from Part III - Artificial neural networks as models of perceptual processing in ecology and evolutionary biology
Published online by Cambridge University Press: 05 July 2011
12.1 Stochastic multi-modal communication
Biological systems are inherently noisy and typically comprised of distributed, partially autonomous components. These features require that we understand evolutionary traits in terms of probabilistic design principles, rather than traditional deterministic, engineering frameworks. This characterisation is particularly relevant for signalling systems. Signals, whether between cells or individuals, provide essential integrative mechanisms for building complex, collective, structures. These signalling mechanisms need to integrate, or average, information from distributed sources in order to generate reliable responses. Thus there are two primary pressures operating on signals: the need to process information from multiple sources, and the need to ensure that this information is not corrupted or effaced. In this chapter we provide an information-theoretic framework for thinking about the probabilistic logic of animal communication in relation to robust, multi-modal, signals.
There are many types of signals that have evolved to allow for animal communication. These signals can be classified according to five features: modality (the number of sensory systems involved in signal production), channels (the number of channels involved in each modality), components (the number of communicative units within modalities and channels), context (variation in signal meaning due to social or environmental factors) and combinatoriality (whether modalities, channels, components and/or contextual usage can be rearranged to create different meaning). In this paper we focus on multi-channel and multi-modal signals, exploring how the capacity for multi-modality could have arisen and whether it is likely to have been dependent on selection for increased information flow or on selection for signalling system robustness.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.