Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T02:14:33.920Z Has data issue: false hasContentIssue false

2 - Microbial Biotechnology: Scope, Techniques, Examples

Published online by Cambridge University Press:  05 June 2012

Alexander N. Glazer
Affiliation:
University of California, Berkeley
Hiroshi Nikaido
Affiliation:
University of California, Berkeley
Get access

Summary

One can be a good biologist without necessarily knowing much about microorganisms, but one cannot be a good microbiologist without a fair basic knowledge of biology!

– Stanier, R. Y., Doudoroff, M., and Adelberg, E. A. (1957). The Microbial World. p. vii, Englewood Cliffs, NJ: Prentice-Hall, Inc.

Microorganisms, whether cultured or represented only in environmental DNA samples, constitute the natural resource base of microbial biotechnology. Numerous prokaryotic and fungal genomes have been completely sequenced and the functions of many genes established. For a newly sequenced prokaryotic genome, functions for over 60% of the open reading frames can be provisionally assigned by sequence homology with genes of known function. Knowledge of the ecology, genetics, physiology, and metabolism of thousands of prokaryotes and fungi provides an indispensable complement to the sequence database.

This is an era of explosive growth of analysis and manipulation of microbial genomes as well as of invention of many new, creative ways in which both microorganisms and their genetic endowment are utilized. Microbial biotechnology is riding the crest of the wave of genomics.

The umbrella of microbial biotechnology covers many scientific activities, ranging from production of recombinant human hormones to that of microbial insecticides, from mineral leaching to bioremediation of toxic wastes. In this chapter, we sketch the complex terrain of microbial biotechnology. The purpose of this chapter is to convey the impact, the extraordinary breadth of applications, and the multidisciplinary nature of this technology. The common denominator to the subjects discussed is that in all instances, prokaryotes or fungi provide the indispensable component.

Type
Chapter
Information
Microbial Biotechnology
Fundamentals of Applied Microbiology
, pp. 45 - 89
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×