Book contents
- Frontmatter
- Contents
- Preface to the Second Edition
- Preface
- Introduction: What Is Modal Logic?
- 1 The System K: A Foundation for Modal Logic
- 2 Extensions of K
- 3 Basic Concepts of Intensional Semantics
- 4 Trees for K
- 5 The Accessibility Relation
- 6 Trees for Extensions of K
- 7 Converting Trees to Proofs
- 8 Adequacy of Propositional Modal Logics
- 9 Completeness Using Canonical Models
- 10 Axioms and Their Corresponding Conditions on R
- 11 Relationships between the Modal Logics
- 12 Systems for Quantified Modal Logic
- 13 Semantics for Quantified Modal Logics
- 14 Trees for Quantified Modal Logic
- 15 The Adequacy of Quantified Modal Logics
- 16 Completeness of Quantified Modal Logics Using Trees
- 17 Completeness Using Canonical Models
- 18 Descriptions
- 19 Lambda Abstraction
- 20 Conditionals
- Answers to Selected Exercises
- Bibliography of Works Cited
- Index
Preface
Published online by Cambridge University Press: 05 June 2014
- Frontmatter
- Contents
- Preface to the Second Edition
- Preface
- Introduction: What Is Modal Logic?
- 1 The System K: A Foundation for Modal Logic
- 2 Extensions of K
- 3 Basic Concepts of Intensional Semantics
- 4 Trees for K
- 5 The Accessibility Relation
- 6 Trees for Extensions of K
- 7 Converting Trees to Proofs
- 8 Adequacy of Propositional Modal Logics
- 9 Completeness Using Canonical Models
- 10 Axioms and Their Corresponding Conditions on R
- 11 Relationships between the Modal Logics
- 12 Systems for Quantified Modal Logic
- 13 Semantics for Quantified Modal Logics
- 14 Trees for Quantified Modal Logic
- 15 The Adequacy of Quantified Modal Logics
- 16 Completeness of Quantified Modal Logics Using Trees
- 17 Completeness Using Canonical Models
- 18 Descriptions
- 19 Lambda Abstraction
- 20 Conditionals
- Answers to Selected Exercises
- Bibliography of Works Cited
- Index
Summary
Preface
The main purpose of this book is to help bridge a gap in the landscape of modal logic. A great deal is known about modal systems based on propositional logic. However, these logics do not have the expressive resources to handle the structure of most philosophical argumentation. If modal logics are to be useful to philosophy, it is crucial that they include quantifiers and identity. The problem is that quantified modal logic is not as well developed, and it is difficult for the student of philosophy who may lack mathematical training to develop mastery of what is known. Philosophical worries about whether quantification is coherent or advisable in certain modal settings partly explain this lack of attention. If one takes such objections seriously, they exert pressure on the logician to either eliminate modality altogether or eliminate the allegedly undesirable forms of quantification.
Even if one lays those philosophical worries aside, serious technical problems must still be faced. There is a rich menu of choices for formulating the semantics of quantified modal languages, and the completeness problem for some of these systems is difficult or unresolved. The philosophy of this book is that this variety is to be explored rather than shunned. We hope to demonstrate that modal logic with quantifiers can be simplified so that it is manageable, even teachable. Some of the simplifications depend on the foundations – in the way the systems for propositional modal logic are developed. Some ideas that were designed to make life easier when quantifiers are introduced are also genuinely helpful even for those who will study only the propositional systems. So this book can serve a dual purpose. It is, I hope, a simple and accessible introduction to propositional modal logic for students who have had a first course in formal logic (preferably one that covers natural deduction rules and truth trees). I hope, however, that students who had planned to use this book to learn only propositional modal logic will be inspired to move on to study quantification as well.
- Type
- Chapter
- Information
- Modal Logic for Philosophers , pp. xiii - xviPublisher: Cambridge University PressPrint publication year: 2013