Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T13:18:34.161Z Has data issue: false hasContentIssue false

2 - Configuration Space

Published online by Cambridge University Press:  04 June 2024

Kevin M. Lynch
Affiliation:
Northwestern University, Illinois
Frank C. Park
Affiliation:
Seoul National University
Get access

Summary

A robot is mechanically constructed by connecting a set of bodies, called links, to each other using various types of joints. Actuators, such as electric motors, deliver forces or torques that cause the robot's links to move. Usually an endeffector, such as a gripper or hand for grasping and manipulating objects, is attached to a specific link. All the robots considered in this book have links that can be modeled as rigid bodies.

Perhaps the most fundamental question one can ask about a robot is, where is it? The answer is given by the robot's configuration: a specification of the positions of all points of the robot. Since the robot's links are rigid and of a known shape,1 only a few numbers are needed to represent its configuration. For example, the configuration of a door can be represented by a single number, the angle θ about its hinge. The configuration of a point on a plane can be described by two coordinates, (x, y). The configuration of a coin lying heads up on a flat table can be described by three coordinates: two coordinates (x, y) that specify the location of a particular point on the coin, and one coordinate (θ) that specifies the coin's orientation. (See Figure 2.1).

The above coordinates all take values over a continuous range of real numbers. The number of degrees of freedom (dof) of a robot is the smallest number of real-valued coordinates needed to represent its configuration. In the example above, the door has one degree of freedom. The coin lying heads up on a table has three degrees of freedom. Even if the coin could lie either heads up or tails up, its configuration space still would have only three degrees of freedom; a fourth variable, representing which side of the coin faces up, takes values in the discrete set ﹛heads, tails﹜, and not over a continuous range of real values like the other three coordinates.

Definition 2.1 The configuration of a robot is a complete specification of the position of every point of the robot. The minimum number n of real-valued coordinates needed to represent the configuration is the number of degrees of freedom (dof) of the robot.

Type
Chapter
Information
Modern Robotics
Mechanics, Planning, and Control
, pp. 10 - 49
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×