Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T10:59:42.459Z Has data issue: false hasContentIssue false

15 - Understanding decision-making deficits in neurological conditions: insights from models of natural action selection

from Part II - Computational neuroscience models

Published online by Cambridge University Press:  05 November 2011

Anil K. Seth
Affiliation:
University of Sussex
Tony J. Prescott
Affiliation:
University of Sheffield
Joanna J. Bryson
Affiliation:
University of Bath
Get access

Summary

Summary

Models of natural action selection implicate fronto-striatal circuits in both motor and cognitive ‘actions’. Dysfunction of these circuits leads to decision-making deficits in various populations. We review how computational models provide insights into the mechanistic basis for these deficits in Parkinson's patients and individuals with ventromedial frontal damage. We then consider implications of the models for understanding behaviour and cognition in attention deficit/hyperactivity disorder (ADHD). Incorporation of cortical norepinephrine function into the model improves action selection in noisy environments and accounts for response variability in ADHD. We close with more general clinical implications.

Introduction

Fronto-striatal dysfunction can lead to dramatic changes in cognition and action, as evidenced by various disorders with disturbances to this circuitry, including Parkinson's disease (PD), schizophrenia, attention deficit/hyperactivity disorder (ADHD), obsessive–compulsive disorder, Tourrette's syndrome, Huntington's disease and addiction (Nieoullon 2002). One might wonder how adaptive evolution of a brain system could lead to the complexity and diversity of behaviours associated with these disorders, especially since these behaviours generally do not occur spontaneously in animals. However, we could also turn this question on its ear and ask: how elegant must a neural system be to lead to more rational human behaviour? It may be an unfortunate but necessary corollary that the complexity required to produce adaptive thought and behaviour may be vulnerable to all manner of issues with the ‘plumbing’, which would have compounding effects on the overall system. Thus the trade-offs that come with adaptive human behaviour may be akin to those associated with a car that has electronic seat position control and GPS navigation – these luxurious amenities come with increased risk of something breaking in an unpredictable fashion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albin, R. L.Young, A. B.Penney, J. B. 1989 The functional anatomy of basal ganglia disordersTrends Neurosci 12 366CrossRefGoogle ScholarPubMed
Alexander, G. E.DeLong, M. R.Strick, P. L. 1986 Parallel organization of functionally segregated circuits linking basal ganglia and cortexAnnu. Rev. Neurosci. 9 357CrossRefGoogle ScholarPubMed
Anderson, V. C.Burchiel, K. J.Hogarth, P.Favre, J.Hammerstad, J. P. 2005 Pallidal vs. subthalamic nucleus deep brain stimulation in Parkinson diseaseArchiv. Neurol. 62 554CrossRefGoogle ScholarPubMed
APA 1994 Diagnostic and Statistical Manual of Mental DisordersWashington DCAmerican Psychiatric PressGoogle Scholar
Arcos, D.Sierra, A.Nuez, A. 2003 Noradrenaline increases the firing rate of a subpopulation of rat subthalamic neurones through the activation of alpha 1-adrenoceptorsNeuropharmacol. 45 1070CrossRefGoogle ScholarPubMed
Aron, A. R.Poldrack, R. A. 2006 Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleusJ. Neurosci. 26 2424CrossRefGoogle ScholarPubMed
Aston-Jones, G.Cohen, J. D. 2005 An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performanceAnnu. Rev. Neurosci. 28 403CrossRefGoogle ScholarPubMed
Aubert, I.Ghorayeb, I.Normand, E.Bloch, B. 2000 Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatumJ. Comp. Neurol. 418 223.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Baumeister, A. A.Hawkins, M. F. 2001 Incoherence of neuroimaging studies of attention deficit/hyperactivity disorderClin. Neuropharmacol. 24 2CrossRefGoogle ScholarPubMed
Baunez, C.Humby, T.Eagle, D. M. 2001 Effects of STN lesions on simple versus choice reaction time tasks in the rat: preserved motor readiness, but impaired response selectionEur. J. Neurosci. 13 1609CrossRefGoogle Scholar
Baunez, C.Robbins, T. W. 1998 Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in ratsEur. J. Neurosci. 9 2086CrossRefGoogle Scholar
Bayer, H. M.Lau, B.Glimcher, P. W. 2007
Bechara, A.Damasio, H.Tranel, D.Anderson, S. W. 1998 Dissociation of working memory from decision making within the human prefrontal cortexJ. Neurosci. 18 428CrossRefGoogle ScholarPubMed
Beiser, D. G.Houk, J. C. 1998 Model of cortical-basal ganglionic processing: encoding the serial order of sensory eventsJ. Neurophysiol. 79 3168CrossRefGoogle ScholarPubMed
Benabid, A. L. 2003 Deep brain stimulation for Parkinson's diseaseCurr. Opin. Neurobiol. 13 696CrossRefGoogle ScholarPubMed
Bergman, H.Wichmann, T.Karmon, B.DeLong, M. R. 1994 The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of ParkinsonismJ. Neurophysiol. 72 507CrossRefGoogle ScholarPubMed
Biederman, J.Spencer, T. 1999 Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorderBiol. Psychiatry 46 1234CrossRefGoogle Scholar
Bodi, N.Keri, S.Nagy, H. 2009 Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson's patientsBrain 132 2385CrossRefGoogle ScholarPubMed
Booth, J. R.Burman, D. D.Meyer, J. R. 2005 Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit/hyperactivity disorder (ADHD)J. Psychol. Psyc. 46 94CrossRefGoogle Scholar
Brown, J.Bullock, D.Grossberg, S. 2004 How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccadesNeural Networks 17 471CrossRefGoogle ScholarPubMed
Bush, G.Valera, E. M.Seidman, L. J. 2005 Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directionsBiol. Psychiat. 57 1273CrossRefGoogle ScholarPubMed
Castellanos, F. X.Lee, P. P.Sharp, W. 2002 Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorderJAMA 288 1740CrossRefGoogle ScholarPubMed
Castellanos, F. X.Sonuga-Barke, E. J. S.Scheres, A. 2005 Varieties of attention-deficit/hyperactivity disorder-related intra-individual variabilityBiol. Psychiat. 57 1416CrossRefGoogle ScholarPubMed
Centonze, D.Picconi, B.Gubellini, P.Bernardi, G.Calabresi, P. 2001 Dopaminergic control of synaptic plasticity in the dorsal striatumEur. J. Neurosci. 13 1071CrossRefGoogle ScholarPubMed
Centonze, D.Usiello, A.Costa, C. 2004 Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine d2l receptorsJ. Neurosci. 24 8214CrossRefGoogle ScholarPubMed
Chamberlain, S. R.Müller, U.Blackwell, A. D. 2006 Neurochemical modulation of response inhibition and probabilistic learning in humansScience 311 861CrossRefGoogle ScholarPubMed
Chase, H. W.Clark, L.Myers, C. E. 2008 The role of the orbitofrontal cortex in human discrimination learningNeuropsychologia 46 1326CrossRefGoogle ScholarPubMed
Choi, W. Y.Balsam, P. D.Horvitz, J. C. 2005 Extended habit training reduces dopamine mediation of appetitive response expressionJ. Neurosci. 25 6729CrossRefGoogle ScholarPubMed
Cohen, J. D.Braver, T. S.Brown, J. W. 2002 Computational perspectives on dopamine function in prefrontal cortexCurr. Opin. Neurobiol. 12 223CrossRefGoogle ScholarPubMed
Cohen, M. X.Frank, M. J. 2009 Neurocomputational models of basal ganglia function in learning, memory and choiceBehav. Brain Res. 199 141CrossRefGoogle Scholar
Cools, R.Altamirano, L.D’Esposito, M. 2006 Reversal learning in Parkinson's disease depends on medication status and outcome valenceNeuropsychologia 44 1663CrossRefGoogle ScholarPubMed
Cools, R.Barker, R. A.Sahakian, B. J.Robbins, T. W. 2001 Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demandsCereb. Cortex 11 1136CrossRefGoogle ScholarPubMed
Creese, I.Sibley, D. R.Hamblin, M. W.Leff, S. E. 1983 The classification of dopamine receptors: relationship to radioligand bindingAnnu. Rev. Neurosci. 6 43CrossRefGoogle ScholarPubMed
Dayan, P. 2001 Levels of analysis in neural modelingEncyclopedia of Cognitive ScienceLondonMacMillan PressGoogle Scholar
Delgado, M. R.Miller, M. M.Inati, S.Phelps, E. A. 2005 An fMRI study of reward-related probability learningNeuroImage 24 862CrossRefGoogle ScholarPubMed
Delgado, M. R.Nystrom, L. E.Fissell, C.Noll, D. C.Fiez, J. A. 2000 Tracking the hemodynamic responses to reward and punishment in the striatumJ. Neurophysiol. 84CrossRefGoogle ScholarPubMed
Dell’Osso, B.Altamura, A. C.Allen, A.Hollander, E. 2005 Brain stimulation techniques in the treatment of obsessive-compulsive disorder: current and future directionsCNS Spectr. 10 966CrossRefGoogle ScholarPubMed
Disney, E. R.Elkins, I. J.McGue, M.Iacono, W. G. 1999 Effects of ADHD, conduct disorder, and gender on substance use and abuse in adolescenceAm. J. Psychiat. 156 1515CrossRefGoogle ScholarPubMed
Dodd, M. L.Klos, K. J.Bower, J. H. 2005 Pathological gambling caused by drugs used to treat Parkinson diseaseArchiv. Neurol. 62 1377CrossRefGoogle ScholarPubMed
Dougherty, D. D.Bonab, A. A.Spencer, T. J.Rauch, S. L.Madras, B. K.Fischman, A. J. 1999 Dopamine transporter density in patients with attention deficit hyperactivity disorderLancet 354 2132CrossRefGoogle ScholarPubMed
Durston, S.Tottenham, N. T.Thomas, K. M. 2003 Differential patterns of striatal activation in young children with and without ADHDBiol. Psychiat. 53 871CrossRefGoogle ScholarPubMed
Faraone, S. V.Biederman, J.Mick, E. 2006 The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studiesPsychol. Med. 36 159CrossRefGoogle ScholarPubMed
Faraone, S. V.Perlis, R. H.Doyle, A. E. 2005 Molecular genetics of attention-deficit/hyperactivity disorderBiol. Psychiat. 57 1313CrossRefGoogle ScholarPubMed
Fellows, L. K.Farah, M. J. 2003 Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigmBrain 126 1830CrossRefGoogle ScholarPubMed
Frank, M. J. 2005 Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and non-medicated parkinsonismJ. Cogn. Neurosci. 17 51CrossRefGoogle Scholar
Frank, M. J. 2006 Hold your horses: a dynamic computational role for the subthalamic nucleus in decision makingNeural Networks 19 1120CrossRefGoogle ScholarPubMed
Frank, M. J.Claus, E. D. 2006 Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversalPsychol. Rev. 113 300CrossRefGoogle ScholarPubMed
Frank, M. J.Doll, B.Oas-Terpstra, J.Moreno, F. 2009 Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitationNature Neurosci. 12 1062CrossRefGoogle ScholarPubMed
Frank, M. J.Loughry, B.O’Reilly, R. C. 2001 Interactions between the frontal cortex and basal ganglia in working memory: a computational modelCogn. Affect. Behav. Neurosci. 1 137CrossRefGoogle ScholarPubMed
Frank, M. J.Moustafa, A. A.Haughey, H. M.Curran, T.Hutchison, K. E. 2007 Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learningProc. Nat. Acad. Sci. USA 104 16311CrossRefGoogle ScholarPubMed
Frank, M. J.O’Reilly, R. C. 2006 A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidolBehav. Neurosci. 120 497CrossRefGoogle ScholarPubMed
Frank, M. J.Samanta, J.Moustafa, A. A.Sherman, S. J. 2007 Hold your horses: impulsivity, deep brain stimulation, and medication in ParkinsonismScience 318 1309CrossRefGoogle ScholarPubMed
Frank, M. J.Santamaria, A.O’Reilly, R. C.Willcutt, E. 2007 Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorderNeuropsychopharmacol. 32 1583CrossRefGoogle ScholarPubMed
Frank, M. J.Seeberger, L. C.O’Reilly, R. C. 2004 By carrot or by stick: cognitive reinforcement learning in ParkinsonismScience 306 1940CrossRefGoogle ScholarPubMed
Frank, M. J.Woroch, B. S.Curran, T. 2005 Error-related negativity predicts reinforcement learning and conflict biasesNeuron 47 495CrossRefGoogle ScholarPubMed
Gerfen, C. R. 1992 The neostriatal mosaic: multiple levels of compartmental organization in the basal gangliaAnnu. Rev. Neurosci. 15 285CrossRefGoogle ScholarPubMed
Gerfen, C. R. 2003 D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson's diseaseNeuroscientist 9 455CrossRefGoogle ScholarPubMed
Goto, Y.Grace, A. A. 2005 Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behaviorNature Neurosci. 8 805CrossRefGoogle ScholarPubMed
Grace, A. A. 2001 Psychostimulant actions on dopamine and limbic system function: relevance to the pathophysiology and treatment of ADHDStimulant Drugs and ADHD: Basic and Clinical NeuroscienceSolanto, M. V.Arnsten, A. F. T.New YorkOxford University Press134Google Scholar
Gurney, K.Prescott, T. J.Redgrave, P. 2001 A computational model of action selection in the basal ganglia. I. A new functional anatomyBiol. Cybern. 84 401CrossRefGoogle ScholarPubMed
Harden, D. G.Grace, A. A. 1995 Activation of dopamine cell firing by repeated L-Dopa administration to dopamine-depleted rats: its potential role in mediating the therapeutic response to L-Dopa treatmentJ Neurosci 15 6157CrossRefGoogle ScholarPubMed
Hernandez-Lopez, S.Bargas, J.Surmeier, D. J.Reyes, A.Galarraga, E. 1997 D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an l-type Ca2+ conductanceJ. Neurosci. 17 3334CrossRefGoogle ScholarPubMed
Hernandez-Lopez, S.Tkatch, T.Perez-Garci, E. 2000 D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel Plc[beta]1-IP3-calcineurin-signaling cascadeJ. Neurosci. 20 8987CrossRefGoogle Scholar
Hikosaka, K.Watanabe, M. 2000 Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewardsCereb. Cortex 10 263CrossRefGoogle ScholarPubMed
Hlbig, T. D.Tse, W.Frisina, P. G. 2009 Subthalamic deep brain stimulation and impulse control in Parkinson's diseaseEur. J. Neurol. 16 493CrossRefGoogle Scholar
Holland, P. C.Gallagher, M. 2004 Amygdala-frontal interactions and reward expectancyCurr. Opin. Neurobiol. 14 148CrossRefGoogle ScholarPubMed
Holroyd, C. B.Coles, M. G. H. 2002 The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativityPsychol. Rev. 109 679CrossRefGoogle ScholarPubMed
Houk, J. C. 2005 Agents of the mindBiol. Cybern 92 427CrossRefGoogle ScholarPubMed
Houk, J. C.Bastianen, C.Fansler, D. 2007 Action selection and refinement in subcortical loops through basal ganglia and cerebellumPhil. Trans. Roy. Soc. B, Biol. Sci. 362 1573CrossRefGoogle ScholarPubMed
Houk, J. C.Wise, S. P. 1995 Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling actionCereb. Cortex 5 95CrossRefGoogle ScholarPubMed
Jodo, E.Chiang, C.Aston-Jones, G. 1998 Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neuronsNeuroscience 83Google ScholarPubMed
Jodo, E.Suzuki, Y.Kayama, Y. 2000 Selective responsiveness of medial prefrontal cortex neurons to the meaningful stimulus with a low probability of occurrence in ratsBrain Res. 856 68CrossRefGoogle ScholarPubMed
Joel, D.Weiner, I. 2000 The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatumNeuroscience 96CrossRefGoogle ScholarPubMed
Kaasinen, V.Nagren, K.Hietala, J. 2000 Extrastriatal dopamine D2 and D3 receptors in early and advanced in Parkinson's diseaseNeurology 54 1482CrossRefGoogle ScholarPubMed
Kaasinen, V.Ruottinen, H.Nagren, K. 2000 Upregulation of putaminal dopamine D2 receptors in early Parkinson's disease: a comparative PET study with [11C]raclopride and [11C]N-methylspiperoneJ. Nucl. Med 41 65Google Scholar
Kahneman, D.Tversky, A. 1979 Prospect theory: an analysis of decision under riskEconometrica 47 263CrossRefGoogle Scholar
Karachi, C.Yelnik, J.Tand, D. 2005 The pallidosubthalamic projection: an anatomical substrate for nonmotor functions of the subthalamic nucleus in primatesMovement Disord. 20 172CrossRefGoogle ScholarPubMed
Klein, T. A.Neumann, J.Reuter, M. 2007 Genetically determined differences in learning from errorsScience 318 1642CrossRefGoogle ScholarPubMed
Krain, A. L.Castellanos, F. X. 2006 Brain development and ADHDClin. Psychol. Rev. 26 433CrossRefGoogle ScholarPubMed
Krause, K.Dresel, S. H.Krause, J.Kung, H. F.Tatsch, K. 2000 Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomographyNeurosci. Lett. 285 107CrossRefGoogle ScholarPubMed
Leth-Steensen, C.Elbaz, Z. K.Douglas, V. I. 2000 Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approachActa Psychol. 104 167CrossRefGoogle ScholarPubMed
Llorente, A. M.Voigt, R. G.Jensen, C. L. 2006 Performance on a visual sustained attention and discrimination task is associated with urinary excretion of norepineprhine metabolite in children with attention-deficit/hyperactivity disorder (AD/HD)Clinical Neuropsychol. 20 133CrossRefGoogle Scholar
Luo, J.Kaplitt, M. G.Fitzsimons, H. L. 2002 Subthalamic gad gene therapy in a Parkinson's disease rat modelScience 298 425CrossRefGoogle Scholar
Mahon, S.Casassus, G.Mulle, C.Charpier, S. 2003 Spike-dependent intrinsic plasticity increases firing probability in rat striatal neurons in vivoJ. Physiol. 550 947CrossRefGoogle ScholarPubMed
McAuley, J. H. 2003 The physiological basis of clinical deficits in Parkinson's diseaseProg. Neurobiol. 69 27CrossRefGoogle ScholarPubMed
McClure, S. M.Laibson, D. I.Loewenstein, G.Cohen, J. D. 2004 Separate neural systems value immediate and delayed rewardsScience 306 503CrossRefGoogle Scholar
McNab, F.Klingberg, T. 2007 Prefrontal cortex and basal ganglia control access to working memoryNature Neurosci. 11 103CrossRefGoogle ScholarPubMed
Mink, J. W. 1996 The basal ganglia: focused selection and inhibition of competing motor programsProg. Neurobiol. 50 381CrossRefGoogle ScholarPubMed
Mobini, S.Body, S.Ho, M.-Y. 2002 Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcementPsychopharmacol. 160 290Google ScholarPubMed
Moustafa, A. A.Cohen, M. X.Sherman, S. J.Frank, M. J. 2008 A role for dopamine in temporal decision making and reward maximization in ParkinsonismJ. Neurosci. 28 12294CrossRefGoogle ScholarPubMed
Moustafa, A. A.Sherman, S. J.Frank, M. J. 2008 A dopaminergic basis for working memory, learning, and attentional shifting in Parkinson's diseaseNeuropsychologia 46 3144CrossRefGoogle Scholar
Müller, U.Wächter, T.Barthel, H.Reuter, M.von Cramon, D. Y. 2000 Striatal [123i]beta-CIT SPECT and prefrontal cognitive functions in Parkinson's diseaseJ. Neural Transm. 107 303Google ScholarPubMed
Nambu, A.Tokuno, H.Hamada, I. 2000 Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkeyJ. Neurophysiol. 84 289CrossRefGoogle ScholarPubMed
Ni, Z.Bouali-Benazzouz, R.Gao, D.Benabid, A.Benazzouz, A. 2000 Changes in the firing pattern of globus pallidus neurons after the degeneration of nigrostriatal pathway are mediated by the subthalamic nucleus in ratEur. J. Neurosci. 12 4338Google Scholar
Nieoullon, A. 2002 Dopamine and the regulation of cognition and attentionProg. Neurobiol. 67 53CrossRefGoogle ScholarPubMed
Oja, E. 1983 A simplified neuron model as a principal component analyzerJ. Math. Biol. 15 267CrossRefGoogle Scholar
O’Reilly, R. C. 1996 Biologically plausible error-driven learning using local activation differences: the generalized recirculation algorithmNeural Comput. 8 895CrossRefGoogle Scholar
O’Reilly, R. C. 2001 Generalization in interactive networks: the benefits of inhibitory competition and Hebbian learningNeural Comput 13 1199CrossRefGoogle ScholarPubMed
O’Reilly, R. C.Frank, M. J. 2006 Making working memory work: a computational model of learning in the prefrontal cortex and basal gangliaNeural Comput. 18 283CrossRefGoogle ScholarPubMed
O’Reilly, R. C.Munakata, Y. 2000 :Understanding the Mind by Simulating the BrainCambridge, MAMIT PressGoogle Scholar
Orieux, G.Franois, C.Féger, J.Hirsch, E. C. 2002 Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the ratJ. Neurosci. 22 8762CrossRefGoogle ScholarPubMed
Overtoom, C. C. E.Verbaten, M. N.Kemner, C. 2003 Effects of methylphenidate, desipramine, and l-dopa on attention and inhibition in children with attention deficit hyperactivity disorderBehav. Brain Res. 145 7CrossRefGoogle ScholarPubMed
Parent, A.Hazrati, L. N. 1995 Functional anatomy of the basal ganglia. II. the place of subthalamic nucleus and external pallidum in basal ganglia circuitryBrain Res. Rev. 20 128CrossRefGoogle ScholarPubMed
Pasupathy, A.Miller, E. K. 2005 Different time courses for learning-related activity in the prefrontal cortex and striatumNature 433 873CrossRefGoogle ScholarPubMed
Pennington, B. F. 2005 Toward a new neuropsychological model of attention-deficit/hyperactivity disorder: subtypes and multiple deficitsBiol. Psychiat. 57 1221CrossRefGoogle Scholar
Pothos, E. N.Davila, V.Sulzer, D. 1998 Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal sizeJ. Neurosci. 18 4106CrossRefGoogle ScholarPubMed
Remy, P.Jackson, P. L.Ribeiro, M. J. 2000 Relationships between cognitive deficits and dopaminergic function in the striatum of Parkinson's disease patients: a pet studyNeurology 54Google Scholar
Rinne, U. K.Laihinen, A.Rinne, J. O. 1990 Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinson's diseaseMove. Disord. 5 55CrossRefGoogle ScholarPubMed
Robbins, T. W.Everitt, B. J. 1999 Drug addiction: bad habits add upNature 398 567CrossRefGoogle ScholarPubMed
Robertson, G. S.Vincent, S. R.Fibiger, H. C. 1992 D1 and d2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neuronsNeuroscience 49 285CrossRefGoogle ScholarPubMed
Rolls, E. T. 1996 The orbitofrontal cortexPhil. Trans. Roy. Soc. B Biol. Sci. 351 1433CrossRefGoogle ScholarPubMed
Rubia, K.Overmeyer, S.Taylor, E. 1999 Hypofrontality in attention deficit/hyperactivity disorder during higher-order motor control: a study with functional MRIAmer. J. Psychiat. 156 891CrossRefGoogle ScholarPubMed
Ruskin, D. N.Bergstrom, D. A.Shenker, A. 2001 Drugs used in the treatment of attention-deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor actionBiol. Psychiat. 49 340CrossRefGoogle ScholarPubMed
Sagvolden, T.Johansen, E. B.Aase, H.Russell, V. A. 2005 A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypesBehav. Brain Sci. 28 397CrossRefGoogle ScholarPubMed
Sato, F.Parent, M.Levesque, M.Parent, A. 2000 Axonal branching pattern of neurons of the subthalamic nucleus in primatesJ. Comp. Neurol. 424 1423.0.CO;2-8>CrossRefGoogle ScholarPubMed
Satoh, T.Nakai, S.Sato, T.Kimura, M. 2003 Correlated coding of motivation and outcome of decision by dopamine neuronsJ. Neurosci. 23 9913CrossRefGoogle ScholarPubMed
Scheres, A.Dijkstra, M.Ainslie, E. 2006 Temporal and probabilistic discounting of rewards in children and adolescents: effects of age and ADHD symptomsNeuropsychologia 44 2092CrossRefGoogle ScholarPubMed
Scheres, A.Milham, M. P.Knutson, B.Castellanos, F. X. 2007 Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorderBiol. Psychiat. 61 720CrossRefGoogle ScholarPubMed
Schiffer, W. K.Volkow, N. D.Fowler, J. S. 2006 Therapeutic doses of amphetamine or methylphenidate differentially increase synaptic and extracellular dopamineSynapse 59 243CrossRefGoogle ScholarPubMed
Schoenbaum, G.Roesch, M. 2005 Orbitofrontal cortex, associative learning, and expectanciesNeuron 47 633CrossRefGoogle ScholarPubMed
Schultz, W. 2002 Getting formal with dopamine and rewardNeuron 36 241CrossRefGoogle ScholarPubMed
Seger, C. A.Cincotta, C. M. 2006 Dynamics of frontal, striatal, and hippocampal systems during rule learningCereb. Cortex 16 1546CrossRefGoogle ScholarPubMed
Servan-Schreiber, D.Printz, H.Cohen, J. D. 1990 A network model of catecholamine effects: gain, signal-to-noise ratio, and behaviorScience 249 892CrossRefGoogle ScholarPubMed
Shen, W.Flajolet, M.Greengard, P.Surmeier, D. J. 2008 Dichotomous dopaminergic control of striatal synaptic plasticityScience 321 848CrossRefGoogle ScholarPubMed
Shohamy, D.Myers, C. E.Grossman, S.Sage, J.Gluck, M. A. 2004 The role of dopamine in cognitive sequence learning: evidence from Parkinson's diseaseBehav. Brain Res. 156 191CrossRefGoogle Scholar
Slifstein, M.Kolachana, B.Simpson, E. H. 2008 COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PETMolec. Psychiat. 13 821CrossRefGoogle ScholarPubMed
Smith-Roe, S. L.Kelley, A. E. 2000 Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learningJ. Neurosci. 20 7737CrossRefGoogle ScholarPubMed
Solanto, M. V. 2002 Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience researchBehav. Brain Res. 130 65CrossRefGoogle ScholarPubMed
Solanto, M. V.Abikoff, H., E. Sonuga-Barke 2001 The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH multimodal treatment study of AD/HDJ. Abnorm. Child Psych. 29 215CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J. S. 2005 Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathwaysBiol. Psychiat. 57 1231CrossRefGoogle ScholarPubMed
Surmeier, D. J.Ding, J.Day, M.Wang, Z.Shen, W. 2007 D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neuronsTrends Neurosci. 30 228CrossRefGoogle ScholarPubMed
Swainson, R.Rogers, R. D.Sahakian, B. J. 2000 Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medicationNeuropsychologia 38 596CrossRefGoogle ScholarPubMed
Swanson, C. J.Perry, K. W.Koch-Krueger, S. 2006 Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the ratNeuropharmacology 50 755CrossRefGoogle ScholarPubMed
Swanson, J. M.Kraemer, H. C.Hinshaw, S. P. 2001 Clinical relevance of the primary findings of the MTA: success rates based on severity of ADHD and odd symptoms at the end of treatmentJ. Am. Acad. Child Psy. 40 168CrossRefGoogle ScholarPubMed
Terman, D.Rubin, J. E.Yew, A. C.Wilson, C. J. 2002 Activity patterns in a model for the subthalamopallidal network of the basal gangliaJ. Neurosci. 22 2963CrossRefGoogle Scholar
Usher, M.Cohen, J. D.Servan-Schreiber, D.Rajkowski, J.Aston-Jones, G. 1999 The role of locus coeruleus in the regulation of cognitive performanceScience 283 549CrossRefGoogle ScholarPubMed
Vaidya, C. J.Bunge, S. A.Dudukovic, N. M. 2005 Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imagingAm. J. Psychiat. 162 1605CrossRefGoogle ScholarPubMed
Volkow, N. D.Wang, G. J.Fowler, J. S. 2001 Therapeutic doses of methylphenidate significantly increase extracellular dopamine in the human brainJ. Neurosci. 21CrossRefGoogle ScholarPubMed
Wallis, J. D.Miller, E. K. 2003 From rule to response: neuronal processes in the premotor and prefrontal cortexJ. Neurophysiol. 90 1790CrossRefGoogle ScholarPubMed
Wichmann, T.DeLong, M. R. 2003 Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorderAnn. NY Acad. Sci. 991 199CrossRefGoogle ScholarPubMed
Willcutt, E. G.Doyle, A. E.Nigg, J. T.Faraone, S. V.Pennington, B. F. 2005 Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic reviewBiol. Psychiat. 57 1336CrossRefGoogle ScholarPubMed
Witt, K.Pulkowski, U.Herzog, J. 2004 Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson diseaseArch. Neurol. 61 697CrossRefGoogle ScholarPubMed
Wolf, J. A.Moyer, J. T.Lazarewicz, M. T. 2005 NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuronJ. Neurosci. 25 9080CrossRefGoogle Scholar
Wu, Q.Reith, M. E. A.Walker, Q. D. 2002 Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric studyJ. Neurosci. 22 6272CrossRefGoogle ScholarPubMed
Yeung, N.Botvinick, M. M.Cohen, J. D. 2004 The neural basis of error detection: conflict monitoring and the error-related negativityPsychol. Rev. 111 931CrossRefGoogle ScholarPubMed
Zang, Y.-F.Jin, Z.Weng, X.-C. 2005 Functional MRI in attention-deficit hyperactivity disorder: evidence for hypofrontalityBrain Dev. 27 544CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×