Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T17:15:39.321Z Has data issue: false hasContentIssue false

Some observations about the real and imaginary parts of complex Pfaffian functions

Published online by Cambridge University Press:  04 August 2010

Angus Macintyre
Affiliation:
Queen Mary University of London
Zoé Chatzidakis
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Dugald Macpherson
Affiliation:
University of Leeds
Anand Pillay
Affiliation:
University of Leeds
Alex Wilkie
Affiliation:
University of Manchester
Get access

Summary

Introduction

The main result of this paper has a simple proof, but is a central component in a large-scale project I have recently completed on the model theory of elliptic functions [7, 8]. In that project I take up important work of Bianconi [2] from around 1990, on the Weierstrass ℘ functions on an appropriate domain, and carry it to a decidability result modulo André's conjecture on 1-motives [1]. Bianconi proved model-completeness results, nonconstructively, for the basic situation, and I can see no way to constructivize the method he uses. Instead, I use ideas from two major developments subsequent to Bianconi's work, namely the work of Wilkie [10] and Macintyre-Wilkie [9], and the work of Gabrielov [4] and Gabrielov-Vorobjov [5]. To link with these papers, I interpret Bianconi's formulations in one based on taking the compositional inverse ℘−1, on an appropriate compact, as primitive. The latter function, in contrast to ℘, is complex Pfaffian, and this alone yields, by a result of Gabrielov [5] an important constructive multiplicity bound. But I need more, namely that the real and imaginary parts of ℘−1 are real Pfaffian and this is what I prove below. I doubt that there is any nontrivial general result allowing one to deduce that the real and imaginary parts of a complex Pfaffian function are real Pfaffian, and it is for this reason that I choose to publish the simple, useful result below.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×