Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Electromagnetics of planar surface waves
- 3 Single-interface modes in the microwave regime
- 4 Single-interface lossless modes in єr′—μr′ parameter space
- 5 Double-interface lossless modes in єr′—μr′ parameter space
- 6 Single-interface surface plasmons
- 7 Double-interface surface plasmons in symmetric guides
- 8 Quasi-one-dimensional surface plasmons
- 9 Localized surface plasmons
- 10 Techniques for exciting surface plasmons
- 11 Plasmonic materials
- 12 Applications
- Appendix A
- Index
7 - Double-interface surface plasmons in symmetric guides
Published online by Cambridge University Press: 05 May 2013
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Electromagnetics of planar surface waves
- 3 Single-interface modes in the microwave regime
- 4 Single-interface lossless modes in єr′—μr′ parameter space
- 5 Double-interface lossless modes in єr′—μr′ parameter space
- 6 Single-interface surface plasmons
- 7 Double-interface surface plasmons in symmetric guides
- 8 Quasi-one-dimensional surface plasmons
- 9 Localized surface plasmons
- 10 Techniques for exciting surface plasmons
- 11 Plasmonic materials
- 12 Applications
- Appendix A
- Index
Summary
Introduction
List of topics investigated in this chapter
The topics covered in this chapter and summarized in Table 7 are similar to those covered in Chapter 6. Here, however, we deal with a double- rather than a singleinterface structure which consists of identical lossless dielectric (DPS-type) cover and substrate bounding a lossy metallic (ENG-type) guide, as shown in Fig. 7.1. Such a symmetric structure produces two solutions to the mode equation that are distinct from each other for a finite guide thickness. As the thickness of the guide increases, the two solutions converge to that of a single-interface DPS-ENG-type structure. The propagation constants of these modes are calculated for the freely propagating case and for the case where the modes are excited and loaded by a prism coupler. For each mode the electric and magnetic fields are evaluated, together with the local power flow, wave impedance and surface charge density at each guide interface. In Chapter 6 we dealt with a single-interface structure and used the Otto (O) or Kretschmann (K) configurations to excite a mode. Here, because we have a double-interface structure, we use the general prism coupling configuration (G). The reflectivity of an incident electromagnetic wave off the base of the prism, ℛ, is calculated for this configuration. The theory of double-interface surface plasmons was adapted from Refs. [1] to [4] and the concept of short-range (SR) and long-range (LR) SPs and recent reviews are from Refs. [5] to [11].
- Type
- Chapter
- Information
- Modern Introduction to Surface PlasmonsTheory, Mathematica Modeling, and Applications, pp. 141 - 163Publisher: Cambridge University PressPrint publication year: 2010