Published online by Cambridge University Press: 17 May 2010
Introduction
Throughout we assume T is a complete theory in a countable language L and we work within a monster model C=Ceq of T. In this survey paper we will sketch some ideas leading to the topological stability conjecture. Also we will show how this conjecture is related to stable model theory.
One of the central open problems in model theory is Vaught's conjecture, saying that if T has few (that is, < 2ℵ0) countable models, then T has countably many of them. Thus far, this conjecture was proved for ω-stable theories [SHM], for superstable theories of finite rank [Bu2] and in some other cases [Ne10] (see also [Ls] for more information on Vaught's conjecture).
Vaught's conjecture refers to countable models and it became a yardstick with which we measure the level of our understanding of them. In fact, for a model theorist Vaught's conjecture is interesting mainly because it leads to various structural theorems on countable models. Usually such theorems say that if T has few countable models, then these models can be described so that it becomes possible to count them. So usually (and also in this paper) we assume T has <2N0 countable models, or at least that T is small (meaning that is countable for all n).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.