from III - Computational biology of microRNAs
Published online by Cambridge University Press: 22 August 2009
Introduction
Research in the past decade has revealed that microRNAs (miRNAs) are widespread and that they are likely to underlie an appreciably larger set of disease processes than is currently known. The first miRNAs and their functions were determined via classical genetic techniques. Soon after, a number of miRNAs were discovered experimentally (Lagos-Quintana et al., 2001). However, the characterization of miRNA function remained elusive owing to low-throughput experiments and often indeterminate results, most notably for those miRNAs which have multiple roles in multiple tissues. High-throughput experimental methods for miRNA target identification are the ideal solution, but such methods are not currently available. As a result, computational methods were developed, and are still regularly used, for the purpose of identifying miRNA targets.
Most current target prediction programs require the sequences of known miRNAs. Currently, there are 332 known miRNAs in the human genome. The estimation of the total number of miRNAs varies from publication to publication (Lim et al., 2003; Bentwich et al., 2005). In a recent paper, Bentwich et al. contended that there are at least 500 more miRNAs that are yet to be identified (Bentwich et al., 2005). Despite the number of unknown miRNAs, computational approaches based on features of known miRNAs have been instrumental in the discovery of as-of-yet-unknown miRNAs in the genome. The past few years have witnessed an explosion in information regarding the genomic organization of miRNAs, the biogenesis of miRNAs, the targeting mechanisms of miRNAs, and the regulatory networks in which miRNAs are involved.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.