Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T13:20:05.020Z Has data issue: false hasContentIssue false

7 - Kinematics of Closed Chains

Published online by Cambridge University Press:  04 June 2024

Kevin M. Lynch
Affiliation:
Northwestern University, Illinois
Frank C. Park
Affiliation:
Seoul National University
Get access

Summary

Any kinematic chain that contains one or more loops is called a closed chain. Several examples of closed chains were encountered in Chapter 2, from the planar four-bar linkage to spatial mechanisms like the Stewart–Gough platform and the Delta robot (Figure 7.1). These mechanisms are examples of parallel mechanisms: closed chains consisting of fixed and moving platforms connected by a set of “legs.” The legs themselves are typically open chains but sometimes can also be other closed chains (like the Delta robot in Figure 7.1(b)). In this chapter we analyze the kinematics of closed chains, paying special attention to parallel mechanisms.

The Stewart–Gough platform is used widely as both a motion simulator and a six-axis force–torque sensor. When used as a force–torque sensor, the six prismatic joints experience internal linear forces whenever any external force is applied to the moving platform; by measuring these internal linear forces one can estimate the applied external force. The Delta robot is a three-dof mechanism whose moving platform moves in such a way that it always remains parallel to the fixed platform. Because the three actuators are all attached to the three revolute joints of the fixed platform, the moving parts are relatively light; this allows the Delta to achieve very fast motions.

Closed chains admit a much greater variety of designs than open chains, and their kinematic and static analysis is consequently more complicated. This complexity can be traced to two defining features of closed chains: (i) not all joints are actuated, and (ii) the joint variables must satisfy a number of loop-closure constraint equations, which may or may not be independent depending on the configuration of the mechanism. The presence of unactuated (or passive) joints, together with the fact that the number of actuated joints may deliberately be designed to exceed the mechanism's kinematic degrees of freedom – such mechanisms are said to be redundantly actuated – not only makes the kinematics analysis more challenging but also introduces new types of singularities not present in open chains.

Recall also that, for open chains, the kinematic analysis proceeds in a more or less straightforward fashion, with the formulation of the forward kinematics (e.g., via the product of exponentials formalism) followed by that of the inverse kinematics.

Type
Chapter
Information
Modern Robotics
Mechanics, Planning, and Control
, pp. 209 - 230
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×