201.Google Scholar
Scott, RJ, Froggatt, NJ, Trembath, RC, Evans, DG, Hodgson, SV, Maher, ER. Familial infiltrative fibromatosis (desmoid tumours) (MIM135290) caused by a recurrent 3' APC gene mutation. Hum Mol Genet 1996;5:1921–1924.CrossRefGoogle ScholarPubMed
Groden, J, Thliveris, A, Samowitz, W, Carlson, M, Gelbert, L, Albertsen, H. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600.CrossRefGoogle ScholarPubMed
Joslyn, G, Carlson, M, Thliveris, A, Albertsen, H, Gelbert, L, Samowitz, W. Identification of deletion mutation and three new genes at the familial polyposis locus. Cell 1991;66:601–613.CrossRefGoogle ScholarPubMed
Sen-Gupta, S, Luijt, R, Bowles, LV, Meera Khan, P, Delhanty, JDA. Somatic mutation of APC gene in desmoid tumour in familial adenomatous polyposis. Lancet 1993;342:552–553.CrossRefGoogle ScholarPubMed
Lamlum, H, Ilyas, M, Rowan, A, Clark, S, Johnson, V, Bell, J. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's ‘two-hit’ hypothesis. Nat Med 1999;5:1071–1075.CrossRefGoogle ScholarPubMed
Crabtree, M, Sieber, OM, Lipton, L, Hodgson, SV, Lamlum, H, Thomas, HJ. Refining the relation between ‘first hits’ and ‘second hits’ at the APC locus: the ‘loose fit’ model and evidence for differences in somatic mutation spectra among patients. Oncogene 2003;22:4257–4265.CrossRefGoogle ScholarPubMed
Couture, J, Mitri, A, Lagace, R, Smits, R, Berk, T, Bouchard, HL. A germline mutation at the extreme 3' end of the APC gene results in a severe desmoid phenotype and is associated with overexpression of beta-catenin in the desmoid tumor. Clin Genet 2000;57:205–212.CrossRefGoogle Scholar
Laken, SJ, Papadopoulos, N, Petersen, GM, Gruber, SB, Hamilton, SR, Giardiello, FM. Analysis of masked mutations in familial adenomatous polyposis. Proc Natl Acad Sci USA 1999;96:2322–2326.CrossRefGoogle ScholarPubMed
Yan, H, Dobbie, Z, Gruber, SB, Markowitz, S, Romans, K, Giardiello, FM. Small changes in expression affect predisposition to tumorigenesis. Nature Genet 2002;30:25–36.CrossRefGoogle ScholarPubMed
Polakis, P.The many ways of Wnt in cancer. Curr Opin Genet Dev 2007;17:45–51.CrossRefGoogle Scholar
Behrens, J, Kries, JP, Kuhl, M, Bruhn, L, Wedlich, D, Grosschedl, R. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996;382:638–642.CrossRefGoogle ScholarPubMed
Segditsas, S, Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 2006;25:7531–7537.CrossRefGoogle ScholarPubMed
Miyoshi, Y, Iwao, K, Nawa, G, Yoshikawa, H, Ochi, T, Nakamura, Y. Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 1998;10:591–594.Google ScholarPubMed
Tejpar, S, Michils, G, Denys, H, Dam, K, Nik, SA, Jadidizadeh, A. Analysis of Wnt/Beta catenin signalling in desmoid tumors. Acta Gastroenterol Belg 2005;68: 5–9.Google ScholarPubMed
Kotiligam, D, Lazar, AJ, Pollock, RE, Lev, D. Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol 2008;23:117–126.Google ScholarPubMed
Lazar, AJ, Tuvin, D, Hajibashi, S, Habeeb, S, Bolshakov, S, Mayordomo-Aranda, E. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 2008;173:1518–1527.CrossRefGoogle ScholarPubMed
Alman, BA, Li, C, Pajerski, ME, Diaz-Cano, S, Wolfe, HJ. Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 1997;151:329–334.Google Scholar
Luu, HH, Zhang, R, Haydon, RC, Rayburn, E, Kang, Q, Si, W. Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets 2004;4:653–671.CrossRefGoogle ScholarPubMed
Takahashi-Yanaga, F, Sasaguri, T. The Wnt/beta-catenin signaling pathway as a target in drug discovery. J Pharmacol Sci 2007;104:293–302.CrossRefGoogle ScholarPubMed
Rasmussen, SA, Friedman, JM. NF1 gene and neurofibromatosis 1. Am J Epidemiol 2000;151:33–40.CrossRefGoogle ScholarPubMed
Cawthon, RM, Weiss, R, Xu, GF, Viskochil, D, Culver, M, Stevens, J. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990;62:193–201.CrossRefGoogle Scholar
Wallace, MR, Marchuk, DA, Anderson, LB, Letcher, R, Odeh, HM, Saulino, AM. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 1990;249:181–186.CrossRefGoogle ScholarPubMed
Xu, GF, Lin, B, Tanaka, K, Dunn, D, Wood, D, Gesteland, R. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990;63:835–841.CrossRefGoogle ScholarPubMed
Martin, GA, Viskochil, D, Bollag, G, McCabe, PC, Crosier, WJ, Haubruck, H. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990;63:843–849.CrossRefGoogle ScholarPubMed
Tong, J, Hannan, F, Zhu, Y, Bernards, A, Zhong, Y. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 2002;5:95–96.CrossRefGoogle ScholarPubMed
Bollag, G, Clapp, DW, Shih, S, Adler, F, Zhang, YY, Thompson, P. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 1996;12:144–8.CrossRefGoogle ScholarPubMed
Hiatt, KK, Ingram, DA, Zhang, Y, Bollag, G, Clapp, DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf12/2 cells. J Biol Chem 2001;276:7240–7245.CrossRefGoogle Scholar
Dilworth, JT, Kraniak, JM, Wojtkowiak, JW, Gibbs, RA, Borch, RF, Tainsky, MA. Molecular targets for emerging anti-tumor therapies for neurofibromatosis type 1. Biochem Pharmacol 2006;72:1485–1492.CrossRefGoogle ScholarPubMed
Parada, LF, Kwon, CH, Zhu, Y. Modeling neurofibromatosis type 1 tumors in the mouse for therapeutic intervention. Cold Spring Harb Symp Quant Biol 2005;70:173–176.CrossRefGoogle ScholarPubMed
Jacks, T, Shih, TS, Schmitt, EM, Bronson, RT, Bernards, A, Weinberg, RA: Tumor predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 1994;7:353–361.CrossRefGoogle ScholarPubMed
Cichowski, J, Shih, TS, Schmitt, E, Santiago, S, Reilly, K, McLaughlin, ME. Mouse models of tumor development in neurofibromatosis type 1. Science 1999;286:2172–2176.CrossRefGoogle ScholarPubMed
Gottfried, ON, Viskochil, DH, Fults, DW, Couldwell, WT. Molecular, genetic, and cellular pathogenesis of neurofibromas and surgical implications. Neurosurgery 2006;58:1–16.CrossRefGoogle ScholarPubMed
Le, LQ, Parada, LF.Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 2007;26:4609–4616.CrossRefGoogle Scholar
Fahsold, R, Hoffmeyer, S, Mischung, C, Gille, C, Ehlers, C, Kücükceylan, N. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 2000;66:790–818.CrossRefGoogle Scholar
Dorschner, MO, Sybert, VP, Weaver, M, Pletcher, BA, Stephens, K. NF1 microdeletion breakpoints are clustered at flanking repetitive sequences. Hum Mol Genet 2000;9:35–46.CrossRefGoogle ScholarPubMed
Venturin, M, Guarnieri, P, Natacci, F, Stabile, M, Tenconi, R, Clementi, M. Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 2004;41:35–41.CrossRefGoogle ScholarPubMed
Skuse, GR, Kosciolek, BA, Rowley, PT. Molecular genetic analysis of tumors in von Recklinghausen neurofibromatosis: loss of heterozygosity for chromosome 17. Genes Chromosomes Cancer 1989;1:36–41.CrossRefGoogle Scholar
Xu, W, Mulligan, LM, Ponder, MA, Liu, L, Smith, BA, Mathew, CG. Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosomes Cancer 1992;4:337–342.CrossRefGoogle ScholarPubMed
Legius, E, Marchuk, DA, Collins, FS, Glover, TW. Somatic deletion of the neurofibromatosis type 1 gene in neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet 1993;3:122–126.CrossRefGoogle ScholarPubMed
Colman, SD, Williams, CA, Wallace, RW. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nat Genet 1995;11:90–92.CrossRefGoogle ScholarPubMed
Lothe, RA, Slettan, A, Saeter, G, Brøgger, A, Børresen, A-L, Nesland, JM. Alterations at chromosome 17 loci in peripheral nerve sheath tumors. J Neuropathol Exp Neurol 1995;54:65–73.CrossRefGoogle ScholarPubMed
Serra, E, Puig, S, Otero, D, Gaona, A, Kruyer, H, Ars, E. Conformation of a double-hit model for the NF1 gene in benign neurofibromas. Am J Hum Genet 1997;61:512–519.CrossRefGoogle Scholar
Däschner, K, Assum, G, Eisenbarth, I, Krone, W, Hoffmeyer, S, Wortmann, S. Clonal origin of tumor cells in a plexiform neurofibroma with LOH in NF1 intron 38 and in dermal neurofibromas without LOH of the NF1 gene. Biochem Biophys Res Commun 1997;234:346–350.CrossRefGoogle Scholar
Kluwe, L, Friedrich, RE, Mautner, VF. Allelic loss of the NF1 gene in NF1-associated plexiform neurofibromas. Cancer Genet Cytogenet 1999;113:65–69.CrossRefGoogle ScholarPubMed
Eisenbarth, I, Beyer, K, Krone, W, Assum, G. Toward a survey of somatic mutation of the NF1 gene in benign neurofibromas of patients with neurofibromatosis type 1. Am J Hum Genet 2000;66:393–401.CrossRefGoogle Scholar
Rasmussen, SA, Overman, J, Thomson, SAM, Colman, SD, Abernathy, CR, Trimpert, RE. Chromosome 17 loss-of-heterozygosity studies in benign and malignant tumors in neurofibromatosis type I. Genes Chromosomes Cancer, 2000; 28:425–431.3.0.CO;2-E>CrossRefGoogle Scholar
Gutzmer, R, Herbst, RA, Mommert, S, Kiehl, P, Matiaske, F, Rütten, A. Allelic loss at the neurofibromatosis type 1 (NF1) gene locus is frequent in desmoplastic neurotropic melanoma. Hum Genet 2000;107:357–361.CrossRefGoogle ScholarPubMed
Perry, A, Roth, KA, Banerjee, R, Fuller, CE, Gutmann, DH. NF1 deletions in S-100 protein-positive and negative cells of sporadic and neurofibromatosis 1 (NF1)-associated plexiform neurofibromas and malignant peripheral nerve sheath tumors. Am J Pathol 2001;159:57–61.CrossRefGoogle ScholarPubMed
Kluwe, L, Hagel, C, Tatagiba, M, Thomas, S, Stavrou, D, Ostertag, H. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol 2001;60:917–920.CrossRefGoogle ScholarPubMed
Viskochil, DH, in: Uphadhyaya, M, Cooper, DN (eds.). Neurofibromatosis Type 1: From Genotype to Phenotype. Oxford: BIOS Scientific Publishers, 1998.
Messiaen, LM, Callens, T, Mortier, G, Beysen, D, Vandenbroucke, I, Roy, N. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000;15:541–555.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Gutmann, DH. Molecular insights into neurofibromatosis 2. Neurobiol Dis 1997; 3:247–261.CrossRefGoogle ScholarPubMed
Rouleau, GA, Merel, P, Lutchman, M, Sanson, M, Zucman, J, Marineau, C. Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature 1993;363:515–521.CrossRefGoogle Scholar
Trofatter, JA, MacCollin, MM, Rutter, JL, Murrell, JR, Duyao, MP, Parry, DM. Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature 1993;363:515–521.Google Scholar
McCartney, BM, Fehon, RG. The ERM family proteins and their roles in cell-cell interactions, p. 200–210. In Cowijn, P, Klymkowsky, MW (ed.), Cytoskeletal-membrane Interactions and Signal Transduction. Austin, TX: R. G. Landes Bioscience, 1997.Google Scholar
Lutchman, M, Rouleau, GA. The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. Cancer Res 1995;55:2270–2274.Google ScholarPubMed
Tikoo, A, Varga, M, Ramesh, V, Gusella, J, Maruta, H. An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem 1994;269:23387–23390.Google Scholar
Giovannini, M, Robanus-Maandag, E, Niwa-Kawakita, M, Valk, M, Woodruff, JM, Goutebroze, L. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev 1999;13:978–986.CrossRefGoogle ScholarPubMed
McClatchey, AI, Saotome, I, Mercer, K, Crowley, D, Gusella, JF, Bronson, RT. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998;12:1121–1133.CrossRefGoogle ScholarPubMed
Surace, EI, Haipek, CA, Gutmann, DH. Effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene 2004;23:580–587.CrossRefGoogle ScholarPubMed
Scoles, DR. The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta 2008;1785:32–54.Google ScholarPubMed
Merel, P, Hoang-Xuan, K, Sanson, M, Bijlsma, E, Rouleau, G, Laurent-Puig, P. Screening for germ-line mutations in the NF2 gene. Genes Chromosomes Cancer 1995;12:117–127.CrossRefGoogle ScholarPubMed
Ruttledge, MH, Andermann, AA, Phelan, CM, Claudio, JO, Han, FY, Chretien, N. Type of mutation in the neurofibromatosis type 2 gene (NF2) frequently determines severity of disease. Am J Hum Genet 1996;59:331–342.Google ScholarPubMed
Zucman-Rossi, J, Legoix, P, Sarkissian, H, Cheret, G, Sor, F, Bernardi, A. NF2 gene in neurofibromatosis type 2 patients. Hum Mol Genet 1998;7:2095–2101.CrossRefGoogle ScholarPubMed
Kluwe, L, Nygren, AO, Errami, A, Heinrich, B, Matthies, C, Tatagiba, M. Screening for large mutations of the NF2 gene. Genes Chromosomes Cancer 2005;42:384–391.CrossRefGoogle ScholarPubMed
Baser, ME, Contributors to the International NF2 Mutation Database. The distribution of constitutional and somatic mutations in the neurofibromatosis 2 gene. Hum Mutat 2006;27:297–306.CrossRefGoogle ScholarPubMed
Ahronowitz, I, Xin, W, Kiely, R, Sims, K, MacCollin, M, Nunes, FP. Mutational spectrum of the NF2 gene: a meta-analysis of 12 years of research and diagnostic laboratory findings. Hum Mutat 2007;28:1–12.CrossRefGoogle ScholarPubMed
Bianchi, AB, Mitsunaga, SI, Cheng, JQ, Klei, WM, Jhanwar, SC, Seizinger, B. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci USA 1995;92:10854–10858.CrossRefGoogle Scholar
Cheng, JQ, Lee, WC, Klein, MA, Cheng, GZ, Jhanwar, SC, Testa, JR. Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer 1999;24:238–242.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Bijlsma, EK, Merel, P, Bosch, DA, Westerveld, A, Delattre, O, Thomas, G. Analysis of mutations in the SCH gene in schwannomas. Genes Chromosomes Cancer 1994;11:7–14.CrossRefGoogle ScholarPubMed
Twist, EC, Ruttledge, MH, Rousseau, M, Sanson, M, Papi, M, Merel, P. The neurofibromatosis type 2 gene is inactivated in schwannomas. Hum Mol Genet 1994;3:147–151.CrossRefGoogle ScholarPubMed
Jacoby, LB, MacCollin, M, Barone, R, Ramesh, V, Gusella, JF. Frequency and distribution of NF2 mutations in schwannomas. Genes Chromosomes Cancer 1996;17:45–55.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Lasota, JFetsch, JF, Wozniak, A, Wasag, B, Sciot, R, Miettinen, M. The neurofibromatosis type 2 gene is mutated in perineural cell tumors: A molecular genetic study of eight cases. Am J Pathol 2001;158:1223–1229.CrossRefGoogle Scholar
Stemmer-Rachamimov, AO, Xu, L, Gonzalez-Agosti, C, Burwick, JA, Pinney, D, Beauchamp, R. Universal absence of merlin, but not other ERM family members, in schwannomas. Am J Pathol 1997;151:1649–1654.Google Scholar
Gutmann, DH, Giordano, MJ, Fishback, AS, Guha, A. Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology 1997;49:267–270.CrossRefGoogle ScholarPubMed
Lee, JH, Sundaram, V, Stein, DJ, Kinney, SE, Stacey, DW, Golubic, M. Reduced expression of schwannomin/merlin in human sporadic meningiomas. Neurosurgery 1997;40:578–587.Google ScholarPubMed
Kimura, Y, Koga, H, Araki, N, Mugita, N, Fujita, N, Takeshima, H. The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schannomas and meningiomas. Nat Med 1998;4:915–922.CrossRefGoogle ScholarPubMed
Astuti, D, Latif, F, Dallol, A, Dahia, PL, Douglas, F, George, E. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:49–54.CrossRefGoogle ScholarPubMed
Maher, ER, Eng, C. The pressure rises: update on the genetics of phaeochromocytoma. Hum Mol Genet 2002;11:2347–2354.CrossRefGoogle ScholarPubMed
Schiavi, F, Boedeker, CC, Bausch, B, Peçzkowska, M, Gomez, CF, Strassburg, T. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA 2005;294:2057–2063.CrossRefGoogle ScholarPubMed
Bayley, JP, Minderhout, I, Weiss, MM, Jansen, JC, Oomen, PH, Menko, FH. Mutation analysis of SDHB and SDHC: novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma. BMC Med Genet 2006;7:1.CrossRefGoogle ScholarPubMed
Sorensen, PH, Shimada, H, Liu, XF, Lim, JF, Thomas, G, Triche, J. Biphenotypic sarcomas with myogeneic and neural differentiation express the Ewing's sarcoma EWS/FLI1 fusion gene. Cancer Res 1995;55:1385–1392.Google Scholar
Thorner, P, Squire, J, Chilton-MacNeill, S, Marrano, P, Bayani, J, Malkin, D. Is the EWS/FLI-1 fusion transcript specific for Ewing sarcoma and peripheral primitive neuroectodermal tumor? A report of four cases showing this transcript in a wider range of tumor types. Am J Pathol 1996;148:1125–1138.Google Scholar
Alava, E, Lozano, MD, Sola, I, Panizo, A, Idoate, MA, Martínez-Isla, C. Molecular features in a biphenotypic small cell sarcoma with neuroectodermal and muscle differentiation. Hum Pathol 1998;29:181–184.CrossRefGoogle Scholar
Katz, RL, Quezado, M, Senderowicz, AM, Villalba, L, Laskin, WB, Tsokos, M. An intra-abdominal small round cell neoplasm with features of primitive neuroectodermal and desmoplastic round cell tumor and a EWS/FLI-1 fusion transcript. Hum Pathol 1997;28:502–509.CrossRefGoogle Scholar
Ordi, J, Alava, E, Torné, A, Mellado, B, Pardo-Mindan, J, Iglesias, X. Intraabdominal desmoplastic small round cell tumor with EWS/ERG fusion transcript. Am J Surg Pathol 1998;22:1026–1032.CrossRefGoogle ScholarPubMed
Burchill, SA, Wheeldon, J, Cullinane, C, Lewis, IJ. EWS-FLI1 fusion transcripts identified in patients with typical neuroblastoma. Eur J Cancer 1997;33:239–243.CrossRefGoogle ScholarPubMed
Fritsch, MK, Bridge, JA, Schuster, AE, Perlman, EJ, Argani, P. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol 2003;6:43–53.CrossRefGoogle ScholarPubMed
Sorensen, PB, Wu, JK, Berean, KW, Lim, JF, Donn, W, Frierson, HF. Olfactory neuroblastoma is a peripheral primitive neuroectodermal tumor related to Ewing sarcoma. Proc Natl Acad Sci USA 1996;93:1038–1043.CrossRefGoogle ScholarPubMed
Scotlandi, K, Chano, T, Benini, S, Serra, M, Manara, MC, Cerisano, V. Identification of EWS/FLI-1 transcripts in giant-cell tumor of bone. Int J Cancer 2000;87:328–335.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Argani, P, Perez-Ordoñez, B, Xiao, H, Caruana, SM, Huvos, AG, Ladanyi, M. Olfactory neuroblastoma is not related to the Ewing family of tumors: absence of EWS/FLI1 gene fusion and MIC expression. Am J Surg Pathol 1998;22:391–398.CrossRefGoogle ScholarPubMed
Mezzelani, A, Tornielli, S, Minoletti, F, Pierotti, MA, Sozzi, G, Pilotti, S. Esthesioneuroblastoma is not a member of the primitive peripheral neuroectodermal tumour-Ewing's group. Br J Cancer 1999;81:586–591.CrossRefGoogle Scholar
Panagopoulos, I, Mertens, F, Domanski, HA, Isaksson, M, Brosjo, O, Gustafson, P. No EWS/FLI1 fusion transcripts in giant-cell tumors of bone. Int J Cancer 2001;93:769–772.CrossRefGoogle Scholar
O'Sullivan, MJ, Kyriakos, M, Zhu, X, Wick, MR, Swanson, PE, Dehner, LP. Malignant peripheral nerve sheath tumors with t(X;18): A pathologic and molecular genetic study. Mod Pathol 2000;13:1253–1263.CrossRefGoogle Scholar
Ladanyi, M, Woodruff, JM, Scheithauer, BW, Bridge, JA, Barr, FG, Goldblum, JR. Re: O'Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: Malignant peripheral nerve sheath tumors with t(X;18): A pathologic and molecular genetic study. Mod Pathol 2000;13:1336–1346.Google Scholar
Tamborini, E, Agus, V, Perrone, F, Papini, D, Romanò, R, Pasini, B. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002;82:609–618.CrossRefGoogle ScholarPubMed
Stewénius, Y, Jin, Y, Ora, I, Panagopoulos, I, Möller, E, Mertens, F. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008;47:845–852.CrossRefGoogle ScholarPubMed
Sainati, L, Scapinello, A, Montaldi, A, Bolcato, S, Ninfo, V, Carli, M. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144–147.CrossRefGoogle Scholar
Li, H, Wang, J, Mor, G, Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:1357–1361.CrossRefGoogle ScholarPubMed
Zoubek, A, Dockhorn-Dworniczak, B, Delattre, O, Christiansen, H, Niggli, F, Gatterer-Menz, I. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumors patients?J Clin Oncol 1996;14:1245–1251.CrossRefGoogle Scholar
Alava, E, Kawai, A, Healey, JH, Fligman, I, Meyers, PA, Huvos, AG. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J Clin Oncol 1998;16:1248–1255.CrossRefGoogle ScholarPubMed
Ginsberg, JP, Alava, E, Ladanyi, M, Wexler, LH, Kovar, H, Paulussen, M. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing's sarcomas. J Clin Oncol 1999;17:1809–1814.CrossRefGoogle Scholar
Anderson, J, Ramsay, A, Gould, S, Pritchard-Jones, K. PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am J Pathol 2001;159:1089–1096.CrossRefGoogle ScholarPubMed
Collins, MH, Zhao, H, Womer, RB, Barr, FG. Proliferative and apoptotic differences between alveolar rhabdomyosarcoma subtypes: a comparative study of tumors containing PAX3-FKHR gene fusions. Med Pediatr Oncol 2001;37:83–89.CrossRefGoogle ScholarPubMed
Anderson, J, Gordon, T, McManus, A, Mapp, T, Gould, S, Kelsey, A. Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of the outcome?Br J Cancer 2001;85:831–835.CrossRefGoogle Scholar
Kelly, KM, Womer, RB, Sorensen, PH, Xiong, QB, Barr, FG. Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol 1997;15:1831–1836.CrossRefGoogle ScholarPubMed
Sorensen, PH, Lynch, JC, Qualman, SJ, Tirabosco, R, Lim, JF, Maurer, HM. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol 2002;20:2672–2679.CrossRefGoogle ScholarPubMed
dos Santos, NR, Bruijn, DR, Kessel, AG. Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer 2001;30:1–14.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Ladanyi, M. Fusions of the SYT and SSX genes in synovial sarcoma. Oncogene 2001;20:5755–5762.CrossRefGoogle ScholarPubMed
Kawai, A, Woodruff, J, Healey, JH, Brennan, MF, Antonescu, CR, Landanyi, M. SYT-SSX fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 1998;338:153–160.CrossRefGoogle ScholarPubMed
Nilsson, G, Skytting, B, Xie, Y, Brodin, B, Perfect, R, Mandahl, N. The SYT-SSX1 variant of synovial sarcoma is associated with a high rate of tumor cell proliferation and poor clinical outcome. Cancer Res 1999;59:3180–3184.Google ScholarPubMed
Mezzelani, A, Mariani, L, Tamborini, E, Agus, V, Riva, C, Lo Vullo, S. SYT-SSX fusion genes and prognosis in synovial sarcoma. Br J Cancer 2001;85:1535–1539.CrossRefGoogle ScholarPubMed
Guillou, L, Benhattar, J, Bonichon, F, Gallagher, G, Terrier, P, Stauffer, E. Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol 2004;22:4040–4050.CrossRefGoogle Scholar
Geurts van Kessel, A, Bruijn, D, Hermsen, L, Janssen, I, dos Santos, NR, Willems, R. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998; 23:198–201.3.0.CO;2-K>CrossRefGoogle Scholar
Kaneko, Y, Kobayashi, H, Hanada, M, Satake, N, Maseki, N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer 1997;18:228–231.3.0.CO;2-3>CrossRefGoogle Scholar
Lestou, VS, O'Connell, JX, Robichaud, M, Salski, C, Mathers, J, Maguire, J. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002;138:153–156.CrossRefGoogle Scholar
Peter, M, Magdelenat, H, Michon, J, Melot, T, Oberlin, O, Zucker, JM. Sensitive detection of occult Ewing's cells by the reverse transcriptase-polymerase chain reaction. Br J Cancer 1995;72:96–100.CrossRefGoogle ScholarPubMed
Zoubek, A, Pfleiderer, C, Ambros, PF, Kronberger, M, Dworzak, MN, Gruber, B. Minimal metastatic and minimal residual disease in patients with Ewing tumors. Klin Padiatr 1995;207:242–247.CrossRefGoogle ScholarPubMed
Kelly, KM, Womer, RB, Barr, FG. Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer 1996;78:1320–1327.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
West, DC, Grier, HE, Swallow, MM, Demetri, GD, Granowetter, L, Sklar, J. Detection of circulating cells in patients with Ewing's sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol 1997;15:583–588.CrossRefGoogle ScholarPubMed
Alava, E, Lozano, MD, Patino, A, Sierrasesumaga, L, Pardo-Mindan, FJ. Ewing family tumors: potential prognostic value of reverse-transcriptase polymerase chain reaction detection of minimal residual disease in peripheral blood samples. Diagn Mol Pathol 1998; 7:152–157.CrossRefGoogle ScholarPubMed
Fagnou, C, Michon, J, Peter, M, Bernoux, A, Oberlin, O, Zucker, JM. Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing's tumor. J Clin Oncol 1998;16:1707–1711.CrossRefGoogle Scholar
Willeke, F, Ridder, R, Mechtersheimer, G, Schwarzbach, M, Duwe, A, Weitz, J. Analysis of FUS-CHOP fusion transcripts in different types of soft tissue liposarcoma and their diagnostic implications. Clin Cancer Res 1998;4:1779–1784.Google ScholarPubMed
Willeke, F, Mechtersheimer, G, Schwarzbach, M, Weitz, J, Zimmer, D, Lehnert, T. detection of SYT-SSX1/2 fusion transcripts by reverse transcriptase-polymerase chain reaction (RT-PCR) is a valuable diagnostic tool in synovial sarcoma. Eur J Cancer 1998;34:2087–2093.CrossRefGoogle ScholarPubMed
Zoubek, A, Ladenstein, R, Windhager, R, Amann, G, Fischmeister, G, Kager, L, Jugovic, D. Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer 1998;79:56–60.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Panagopoulos, I, Åman, P, Mertens, F, Mandahl, N, Rydholm, A, Bauer, HF. Genomic PCR detects tumor cells in peripheral blood from patients with myxoid liposarcoma. Genes Chromosomes Cancer 1996;17:102–107.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Athale, UH, Shurtleff, SA, Jenkins, JJ, Poquette, CA, Tan, M, Downing, JR. Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor. J Pediatr Hematol Oncol 2001;23:99–104.CrossRefGoogle ScholarPubMed
Montanaro, L, Pession, A, Trere, D, Vici, M, Prete, A, Paolucci, G. Detection of EWS chimeric transcripts by nested RT-PCR to allow reinfusion of uncontaminated peripheral blood stem cells in high-risk Ewing's tumor in childhood. Haematologica 1999;84:1012–1015.Google ScholarPubMed
Thomson, B, Hawkins, D, Felgenhauer, J, Radich, J. RT-PCR evaluation of peripheral blood, bone marrow and peripheral blood stem cells in children and adolescents undergoing VACIME chemotherapy for Ewing's sarcoma and alveolar rhabdomyosarcoma. Bone Marrow Transplant 1999;24:527–533CrossRefGoogle ScholarPubMed
Vermeulen, J, Ballet, S, Oberlin, O, Peter, M, Pierron, G, Longavenne, E. Incidence and prognostic value of tumour cells detected by RT-PCR in peripheral blood stem cell collections from patients with Ewing tumour. Br J Cancer 2006;95:1326–1333.CrossRefGoogle ScholarPubMed
Trumper, L, Pfreundschuh, M, Bonin, FV, Daus, H. Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals. Br J Haematol 1998;103:1138–1144.CrossRefGoogle Scholar
Ji, W, Qu, G, Ye, P, Zhang, X-Y, Halabi, S, Erlich, M. Frequent detection of bcl-2/JH translocations in human blood and organs samples by a quantitative polymerase chain reaction assay. Cancer Res 1995;55:2876–2882.Google Scholar
Biernaux, C, Loos, M, Sels, A, Huez, G, Stryckmans, P. Detection of major bcr-able gene expression at a very low level in blood cells of some healthy individuals. Blood 1995;86:3118–3122.Google Scholar
Schmitt, C, Balogh, B, Grundt, A, Buchholtz, C, Leo, A, Benner, A. The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res 2006;30:745–750.CrossRefGoogle Scholar
Frascella, E, Rosolen, A. Detection of the MyoD1 transcript in rhabdomyosarcoma cell lines and tumor samples by reverse transcription polymerase chain reaction. Am J Pathol 1998;152:577–583.Google ScholarPubMed
Gattenloehner, S, Dockhorn-Dworniczak, B, Leuschner, I, Vincent, A, Müller-Hermelink, HK, Marx, A. A comparison of MyoD1 and fetal acetylcholine receptor expression in childhood tumors and normal tissues: implications for the molecular diagnosis of minimal disease in rhabdomyosarcomas. J Mol Diagn 1999;1:23–31.CrossRefGoogle ScholarPubMed
Michelagnoli, MP, Burchill, SA, Cullinane, C, Selby, PJ, Lewis, IJ. Myogenin–a more specific target for RT-PCR detection of rhabdomyosarcoma than MyoD1. Med Pediatr Oncol 2003;40:1–8.CrossRefGoogle ScholarPubMed
Krsková, L, Mrhalová, M, Sumerauer, D, Kodet, R. Rhabdomyosarcoma: molecular diagnostics of patients classified by morphology and immunohistochemistry with emphasis on bone marrow and purged peripheral blood progenitor cells involvement. Virchows Arch;448:449–458.CrossRef
Sartori, F, Alaggio, R, Zanazzo, G, Garaventa, A, Di Cataldo, A, Carli, M. Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer 2006;106:1766–1775.CrossRefGoogle ScholarPubMed
Gallego, S, Llort, A, Roma, J, Sabado, C, Gros, L, Toledo, JS. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol 2006;132356–132362.Google ScholarPubMed
Naito, H, Kuzumaki, N, Uchino, J, Kobayashi, R, Shikano, T, Ishikawa, Y. Detection of tyrosine hydroxylase mRNA and minimal neuroblastoma cells by the reverse transcription-polymerase chain reaction. Eur J Cancer 1991;27:762–765.CrossRefGoogle ScholarPubMed
Lambooy, LH, Gidding, CE, Heuvel, LP, Hulsbergen-Van De Kaa, CA, Ligtenberg, M, Bökkerink, Jp. Real-time analysis of tyrosine hydroxylase gene expression: a sensitive and semiquantitative marker for minimal residual disease detection of neuroblastoma. Clin Cancer Res 2003;9:812–819.Google ScholarPubMed
Träger, C, Vernby, A, Kullman, A, Ora, I, Kogner, P, Kågedal, B. mRNAs of tyrosine hydroxylase and dopa decarboxylase but not of GD2 synthase are specific for neuroblastoma minimal disease and predicts outcome for children with high-risk disease when measured at diagnosis. Int J Cancer 2008;123:2849–2855.CrossRefGoogle Scholar
Chen, XQ, Stroun, M, Magnenat, JL, Nicod, LP, Kurt, AM, Lyautey, J. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 1996;2:1033–1055.CrossRefGoogle ScholarPubMed
Nawroz, H, Koch, W, Anker, P, Stroun, M, Sidransky, D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med 1996;2:1035–1037.CrossRefGoogle ScholarPubMed
Goessl, C, Heicappell, R, Munker, R, Anker, P, Stroun, M, Krause, H. Microsatellite analysis of plasma DNA from patients with clear cell renal carcinoma. Cancer Res 1998;58:4728–4732.Google ScholarPubMed
Hibi, K, Robinson, CR, Booker, S, Wu, L, Hamilton, SR, Sidransky, D. Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Res 1998;58:1205–1407.Google ScholarPubMed
Chen, X, Bonnefoi, H, Diebold-Berger, S, Lyautey, J, Lederrey, C, Faltin-Traub, E. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res 1999;5:2297–2303.Google ScholarPubMed
Hickey, KP, Boyle, KP, Jepps, HM, Andrew, AC, Buxton, EJ, Burns, PA. Molecular detection of tumour DNA in serum and peritoneal fluid from ovarian cancer patients. Br J Cancer 1999;80:1803–1808.CrossRefGoogle ScholarPubMed
Hibi, K, Nakayama, H, Yamazaki, T, Takase, T, Taguchi, M, Kasai, Y, Ito, K. Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients. Int J Cancer 2001;94:429–431.CrossRefGoogle ScholarPubMed
Lyon, MF. Gene action in the X-chromosome of the mouse (Mus musculus L.)Nature 1961;190:372–373.CrossRefGoogle Scholar
Lyon, MF. The William Allan Memorial Award address: X-chromosome inactivation and the location and expression of X-linked genes. Am J Hum Genet 1988;42:8–16.Google Scholar
Beutler, E, Yeh, M, Fairbanks, VF. Normal human female as a mosaic of X-chromosome activity: studies using the gene for G6PD deficiency as a marker. Proc Natl Acad Sci USA 1962;48:9–16.CrossRefGoogle Scholar
Fialkow, PJ. Clonal origin of human tumors. Biochem Biophys Acta 1976;458:283–321.Google ScholarPubMed
Boyd, Y, Fraser, NJ. Methylation patterns at the hypervariable X-chromosome locus DXS255 (M27β): correlation with X-inactivation status. Genomics 1990;7:182–187.CrossRefGoogle Scholar
Keith, DH, Singer-Sam, J, Riggs, AD. Active X chromosome DNA is unmethylated at eight CCGG sites clustered in a guanine-plus-cytosine-rich island at the 5' end of the gene for phosphoglycerate kinase. Mol Cell Biol 1986;6:4122–4125.CrossRefGoogle Scholar
Vogelstein, B, Fearon, ER, Hamilton, SR, Feinberg, AP. Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science 1985;227:642–645.CrossRefGoogle ScholarPubMed
Fey, MF, Liechti-Gallati, S, Rohr, A, Borisch, B, Theilkäs, L, Schneider, V. Clonality and X-inactivation patterns in hematopoietic cell populations detected by the highly informative M27β DNA probe. Blood 1994;83:931–938.Google Scholar
Diaz-Cano, SJ. Designing a molecular analysis of clonality in tumors. J Pathol 2000;191:343–344.3.0.CO;2-Y>CrossRefGoogle Scholar
Allen, RC, Zoghbi, HY, Moseley, AB, Rosenblatt, HM, Belmont, JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 1992;51:1229–1239.Google ScholarPubMed
Busque, L, Gilliland, DG. Clonal evolution in acute myeloid leukemia. Blood 1993;82:337–342.Google ScholarPubMed
Busque, L, Zhu, J, DeHart, D, Griffith, B, Willman, C, Carroll, R. An expression-based clonality assay at the human androgen receptor locus (HUMARA) on chromosome X. Nucleic Acids Res 1994;22:697–698.CrossRefGoogle ScholarPubMed
Li, M, Cordon-Cardo, C, Gerald, WL, Rosai, J. Desmoid fibromatosis is a clonal process. Hum Pathol 1996;27:939–943.CrossRefGoogle ScholarPubMed
Vogrincic, GS, O'Connell, JX, Gilks, CB. Giant cell tumor of tendon sheath is a polyclonal cellular proliferation. Hum Pathol 1997;28:815–819.CrossRefGoogle ScholarPubMed
Paradis, V, Laurendeau, I, Vieillefond, A, Blanchet, P, Eschwege, P, Benoît, G. Clonal analysis of renal sporadic angiomyolipomas. Hum Pathol 1998;29:1063–1067.CrossRefGoogle ScholarPubMed
Flemming, P, Lehmann, U, Becker, T, Klempnauer, J, Kreipe, H. Common and epithelioid variants of hepatic angiomyolipoma exhibit clonal growth and share a distinctive immunophenotype. Hepatology 2000;32:213–217.CrossRefGoogle Scholar
Saxena, A, Alport, EC, Custead, S, Skinnider, LF. Molecular analysis of clonality of sporadic angiomyolipoma. J Pathol 1999;189:79–84.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Tang, LH, Hui, P, Garcia-Tsao, G, Salem, RR, Jain, D. Multiple angiomyolipomata of the liver: a case report. Mod Pathol 2002;15:167–171.CrossRefGoogle ScholarPubMed
Chetritt, J, Paradis, V, Dargere, D, Adle-Biassette, H, Maurage, CA, Mussini, JM. Chester-Erdheim disease: a neoplastic disorder. Hum Pathol 1999;30:1093–1096.CrossRefGoogle ScholarPubMed
Dickson, BC, Pethe, V, Chung, CT, Howarth, DJ, Bilbao, JM, Fornasier, VL. Systemic Erdheim-Chester disease. Virchows Arch 2008;452:221–227.CrossRefGoogle ScholarPubMed
Al-Quran, S, Reith, J, Bradley, J, Rimsza, L. Erdheim-Chester disease: case report, PCR-based analysis of clonality, and review of literature. Mod Pathol 2002;15:666–672.CrossRefGoogle ScholarPubMed
Klingler, L, Trammell, R, Allan, DG, Butler, MG, Schwartz, HS. Clonality studies in sacral chordoma. Cancer Genet Cytogenet 2006;171:68–71.CrossRefGoogle ScholarPubMed
Lucas, DR, Shroyer, KR, McCarthy, PJ, Markham, NE, Fujita, M, Enomoto, TE. Desmoid tumor is a clonal cellular proliferation: PCR amplification of HUMARA for analysis of patterns of X-chromosome inactivation. Am J Surg Pathol 1997;21:306–311.CrossRefGoogle ScholarPubMed
Middleton, SB, Frayling, IM, Phillips, RK. Desmoids in familial adenomatous polyposis are monoclonal proliferations. Br J Cancer 2000;82:827–832.CrossRefGoogle ScholarPubMed
Chen, TC, Kuo, T, Chan, HL. Dermatofibroma is a clonal proliferative disease. J Cutan Pathol 2000;27:36–39.CrossRefGoogle ScholarPubMed
Hui, P, Glusac, EJ, Sinard, JH, Perkins, AS. Clonal analysis of cutaneous fibrous histiocytoma (dermatofibroma). J Cutan Pathol 2002;29:385–389.CrossRefGoogle Scholar
Willman, CL, Busque, L, Griffith, BB, Favara, BE, McClain, KL, Duncan, MH. Langerhans'-cell histiocytosis (histiocytosis X) – a clonal proliferative disease. N Engl J Med 1994;331:154–160.CrossRefGoogle ScholarPubMed
Rabkin, CS, Bedi, G, Musaba, E, Sunkutu, R, Mwansa, N, Sidransky, D. AIDS-related Kaposi's sarcoma is a clonal neoplasm. Clin Cancer Res 1995;1:257–260.Google ScholarPubMed
Gill, PS, Tsai, YC, Rao, AP, Spruck, CH 3rd, Zheng, T, Harrington, WA. Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc Natl Acad Sci USA 1998;95:8257–8261.CrossRefGoogle ScholarPubMed
Delabesse, E, Oksenhendler, E, Lebbé, C, Vérola, O, Varet, B, Turhan, AG. Molecular analysis of clonality in Kaposi's sarcoma. J Clin Pathol 1997;50:664–668.CrossRefGoogle ScholarPubMed
Quade, BJ, McLachlin, CM, Soto-Wright, V, Zuckerman, J, Mutter, GL, Morton, CC. Disseminated peritoneal leiomyomatosis: Clonality analysis by X chromosome inactivation and cytogenetics of a clinically benign smooth muscle proliferation. Am J Pathol 1997;150:2153–2166.Google ScholarPubMed
Quade, BJ, Dal Cin, P, Neskey, DM, Weremowicz, S, Morton, CC. Intravenous leiomyomatosis: molecular and cytogenetic analysis of a case. Mod Pathol 2002;15:351–356.CrossRefGoogle ScholarPubMed
Indsto, JO, Cachia, AR, Kefford, RF, Mann, GJ. X inactivation, DNA deletion, and microsatellite instability in common acquired melanocytic nevi. Clin Cancer Res 2001;7:4054–4059.Google ScholarPubMed
Sanz Esponera, J. Genetic alterations in the differential diagnosis of melanocytic diseases. Ann R Acad Nac Med (Madr) 2000;117:815–824.Google ScholarPubMed
Koizumi, H, Mikami, M, Doi, M, Tadokoro, M. Clonality analysis of nodular fasciitis by HUMARA-methylation-specific PCR. Histopathology 2005;47:320–321.CrossRefGoogle ScholarPubMed
Wang, L, Zhu, HG. Clonal analysis of palmar fibromatosis: a study whether palmar fibromatosis is a real tumor. J Transl Med 2006;4:21CrossRefGoogle ScholarPubMed
Niho, S, Suzuki, K, Yokose, T, Kodama, T, Nishiwaki, Y, Esumi, H. Monoclonality of both pale cells and cuboidal cells of sclerosing hemangioma of the lung. Am J Pathol 1998;152:1065–1069.Google ScholarPubMed
Pfeifer, JD. Molecular Genetic Testing in Surgical Pathology. Philadelphia: Lippincott-Williams & Wilkins, 2006.Google Scholar
Mies, C. Molecular biology analysis of paraffin-embedded tissues. Hum Pathol 1994;25:555–560.CrossRefGoogle ScholarPubMed
Lewis, F, Maughan, NJ, Smith, V, Hillan, KJ, Quirke, P. Unlocking the archive-gene expression in paraffin-embedded tissue. J Pathol 2001;195:66–71.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Jackson, DP, Lewis, FA, Taylor, GR, Boylston, AW, Quirke, P: Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction. J Clin Pathol 1990;43:499–504.CrossRefGoogle ScholarPubMed
Greer, CE, Peterson, SL, Kiviat, NB, Manos, MM. PCR amplification from paraffin-embedded tissues: Effects of fixative and fixation time. Am J Clin Pathol 1991;95:117–124.CrossRefGoogle ScholarPubMed
Shibata, D. The polymerase chain reaction and the molecular genetic analysis of tissue biopsies. In Herrington, CS, McGee, JOD (eds): Diagnostic Molecular Pathology: A Practical Approach, Vol II. Oxford, England, IRL Press, 1992, pp. 85–111.Google Scholar
Williams, C, Ponten, F, Moberg, C, Soderkvist, P, Uhlen, M, Ponten, J. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 1999;155:1467–1471.CrossRefGoogle ScholarPubMed
Sieben, NL, Haar, NT, Cornelisse, CJ, Fleuren, GJ, Cleton-Jansen, AM. PCR artifacts in LOH and MSI analysis of microdissected tumor cells. Hum Pathol 2000;31:1414–1419.CrossRefGoogle Scholar
Mullis, KB, Faloona, F. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987;155:335–350.CrossRefGoogle Scholar
Saiki, R, Scharf, S, Faloona, F, Mullis, K, Horn, G, Erlich, HA. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1350–1354.CrossRefGoogle ScholarPubMed
Saiki, RK, Bugawan, TL, Horn, GT, Mullis, KB, Erlich, HA. Analysis of enzymatic amplificatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 1986;324:163–166.CrossRefGoogle Scholar
Embury, SH, Scharf, SJ, Saiki, RK, Gholson, MA, Golbus, M, Arnheim, N. Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. N Engl J Med 1987;316:656–661.CrossRefGoogle ScholarPubMed
Downing, JR, Khandekar, A, Shurtleff, SA, Head, DR, Parham, DM, Webber, BL. Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing's sarcoma. Am J Pathol 1995;46:626–634.Google Scholar
Lasota, J, Miettinen, M. Absence of Kaposi's sarcoma-associated virus (human herpesvirus-8) sequences in angiosarcma. Virchows Arch 1999;434:51–56.CrossRefGoogle Scholar
Meier, VS, Kuhne, T, Jundt, G, Gudat, F. Molecular diagnosis of Ewing tumors: improved detection of EWS-FLI-1 and EWS-ERG chimeric transcripts and rapid determination of exon combinations. Diagn Mol Pathol 1998;7:29–35.CrossRefGoogle ScholarPubMed
Lasota, J, Jasinski, M, Debiec-Rychter, M, Szadowska, A, Limon, J, Miettinen, M. Detection of the SYT-SSX fusion transcripts in formaldehyde-fixed, paraffin-embedded tissue: a reverse transcription polymerase chain reaction amplification assay useful in the diagnosis of synovial sarcoma. Mod Pathol 1998;11:626–633.Google Scholar
Frohman, MA, Dush, MK, Martin, GR. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 1988;85:8998–9002.CrossRefGoogle ScholarPubMed
Scotto-Lavino, E, Du, G, Frohman, MA. 5' end cDNA amplification using classic RACE. Nat Protoc 2006;1:2555–2562.CrossRefGoogle ScholarPubMed
Scotto-Lavino, E, Du, G, Frohman, MA. 3' end cDNA amplification using classic RACE. Nat Protoc 2006;1:2742–2745CrossRefGoogle ScholarPubMed
Cotton, RGH. Slowly but surely towards better scanning for mutations. Trends Genet 1997;13:43–46.CrossRefGoogle ScholarPubMed
Fischer, SG, Lerman, LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 1983;80:1579–1583.CrossRefGoogle ScholarPubMed
Fodde, R, Losekoot, M. Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum Mutat 1994; 3:83–94.CrossRefGoogle Scholar
Orita, M, Iwahana, H, Kanazawa, H, Hayashi, K, Sekiya, T. Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1989;86:2766–2770.CrossRefGoogle ScholarPubMed
Hayashi, K. PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl 1992;9:73–79.CrossRefGoogle ScholarPubMed
Oefner, PJ, Underhill, PA. Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC). Am J Hum Genet 1995;57:A266.Google Scholar
Liu, W, Smith, DI, Rechtzigel, KJ, Thibodeau, SN, James, CD. Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res 1998;26:1396–1400.CrossRefGoogle ScholarPubMed
Han, SS, Cooper, DN, Upadhyaya, MN. Evaluation of denaturing high performance liquid chromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. Hum Genet 2001;109:487–497.CrossRefGoogle ScholarPubMed
Livak, KJ, Flood, SJ, Marmaro, J, Giusti, W, Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 1995;4:357–362.CrossRefGoogle ScholarPubMed
Peter, M, Gilbert, E, Delattre, O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001;81:905–912.CrossRefGoogle ScholarPubMed
Bijwaard, KE, Fetsch, JF, Przygodzki, R, Taubenberger, JK, Lichy, JH. Detection of SYT-SSX fusion transcripts in archival synovial sarcomas by real-time reverse transcriptase-polymerase chain reaction. J Mol Diagn 2002;4:59–64.CrossRefGoogle ScholarPubMed
Pongers-Willemse, MJ, Verhagen, OJ, Tibbe, GJ, Wijkhuijs, AJ, Hass, V, Roovers, E. Real-time PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12:2006–2014.CrossRefGoogle ScholarPubMed
Preudhomme, C, Revillion, F, Merlat, A, Hornez, L, Roumier, C, Duflos-Grardel, N. Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a ‘real time’ quantitative RT-PCR assay. Leukemia 1999;13:957–964.CrossRefGoogle ScholarPubMed
Kallioniemi, A, Kallioniemi, O-P, Sudar, D, Rutovitz, D, Gray, JW, Waldman, F. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258:818–821.CrossRefGoogle ScholarPubMed
Kallioniemi, O-P, Kallioniemi, A, Piper, J, Isola, J, Waldman, F, Gray, JW. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Gene Chromosomes Cancer 1994;10:231–243.CrossRefGoogle ScholarPubMed
du Manoir, S, Speicher, MR, Joos, S, Schröck, E, Popp, S, Döhner, H, Kovacs, G. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 1993;90:590–610.CrossRefGoogle ScholarPubMed
Oostlander, AE, Meijer, GA, Ylstra, B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet 2004;66:488–495.CrossRefGoogle ScholarPubMed
Lockwood, WW, Chari, R, Chi, B, Lam, WL. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur J Hum Genet 2006;14:139–148.CrossRefGoogle ScholarPubMed
Knuutila, S, Autio, K, Aalto, Y. On line access to CGH data of DNA sequence copy number changes. Am J Pathol 2000;157:689–690.CrossRefGoogle Scholar
El-Rifai, W, Sarlomo-Rikala, M, Andersson, LC, Knuutila, S, Miettinen, M. DNA sequence copy number changes in gastrointestinal stromal tumors: tumor progression and prognostic significance. Cancer Res 2000;60:3899–3903.Google ScholarPubMed
Duggan, DJ, Bittner, M, Yidong, C, Meltzer, P, Trent, JM. Expression profiling using cDNA microarrays. Nature Genet 1999;21:10–14.CrossRefGoogle ScholarPubMed
Lockhard, DJ, Winzeler, EA. Genomics, gene expression and DNA arrays. Nature 2000;405:827–836.CrossRefGoogle Scholar
Golub, TR, Slonim, DK, Tamayo, , Huard, C, Gassenbeek, M, Mesirov, JP. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531–536.CrossRefGoogle ScholarPubMed
Khan, J, Simon, R, Bittner, M, Chen, Y, Leighton, SB, Pohida, T. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 1998;58:5009–5013.Google ScholarPubMed
Nielsen, TO. Microarray analysis of sarcomas. Adv Anat Pathol 2006;13:166–173.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×