Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T22:29:18.085Z Has data issue: false hasContentIssue false

Schanuel's conjecture for non-isoconstant elliptic curves over function fields

Published online by Cambridge University Press:  04 August 2010

Daniel Bertrand
Affiliation:
Institut de Mathématiques de Jussieu
Zoé Chatzidakis
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Dugald Macpherson
Affiliation:
University of Leeds
Anand Pillay
Affiliation:
University of Leeds
Alex Wilkie
Affiliation:
University of Manchester
Get access

Summary

Summary

We discuss functional and number theoretic extensions of Schanuel's conjecture, with special emphasis on the study of elliptic integrals of the third kind.

Introduction

Schanuel's conjecture [La] on the layman's exponential function can be viewed as a measure of the defect between an algebraic and a linear dimension. Its functional analogue, be it in Ax's original setting [Ax1], Coleman's [Co], or Zilber's geometric interpretation [Zi], certainly gives ground to this view-point.

The same remark applies to the elliptic version of the conjecture, and to its functional analogue, as studied by Brownawell and Kubota [BK], and by J. Kirby [K1]. Here, the elliptic curve under consideration is constant. In the same spirit, we discuss in the first section of this note Ax's general theorem [Ax2] on the exponential map on a constant semiabelian variety G, where transcendence degrees are controlled by the (linear) dimension of a certain “hull”. We obtain a similar statement for the universal vectorial extension of G, and refer to the recent work of J. Kirby [K2, K3] for further generalizations of Ax's theorem, involving arbitrary differential fields, multiplicative parametrizations, and uniformity questions.

The naïve number-theoretic analogues of these functional results, however, are clearly false. The first counterexample which comes to mind is provided by periods: Riemann-Legendre relations are quadratic, and cannot be tracked back to hulls of the above type.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×