Book contents
- Frontmatter
- Dedication
- Contents
- Contents of Volume II
- Preface
- Acknowledgments
- Introduction
- Part I Ergodic Theory and Geometric Measures
- 1 Geometric Measure Theory
- 2 Invariant Measures: Finite and Infinite
- 3 Probability (Finite) Invariant Measures: Basic Properties and Existence
- 4 Probability (Finite) Invariant Measures: Finer Properties
- 5 Infinite Invariant Measures: Finer Properties
- 6 Measure-Theoretic Entropy
- 7 Thermodynamic Formalism
- Part II Complex Analysis, Conformal Measures, and Graph Directed Markov Systems
- References
- Index of Symbols
- Subject Index
3 - Probability (Finite) Invariant Measures: Basic Properties and Existence
from Part I - Ergodic Theory and Geometric Measures
Published online by Cambridge University Press: 20 April 2023
- Frontmatter
- Dedication
- Contents
- Contents of Volume II
- Preface
- Acknowledgments
- Introduction
- Part I Ergodic Theory and Geometric Measures
- 1 Geometric Measure Theory
- 2 Invariant Measures: Finite and Infinite
- 3 Probability (Finite) Invariant Measures: Basic Properties and Existence
- 4 Probability (Finite) Invariant Measures: Finer Properties
- 5 Infinite Invariant Measures: Finer Properties
- 6 Measure-Theoretic Entropy
- 7 Thermodynamic Formalism
- Part II Complex Analysis, Conformal Measures, and Graph Directed Markov Systems
- References
- Index of Symbols
- Subject Index
Summary
This chapter is devoted to the stochastic laws for measurable endomorphisms preserving a probability measure that are finer than the mere Birkhoff Ergodic Theorem. Under appropriate hypotheses, we prove the Law of the Iterated Logarithm. We then describe another powerful method of ergodic theory, namely Young towers, which are also frequently called Kakutani towers. With appropriate assumptions imposed on the first return time, Young's construction yields the exponential decay of correlations, the Central Limit Theorem, and the Law of the Iterated Logarithm follows too.
- Type
- Chapter
- Information
- Meromorphic DynamicsAbstract Ergodic Theory, Geometry, Graph Directed Markov Systems, and Conformal Measures, pp. 102 - 121Publisher: Cambridge University PressPrint publication year: 2023