Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T11:43:51.941Z Has data issue: false hasContentIssue false

11 - The Volcanic Character of Mercury

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Mercury is a volcanic world: the planet has experienced a geological history that included partial melting of the interior and the transport of magma to, and eruption onto, the surface. In this chapter, we review Mercury’s volcanic character, first in terms of effusive volcanism (as characterized by lava plains, erosional landforms, and spectral characteristics), next in regard to the planet’s explosive volcanic activity, and then from the perspective of intrusive magmatism. We also visit the planet’s ancient yet spatially expansive intercrater plains and the prospect that they, too, are volcanic. We combine the observations of and inferences for Mercury’s smooth and intercrater plains to propose a model for the planet’s crustal stratigraphy. The extent of our understanding of the petrology of surface materials on Mercury is then discussed, including compositions and lithologies, mineral assemblages, physicochemical properties, and volatile contents. We then describe in broad terms the history of effusive and explosive volcanism on the planet, before addressing the influence that the planet’s lithospheric properties and tectonic evolution have played on volcanism. We finish by listing some major outstanding questions pertaining to the volcanic character of Mercury, and we suggest how those questions might best be addressed. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 287 - 323
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ampferer, A. (1923). Beiträge zur Auflösung der Mechanik der Alpen. Jahrb. Geol. Bundesanst., 76, 125151.Google Scholar
André, S. L., Watters, T. R. and Robinson, M. S. (2005) The long wavelength topography of Beethoven and Tolstoj basins, Mercury. Geophys. Res. Lett., 32, L21202, doi:10.1029/2005GL023627.CrossRefGoogle Scholar
Andrews-Hanna, J. C., Asmar, S. W., Head, J. W., Kiefer, W. S., Konopliv, A. S., Lemoine, F. G., Matsuyama, I., Mazarico, E., McGovern, P. J., Melosh, H. J., Neumann, G. A., Nimmo, F., Phillips, R. J., Smith, D. E., Solomon, S. C., Taylor, J., Wieczorek, M. A., Williams, J. G. and Zuber, M. T. (2013). Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science, 339, 675678.CrossRefGoogle ScholarPubMed
Ardia, P., Hirschmann, M. M., Withers, A. C. and Stanley, B. D. (2013). Solubility of CH4 in a synthetic basaltic melt, with applications to atmosphere–magma ocean-core partitioning of volatiles and to the evolution of the Martian atmosphere. Geochim. Cosmochim. Acta, 114, 5271.CrossRefGoogle Scholar
Baker, V. R. and Kochel, R. C. (1978). Morphometry of streamlined forms in terrestrial and martian channels. Proc. Lunar Planet. Sci. Conf., 9, 31933203.Google Scholar
Baker, V. R. and Kochel, R. C. (1979). Martian channel morphology: Maja and Kasei Valles. J. Geophys. Res., 84, 79617983.CrossRefGoogle Scholar
Baker, V. R., Komatsu, G., Parker, T. J., Gulick, V. C., Kargel, J. S. and Lewis, J. S. (1992). Channels and valleys on Venus: Preliminary analysis of Magellan data. J. Geophys. Res., 97, 13,42113,444.Google Scholar
Banks, M. E., Xiao, Z., Watters, T. R., Strom, R. G., Braden, S. E., Chapman, C. R., Solomon, S. C., Klimczak, C. and Byrne, P. K. (2015). Duration of activity on lobate‐scarp thrust faults on Mercury. J. Geophys. Res. Planets, 120, 17511762.Google Scholar
Banks, M. E., Xiao, Z., Braden, S. E., Barlow, N. G., Chapman, C. R., Fassett, C. I. and Marchi, S. S. (2017). Revised constraints on absolute age limits for Mercury’s Kuiperian and Mansurian stratigraphic systems. J. Geophys. Res. Planets, 122, 10101020, doi:10.1002/2016JE005254.CrossRefGoogle Scholar
Barclay, T., Rowe, J. F., Lissauer, J. J., Huber, D., Fressin, F., Howell, S. B., Bryson, S. T., Chaplin, W. J., Désert, J. M., Lopez, E. D., Marcy, G. W., Mullally, F., Ragozzine, D., Torres, G., Adams, E. R., Agol, E., Barrado, D., Basu, S., Bedding, T. R., Buchhave, L. A., Charbonneau, D., Christiansen, J. L., Christensen-Dalsgaard, J., Ciardi, D., Cochran, W. D., Dupree, A. K., Elsworth, Y., Everett, M., Fischer, D. A., Ford, E. B., Fortney, J. J., Geary, J. C., Haas, M. R., Handberg, R., Hekker, S., Henze, C. E., Horch, E., Howard, A. W., Hunter, R. C., Isaacson, H., Jenkins, J. M., Karoff, C., Kawaler, S. D., Kjeldsen, H., Klaus, T. C., Latham, D. W., Li, J., Lillo-Box, J., Lund, M. N., Lundkvist, M., Metcalfe, T. S., Miglio, A., Morris, R. L., Quintana, E. V., Stello, D., Smith, J. C., Still, M. and Thompson, S. E. (2013). A sub-Mercury-sized exoplanet. Nature, 494, 452454.Google Scholar
Barnes, S. J., Coats, C. J. and Naldrett, A. J. (1982). Petrogenesis of a Proterozoic nickel-sulfide-komatiite association; the Katiniq Sill, Ungava, Quebec. Econ. Geol., 77, 413429.CrossRefGoogle Scholar
Barnouin, O. S., Zuber, M. T., Smith, D. E., Neumann, G. A., Herrick, R. R., Chappelow, J. E., Murchie, S. L. and Prockter, L. M. (2012). The morphology of craters on Mercury: Results from MESSENGER flybys. Icarus, 219, 414427.Google Scholar
Barton, C. A., Zoback, M. D. and Moos, D. (1995). Fluid flow along potentially active faults in crystalline rock. Geology, 23, 683686.2.3.CO;2>CrossRefGoogle Scholar
Basilevsky, A. T., Head, J. W., Fassett, C. I. and Michael, G. (2011). History of tectonic deformation in the interior plains of the Caloris basin, Mercury. Solar Syst. Res., 45, 471497.Google Scholar
Bateman, R. (1984). On the role of diapirism in the segregation, ascent and final emplacement of granitoid magmas. Tectonophysics, 110, 211231.Google Scholar
Becker, K. J., Robinson, M. S., Becker, T. L., Weller, L. A., Edmundson, K. L., Neumann, G. A., Perry, M. E. and Solomon, S. C. (2016). First global digital elevation model of Mercury. Lunar Planet. Sci., 47, abstract 2959.Google Scholar
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R. and Ziethe, R. (2010). BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci., 58, 220.CrossRefGoogle Scholar
Black, B. A. and Manga, M. (2016). The eruptibility of magmas at Tharsis and Syrtis Major on Mars. J. Geophys. Res. Planets, 121, 944964.Google Scholar
Blair, D. M., Freed, A. M., Byrne, P. K., Klimczak, C., Prockter, L. M., Ernst, C. M., Solomon, S. C., Melosh, H. J. and Zuber, M. T. (2013). The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury. J. Geophys. Res. Planets, 118, 4758.CrossRefGoogle Scholar
Bleacher, J. E., Greeley, R., Williams, D. A., Cave, S. R. and Neukum, G. (2007). Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J. Geophys. Res., 112, E09005, doi:10.1029/2006JE002873.Google Scholar
Bleacher, J. E., de Wet, A. P., Garry, W. B., Zimbelman, J. R. and Trumble, M. E. (2010). Volcanic or fluvial: Comparison of an Ascraeus Mons, Mars, braided and sinuous channel with features of the 1859 Mauna Loa flow and Mare Imbrium flows. Lunar Planet. Sci., 41, abstract 1612.Google Scholar
Blewett, D. T., Robinson, M. S., Denevi, B. W., Gillis-Davis, J. J., Head, J. W., Solomon, S. C., Holsclaw, G. M. and McClintock, W. E. (2009). Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth Planet. Sci. Lett., 285, 272282.CrossRefGoogle Scholar
Brown, S. M. and Elkins-Tanton, L. T. (2009). Compositions of Mercury’s earliest crust from magma ocean models. Earth Planet. Sci. Lett., 286, 446455.Google Scholar
Bryan, S. E. and Ernst, R. E. (2008). Revised definition of large igneous provinces (LIPs). Earth Sci. Rev., 86, 175202.Google Scholar
Bryan, S. E., Peate, I. U., Peate, D. W., Self, S., Jerram, D. A., Mawby, M. R., Marsh, J. S. and Miller, J. A. (2010). The largest volcanic eruptions on Earth. Earth Sci. Rev., 102, 207229.Google Scholar
Burov, E., Jaupart, C. and Guillou-Frottier, L. (2003). Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J. Geophys. Res., 108 (B4), 2177, doi:10.1029/2002JB001904.CrossRefGoogle Scholar
Byrne, P. K., van Wyk de Vries, B., Murray, J. B. and Troll, V. R. (2012). A volcanotectonic survey of Ascraeus Mons, Mars. J. Geophys. Res., 117, E01004, doi:10.1029/2011JE003825.Google Scholar
Byrne, P. K., Klimczak, C., Williams, D. A., Hurwitz, D. M., Solomon, S. C., Head, J. W., Preusker, F. and Oberst, J. (2013). An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets, 118, 13031322.CrossRefGoogle Scholar
Byrne, P. K., Klimczak, C., Şengör, A. M. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. II (2014). Mercury’s global contraction much greater than earlier estimates. Nature Geosci., 7, 301307.Google Scholar
Byrne, P. K., Ostrach, L. R., Fassett, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., Klimczak, C., Banks, M. E., Head, J. W. and Solomon, S. C. (2016). Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett., 43, 74087416.CrossRefGoogle Scholar
Carr, M. H. (1974). The role of lava erosion in the formation of lunar rilles and Martian channels. Icarus, 22, 123.Google Scholar
Carr, M. H. and Head, J. W. (2010). Geologic history of Mars. Earth Planet. Sci. Lett., 294, 185203.CrossRefGoogle Scholar
Cashman, K. V. (2004). Volatile controls on magma ascent and eruption. In The State of the Planet: Frontiers and Challenges in Geophysics, ed. Sparks, R. S. J. and Hawkesworth, C. J.. Washington, DC: American Geophysical Union, pp. 109124.Google Scholar
Cashman, K. V., Pinkerton, H. and Stephenson, J. (1998). Introduction to special section: Long lava flows. J. Geophys. Res., 103, 27,28127,289.Google Scholar
Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A. E., Ramos-Izquierdo, L., Krebs, D. J., McGarry, J. F., Trunzo, R., Novo-Gradac, A. M., Britt, J. L., Karsh, J., Katz, R. B., Lukemire, A. T., Szymkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2007). The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev., 131, 451479.Google Scholar
Chabot, N. L., Denevi, B. W., Murchie, S. L., Hash, C. D., Ernst, C. M., Blewett, D. T., Nair, H., Laslo, N. R. and Solomon, S. C. (2016). Mapping Mercury: Global imaging strategy and products from the MESSENGER mission. Lunar Planet. Sci., 47, abstract 1256.Google Scholar
Charlier, B., Grove, T. L. and Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett., 363, 5060.Google Scholar
Chester, D. K., Duncan, A. M., Guest, J. E. and Kilburn, C. R. J. (1985). Mount Etna. New York, Chapman and Hall.Google Scholar
Chevrel, M. O., Platz, T., Hauber, E., Baratoux, D., Lavallée, Y. and Dingwell, D. B. (2013). Lava flow rheology: A comparison of morphological and petrological methods. Earth Planet. Sci. Lett., 384, 109120.Google Scholar
Coffin, M. F. and Eldholm, O. (1994). Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev. Geophys., 32, 136.CrossRefGoogle Scholar
Crater Analysis Techniques Working Group (1979). Standard techniques for presentation and analysis of crater size–frequency data. Icarus, 37, 467474.CrossRefGoogle Scholar
Crisp, J. A. (1984). Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res., 20, 177211.Google Scholar
Cross, W., Iddings, J. P., Pirsson, L. V. and Washington, H. S. (1902). A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. J. Geol., 10, 555690.Google Scholar
Crumpler, L. S. and Aubele, J. C. (1978). Structural evolution of Arsia Mons, Pavonis Mons, and Ascreus Mons: Tharsis region of Mars. Icarus, 34, 496511.CrossRefGoogle Scholar
Dana, J. D. (1873). On some results of the Earth’s contraction from cooling, including a discussion of the origin of mountains and the nature of the Earth’s interior. Amer. J. Sci., 5, 423443.Google Scholar
Dasgupta, R. and Hirschmann, M. M. (2010). The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett., 298, 113.CrossRefGoogle Scholar
DeHon, R. A., Scott, D. H. and Underwood, J. R. (1981). Geologic Map of the Kuiper (H-6) Quadrangle of Mercury, Map I-1233. Denver, CO: U.S. Geological Survey.Google Scholar
Denevi, B. W. and Robinson, M. S. (2008). Mercury’s albedo from Mariner 10: Implications for the presence of ferrous iron. Icarus, 197, 239246.CrossRefGoogle Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C. and Peplowski, P. N. (2013). The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets, 118, 891907.Google Scholar
Dutton, C. E. (1884). Hawaiian Volcanoes. Annual Report U.S. Geological Survey, 4, 81219.Google Scholar
Eggleton, R. E. and Schaber, G. G. (1972). Cayley Formation interpreted as basin ejecta. In Apollo 16 Preliminary Science Report, Special Publication SP-315. Washington, DC: National Aeronautics and Space Administration, pp. 29-7–29-16.Google Scholar
Ehlmann, B. L., Anderson, F. S., Andrews-Hanna, J. C., Catling, D. C., Christensen, P. R., Cohen, B. A., Dressing, C. D., Edwards, C. S., Elkins-Tanton, L. T., Farley, K. A., Fassett, C. I., Fischer, W. W., Fraeman, A. A., Golombek, M. P., Hamilton, V. E., Hayes, A. G., Herd, C. D. K., Horgan, B., Hu, R., Jakosky, B. M., Johnson, J. R., Kasting, J. F., Kerber, L., Kinch, K. M., Kite, E. S., Knutson, H. A., Lunine, J. I., Mahaffy, P. R., Mangold, N., McCubbin, F. M., Mustard, J. F., Niles, P. B., Quantin-Nataf, C., Rice, M. S., Stack, K. M., Stevenson, D. J., Stewart, S. T., Toplis, M. J., Usui, T., Weiss, B. P., Werner, S. C., Wordsworth, R. D., Wray, J. J., Yingst, R. A., Yung, Y. L. and Zahnle, K. J. (2016). The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds. J. Geophys. Res. Planets, 121, 19271961.Google Scholar
Elkins-Tanton, L. T. and Hager, H. B. (2005). Giant meteoroid impacts can cause volcanism. Earth Planet. Sci. Lett., 239, 219232.Google Scholar
Ernst, C. M., Murchie, S. L., Barnouin, O. S., Robinson, M. S., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R., Solomon, S. C. and Roberts, J. H. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223.CrossRefGoogle Scholar
Ernst, C. M., Denevi, B. W., Barnouin, O. S., Klimczak, C., Chabot, N. L., Head, J. W., Murchie, S. L., Neumann, G. A., Prockter, L. M., Robinson, M. S., Solomon, S. C. and Watters, T. R. (2015). Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 250, 413429.Google Scholar
Ernst, R. E., Grosfils, E. B. and Mège, D. (2001). Giant dike swarms: Earth, Venus, and Mars. Annu. Rev. Earth Planet. Sci., 29, 489534.Google Scholar
Ernst, R. E., Bleeker, W., Söderlund, U. and Kerr, A. C. (2013). Large igneous provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174, 114.Google Scholar
Evans, A. J., Brown, S. M. and Solomon, S. C. (2015). Characteristics of early mantle convection and melting on Mercury. Lunar. Planet. Sci., 46, abstract 2414.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.Google Scholar
Evans, L. G., Peplowski, P. N., McCubbin, F. M., McCoy, T. J., Nittler, L. R., Zolotov, M. Yu., Ebel, D. S., Lawrence, D. J., Starr, R. D., Weider, S. Z. and Solomon, S. C. (2015). Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427.Google Scholar
Fa, W., Cai, Y., Xiao, Z. and Tian, W. (2016). Topographic roughness of the northern high latitudes of Mercury from MESSENGER laser altimeter data. Geophys. Res. Lett., 43, 30783087.Google Scholar
Fassett, C. I. (2016). Ames stereo pipeline-derived digital terrain models of Mercury from MESSENGER stereo imaging. Planet. Space Sci., 134, 1928.Google Scholar
Fassett, C. I., Head, J. W., Blewett, D. T., Chapman, C. R., Dickson, J. L., Murchie, S. L., Solomon, S. C. and Watters, T. R. (2009). Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth Planet. Sci. Lett., 285, 297308.CrossRefGoogle Scholar
Fassett, C. I., Kadish, S. J., Head, J. W., Solomon, S. C. and Strom, R. G. (2011). The global population of large craters on Mercury and comparison with the Moon. Geophys. Res. Lett., 38, L10202, doi: 10.1029/2011GL047294.Google Scholar
Fassett, C. I., Head, J. W., Baker, D. M. H., Zuber, M. T., Smith, D. E., Neumann, G. A., Solomon, S. C., Klimczak, C., Strom, R. G., Chapman, C. R., Prockter, L. M., Phillips, R. J., Oberst, J. and Preusker, F. (2012). Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. J. Geophys. Res., 117, E00L08, doi: 10.1029/2012JE004154.Google Scholar
Fegan, E. R., Rothery, D. A., Marchi, S., Massironi, M., Conway, S. J. and Anand, M. (2017). Late movement of basin-edge lobate scarps on Mercury. Icarus, 288, 226234.Google Scholar
Ferrari, S., Massironi, M., Marchi, S., Byrne, P. K., Klimczak, C., Martellato, E. and Cremonese, G. (2015). Age relationships of the Rembrandt basin and Enterprise Rupes, Mercury. In Volcanism and Tectonism Across the Solar System, ed. Platz, T., Massironi, M., Byrne, P. K. and Heisinger, H., Special Publication 401. London: Geological Society, pp. 159172.Google Scholar
Freed, A. M., Blair, D. M., Watters, T. R., Klimczak, C., Byrne, P. K., Solomon, S. C., Zuber, M. T. and Melosh, H. J. (2012). On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury’s northern plains. J. Geophys. Res., 117, E00L06, doi:10.1029/2012JE004119.Google Scholar
Garry, W. B. and Bleacher, J. E. (2011). Emplacement scenarios for Vallis Schröteri, Aristarchus Plateau, the Moon. In Recent Advances and Current Research Issues in Lunar Stratigraphy, ed. Ambrose, W. A. and Williams, D. A., Special Paper 477. Boulder, CO: Geological Society of America, pp. 7793.Google Scholar
Gault, D. E., Guest, J. E., Murray, J. B., Dzurisin, D. and Malin, M.C. (1975). Some comparisons of impact craters on Mercury and the Moon. J. Geophys. Res., 80, 24442460.Google Scholar
Gerlach, T. M. (1986). Exsolution of H2O, CO2, and S during eruptive episodes at Kilauea volcano, Hawaii. J. Geophys. Res., 91, 12,17712,185.Google Scholar
Gillis-Davis, J. J., Blewett, D. T., Gaskell, R. W., Denevi, B. W., Robinson, M. S., Strom, R. G., Solomon, S. C. and Sprague, A. L. (2009). Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth Planet. Sci. Lett., 285, 243250.Google Scholar
Glickson, A. Y. (2004). Impacts do not initiate volcanic eruptions: Eruptions close to the crater: Comment and reply. Geology, 32, e48.CrossRefGoogle Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Del Eckels, J., Miller, W. O., Burks, M. T., Hagler, L. B., Deteresa, S. J. and Witte, M. C. (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391.CrossRefGoogle Scholar
Golombek, M. P. and McGill, G. E. (1983). Grabens, basin tectonics, and the maximum total expansion of the Moon. J. Geophys. Res., 88, 35633578.Google Scholar
Goudge, T. A., Head, J. W., Kerber, L., Blewett, D. T., Denevi, B. W., Domingue, D. L., Gillis-Davis, J. J., Gwinner, K., Helbert, J., Holsclaw, G. M., Izenberg, N. R., Klima, R. L., McClintock, W. E., Murchie, S. L., Neumann, G. A., Smith, D. E., Strom, R. G., Xiao, Z., Zuber, M. T. and Solomon, S. C. (2014). Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. Planets, 119, 635658.Google Scholar
Grolier, M. J. and Boyce, J. M. (1984). Geologic Map of the Borealis Region (H-1) of Mercury, Map I-1660. Denver, CO: U.S. Geological Survey.Google Scholar
Guest, J. E. and Greeley, R. (1983). Geologic Map of the Shakespeare (H-3) Quadrangle of Mercury, Map I-1408. Miscellaneous Investigations Service, Denver, CO: U.S. Geological Survey.Google Scholar
Habermann, M. A. and Klimczak, C. (2015). Tectonic controls of pyroclastic volcanism on Mercury. Presented at 2015 Fall Meeting American Geophysical Union, abstract P53A–2101, San Francisco, CA, 14-18 December.Google Scholar
Hapke, B., Danielson, G. E., Klaasen, K. and Wilson, L. (1975). Photometric observations of Mercury from Mariner 10. J. Geophys. Res., 80, 24312443.Google Scholar
Hamilton, W. B. (1995). Subduction systems and magmatism. In Volcanism Associated with Extension at Consuming Plate Margins, ed. Smellie, J. L., Special Publication 81. London: Geological Society, pp. 328.Google Scholar
Hauck, S. A. II, Eng, D. A. and Tahu, G. J. (2010). Mercury Lander Mission Concept Study. Washington, DC: National Aeronautics and Space Administration.Google Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J. Jr., Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E. II, Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.Google Scholar
Head, J. W. and Wilson, L. (1992). Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta, 56, 21552175.Google Scholar
Head, J. W. and Wilson, L. (1993). Lunar graben formation due to near-surface deformation accompanying dike emplacement. Planet. Space Sci., 41, 719727.CrossRefGoogle Scholar
Head, J. W., Campbell, D. B., Elachi, C., Guest, J. E., McKenzie, D. P., Saunders, R. S., Schaber, G. G. and Schubert, G. (1991). Venus volcanism: Initial analysis from Magellan data. Science, 252, 276288.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Chapman, C. R., Strom, R. G., Watters, T. R., Blewett, D. T., Gillis-Davis, J. J. and Fassett, C. I. (2009a). Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet. Sci. Lett., 285, 227242.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., Blewett, D. T., Gillis-Davis, J. J., Fassett, C. I., Dickson, J. L., Hurwitz, D. M. and Ostrach, L. R. (2009b). Evidence for intrusive activity on Mercury from the first MESSENGER flyby. Earth Planet. Sci. Lett., 285, 251262.Google Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856.Google Scholar
Hiesinger, J., Head, J. W., Wolf, U., Jaumann, R. and Neukum, G. (2003). Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res., 108 (E7), 5065, doi:10.1029/2002JE001985.Google Scholar
Hirschmann, M. M. (2006). Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci., 34, 629653.Google Scholar
Hirschmann, M. M., Withers, A. C., Ardia, P. and Foley, N. T. (2012). Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett., 345, 3848.Google Scholar
Hulme, G. (1973). Turbulent lava flow and the formation of lunar sinuous rilles. Mod. Geol., 4, 107117.Google Scholar
Hurwitz, D. M., Fassett, C. I., Head, J. W. and Wilson, L. (2010). Formation of an eroded lava channel within an Elysium Planitia impact crater: Distinguishing between a mechanical and thermal origin. Icarus, 210, 626634.Google Scholar
Hurwitz, D. M., Head, J. W., Wilson, L. and Hiesinger, H. (2012). Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz. J. Geophys. Res., 117, E00H14, doi:10.1029/2011JE004000.Google Scholar
Hurwitz, D. M., Head, J. W., Byrne, P. K., Xiao, Z., Solomon, S. C., Zuber, M. T., Smith, D. E. and Neumann, G. A. (2013). Investigating the origin of candidate lava channels on Mercury with MESSENGER data: Theory and observations. J. Geophys. Res. Planets, 118, 471486.Google Scholar
Irving, A. J., Kuehner, S. M., Bunch, T. E., Ziegler, K., Chen, G., Herd, C. D. K., Conrey, R. M. and Ralew, S. (2013). Ungrouped mafic achondrite Northwest Africa 7325: A reduced, iron-poor cumulate olivine gabbro from a differentiated planetary parent body. Lunar Planet. Sci., 44, abstract 2164.Google Scholar
Ivanov, B. A. and Melosh, H. J. (2003). Impacts do not initiate volcanic eruptions: Eruptions close to the crater. Geology, 31, 869872.Google Scholar
Ivanov, M. A. and Head, J. W. (2013). The history of volcanism on Venus. Planet. Space Sci., 84, 6692.Google Scholar
Izenberg, N. R., Klima, R. L., Murchie, S. L., Blewett, D. T., Holsclaw, G. M., McClintock, W. E., Malaret, E. Mauceri, C., Vilas, F., Sprague, A. L., Helbert, J., Domingue, D. L., Head, J. W., Goudge, T. A., Solomon, S. C., Hibbitts, C. A. and Dyar, M. D. (2014). The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 228, 364374.Google Scholar
James, P. B., Zuber, M. T., Phillips, R. J. and Solomon, S. C. (2015). Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography. J. Geophys. Res. Planets, 120, 287310.Google Scholar
Jerram, D. A. and Widdowson, M. (2005). The anatomy of continental flood basalt provinces: Geological constraints on the processes and products of flood volcanism. Lithos, 79, 385405.Google Scholar
Johnson, A. M. and Pollard, D. D. (1973). Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah: I. Field observations, Gilbert’s model, physical properties and flow of the magma. Tectonophysics, 18, 261309.Google Scholar
Jozwiak, L. M., Head, J. W., Zuber, M. T., Smith, D. E. and Neumann, G. A. (2012). Lunar floor-fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. J. Geophys. Res., 117, E11005, doi:10.1029/2012JE004134.Google Scholar
Jozwiak, L. M., Head, J. W. and Wilson, L. (2015). Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies. Icarus, 248, 424447.Google Scholar
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, V. A., David, D. W. and Trofimov, V. R. (2003). Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett., 214, 7591.Google Scholar
Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T. and Wilson, L. (2009). Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett., 285, 263271.Google Scholar
Kerber, L., Head, J. W., Blewett, D. T., Solomon, S. C., Wilson, L., Murchie, S. L., Robinson, M. S., Denevi, B. W. and Domingue, D. L. (2011). The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planet. Space Sci., 59, 18951909.Google Scholar
Kiefer, W. S. and Murray, B. C. (1987). The formation of Mercury’s smooth plains. Icarus, 72, 477491.Google Scholar
Kinczyk, M. J., Prockter, L. M., Chapman, C. R. and Susorney, H. C. M. (2016). A morphological evaluation of crater degradation on Mercury: Revisiting crater classification with MESSENGER data. Lunar Planet. Sci., 47, abstract 1573.Google Scholar
King, J. S. and Scott, D. H. (1990). Geologic Map of the Beethoven (H-7) Quadrangle of Mercury, Map I-2048. Denver, CO: U.S. Geological Survey.Google Scholar
Klima, R. L., Denevi, B. W., Ernst, C. M., Izenberg, C. M., Murchie, S. L., Peplowski, P. N. and Solomon, S. C. (2015). Global distribution and spectral properties of low-reflectance material on Mercury. Presented at 2015 Fall Meeting, American Geophysical Union, abstract P53A–2094, San Francisco, CA, 14-18 December.Google Scholar
Klimczak, C. (2014). Geomorphology of lunar grabens requires igneous dikes at depth. Geology, 42, 963966.Google Scholar
Klimczak, C. (2015). Limits on the brittle strength of planetary lithospheres undergoing global contraction. J. Geophys. Res. Planets, 120, 21352151.Google Scholar
Klimczak, C. and Byrne, P. K. (2013). The prospect of diking on the Moon and Mercury. Presented at 2013 Fall Meeting, American Geophysical Union, abstract P23B–03, San Francisco, CA, 9–13 December.Google Scholar
Klimczak, C., Schultz, R. A. and Nahm, A. L. (2010). Evaluation of the origin hypotheses of Pantheon Fossae, central Caloris basin, Mercury. Icarus, 209, 262270.Google Scholar
Klimczak, C., Byrne, P. K., Solomon, S. C., Nimmo, F., Watters, T. R., Denevi, B. W., Ernst, C. M. and Banks, M. E. (2013). The role of thrust faults as conduits for volatiles on Mercury. Lunar Planet. Sci., 44, abstract 1390.Google Scholar
Komatsu, G., Kargel, J. S. and Baker, V. R. (1992). Canali-type channels on Venus: Some genetic constraints. Geophys. Res. Lett., 19, 14151418.Google Scholar
Komatsu, G., Baker, V. R. and Gulick, V. C. (1993). Venusian channels and valleys: Distribution and volcanological implications. Icarus, 102, 125.Google Scholar
Kreslavsky, M. A., Head, J. W., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2016). Features of the northern smooth plains on Mercury revealed by detrended MLA topography: Comparison with the Moon. Lunar Planet. Sci., 47, abstract 1333.Google Scholar
Lawrence, D. J., Feldman, W. C., Goldsten, J. O., McCoy, T. J., Blewett, D. T., Boynton, W. V., Evans, L. G., Nittler, L. R., Rhodes, E. A. and Solomon, S. C. (2010). Identification and measurement of neutron-absorbing elements on Mercury’s surface. Icarus, 209, 195209.Google Scholar
Lawrence, D. J., Peplowski, P. N., Beck, A. W., Feldman, W. C., Frank, E. A., McCoy, T. J., Nittler, L. R., Chabot, N. L., Ernst, C. M. and Solomon, S.C. (2017). Compositional terranes on Mercury: Information from fast neutrons. Icarus, 281, 3245.Google Scholar
Le Bas, M. J. (2000). IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol., 41, 14671470.Google Scholar
Le Feuvre, M. and Wieczorek, M. A. (2011). Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus, 214, 120.Google Scholar
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schmid, R., Sorensen, H. and Woolley, A. R. (2002). Igneous Rocks: A Classification and Glossary of Terms. New York: Cambridge University Press, 256 pp.Google Scholar
Leake, M. A. (1981). The intercrater plains of Mercury and the Moon: Their nature, origin, and role in terrestrial planet evolution. Ph.D. thesis, University of Arizona, Tucson, AZ.Google Scholar
Leverington, D. W. (2007). Was the Mangala Valles system incised by volcanic flows? J. Geophys. Res., 112, E11005, doi:10.1029/2007JE002896.Google Scholar
Lucchitta, B. K. and Schmitt, H. H. (1974). Orange material in the Sulpicius Gallus Formation at the southwestern edge of Mare Serenitatis. Proc. Lunar Sci. Conf., 5, 223234.Google Scholar
Malin, M. C. (1976). Observations of intercrater plains on Mercury. Geophys. Res. Lett., 3, 581584.Google Scholar
Marchi, S., Morbidelli, A. and Cremonese, G. (2005). Flux of meteoroid impacts on Mercury. Astron. Astrophys., 431, 11231127.Google Scholar
Marchi, S., Mottola, S., Cremonese, G., Massironi, M. and Martellato, E. (2009). A new chronology for the Moon and Mercury. Astron. J., 137, 49364948.Google Scholar
Marchi, S., Massironi, M., Cremonese, G., Martellato, E., Giacomini, L. and Prockter, L. M. (2011). The effects of the target material properties and layering on the crater chronology: The case of Raditladi and Rachmaninoff basins on Mercury. Planet. Space Sci., 59, 19681980.Google Scholar
Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F. and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499, 5961.Google Scholar
Mastin, L. G. and Pollard, D. D. (1988). Surface deformation and shallow dike intrusion processes at Inyo Craters, Long Valley, California. J. Geophys. Res., 93, 13,22113,235.Google Scholar
McCauley, J. F., Guest, J. E., Schaber, G. G., Trask, N. J. and Greeley, R. (1981). Stratigraphy of the Caloris basin, Mercury. Icarus, 47, 184202.Google Scholar
McClintock, M. and White, D. L. (2006). Large phreatomagmatic vent complex at Coombs Hills, Antarctica: Wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP. Bull. Volcanol., 68, 215239.Google Scholar
McCord, T. B. and Clark, R. N. (1979). The Mercury soil: Presence of Fe2+. J. Geophys. Res., 84, 76647668.Google Scholar
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E. and Burkemper, L. K. (2012). Is Mercury a volatile-rich planet? Geophys. Res. Lett., 39, L09202, doi:10.1029/2012GL051711.Google Scholar
McCubbin, F. M., Sverjensky, D. A., Steele, A. and Mysen, B. O. (2014). In-situ characterization of oxalic acid breakdown at elevated P and T: Implications for organic C-O-H fluid sources in petrologic experiments. Amer. Mineral., 99, 22582271.Google Scholar
McGill, G. E. and King, E. A. (1983). Geologic Map of the Victoria (H-2) Quadrangle of Mercury, Map I-1409. Denver, CO: U.S. Geological Survey.Google Scholar
McGovern, P. J. and Litherland, M. M. (2011). Lithospheric stress and basaltic magma ascent on the Moon, with implications for large volcanic provinces and edifices. Lunar Planet. Sci., 42, abstract 2587.Google Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F., Blaney, D., Cabrol, N. A., Christensen, P. R., Clark, B. C., Crisp, J. A., Crumpler, L. S., Des Marais, D. J., Farmer, J. D., Gellert, R., Ghosh, A., Gorevan, S., Graff, T., Grant, J., Haskin, L. A., Herkenhoff, K. E., Johnson, J. R., Jolliff, B. L., Klingelhoefer, G., Knudson, A. T., McLennan, S., Milam, K. A., Moersch, J. E., Morris, R. V., Rieder, R., Ruff, S. W., de Souza, P. A., Squyres, S. W., Wänke, H., Wang, A., Wyatt, M. B., Yen, A. and Zipfel, J. (2004). Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science, 305, 842845.Google Scholar
McSween, H. Y., Ruff, S. W., Morris, R. V., Bell, J. F., Herkenhoff, K. E., Gellert, R., Stockstill, K. R., Tornabene, L. L., Squyres, S. W., Crisp, J. A., Christensen, P. R., McCoy, T. J., Mittlefehldt, D. W. and Schmidt, M. (2006). Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. J. Geophys. Res., 111, E09S91, doi:10.1029/2006JE002698.Google Scholar
McSween, H. Y., Taylor, G. J. and Wyatt, M. B. (2009) Elemental composition of the Martian crust. Science, 324, 736739.Google Scholar
Mège, D., Cook, A. C., Lagabrielle, Y., Garel, E. and Cormier, M.-H. (2003). Volcanic rifting at Martian grabens. J. Geophys. Res., 108 (E5), 5044, doi:10.1029/2002JE001852.Google Scholar
Michael, G. G., Kneissl, T. and Neesemann, A. (2016). Planetary surface dating from crater size–frequency distribution measurements: Poisson timing analysis. Icarus, 277, 279285.Google Scholar
Michel, N. C., Hauck, S. A. II, Solomon, S. C., Phillips, R. J., Roberts, J. H. and Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. J. Geophys. Res. Planets, 118, 10331044.Google Scholar
Miller, R. B. and Paterson, S. R. (1999). In defense of magmatic diapirs. J. Struct. Geol., 21, 11611173.Google Scholar
Moore, H. J., Arthur, D. W. G. and Schaber, G. G. (1978). Yield strengths of flows on the earth, Mars, and moon. Proc. Lunar Sci. Conf., 3, 33513378.Google Scholar
Mouginis-Mark, P. J., Wilson, L., Head, J. W., Brown, S. R., Hall, J. L. and Sullivan, K. D. (1984). Elysium Planitia, Mars: Regional geology, volcanology, and evidence for volcano-ground ice interactions. Earth Moon Planets, 30, 149173.Google Scholar
Murase, T. and McBirney, A. R. (1973). Properties of some common igneous rocks and their melts at high temperatures. Geol. Soc. Amer. Bull., 84, 35633592.Google Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, C. R., McClintock, W. E., Prockter, L. M., Domingue, D. L. and Blewett, D. T. (2008). Geology of the Caloris basin, Mercury: A new view from MESSENGER. Science, 321, 7376.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O’Leary, B., Strom, R. G., Suomi, V. and Trask, N. (1974). Mercury’s surface: Preliminary description and interpretation from Mariner 10 pictures. Science, 185, 169179.Google Scholar
Murray, B. C., Strom, R. G., Trask, N. J. and Gault, D. E. (1975). Surface history of Mercury: Implications for terrestrial planets. J. Geophys. Res., 80, 25082514.Google Scholar
Murray, J. B., van Wyk de Vries, B., Marquez, A., Williams, D. A., Byrne, P. K., Muller, J.-P. and Kim, J.-R. (2010). Late-stage water eruptions from Ascraeus Mons volcano, Mars: Implications for its structure and history. Earth Planet. Sci. Lett., 294, 479491.Google Scholar
Mysen, B. O. and Fogel, M. L. (2010). Nitrogen and hydrogen isotope compositions and solubility in silicate melts in equilibrium with reduced (N plus H)-bearing fluids at high pressure and temperature: Effects of melt structure. Amer. Mineral., 95, 987999.Google Scholar
Mysen, B. O., Fogel, M. L., Morrill, P. L. and Cody, G. D. (2009). Solution behavior of reduced C-O-H volatiles in silicate melts at high pressure and temperature. Geochim. Cosmochim. Acta, 73, 16961710.Google Scholar
Namur, O., Collinet, M., Charlier, B., Grove, T. L., Holtz, F. and McCammon, C. (2016). Melting processes and mantle sources of surface lavas on Mercury. Earth Planet. Sci. Lett., 439, 117128.Google Scholar
Nekvasil, H., Filiberto, J., McCubbin, F. M. and Lindsley, D. H. (2007). Alkalic parental magmas for the chassignites? Meteorit. Planet. Sci., 42, 979992.Google Scholar
Neukum, G., Ivanov, B. A. and Hartmann, W. K. (2001). Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev., 96, 5586.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L., Schlemm, C. E., Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.Google Scholar
Oberbeck, V. R. (1975). The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys., 13, 337362.Google Scholar
Oberbeck, V. R., Quaide, W. L., Arvidson, R. E. and Aggarwal, H. R. (1977). Comparative studies of lunar, Martian, and Mercurian craters and plains. J. Geophys. Res., 82, 16871698.Google Scholar
Oberst, J., Preusker, F., Phillips, R. J., Watters, T. R., Head, J. W., Zuber, M. T. and Solomon, S. C. (2010). The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models. Icarus, 209, 230238.Google Scholar
Okubo, C. H. and Martel, S. J. (1998). Pit crater formation on Kilauea volcano, Hawaii. J. Volcanol. Geotherm. Res., 86, 118.Google Scholar
Ostrach, L. R., Robinson, M. S., Whitten, J. L., Fassett, C. I., Strom, R. G., Head, J. W. and Solomon, S. C. (2015). Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus, 250, 602622.Google Scholar
Padovan, S., Wieczorek, M. A., Margot, J.-L., Tosi, N. and Solomon, S. C. (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys. Res. Lett., 42, 10291038.Google Scholar
Parman, S. W., O’Brien, H. P., Vaughn, W. M. and Head, J. W. (2014). Experimental constraints on melting conditions in Mercury. Lunar Planet. Sci., 45, abstract 2367.Google Scholar
Parman, S. W., Parmentier, E. M. and Wang, S. (2016). Crustallization of Mercury’s sulfur-rich magma oceans. Lunar Planet. Sci., 47, abstract 2990.Google Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A., McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., Ebel, D. S., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L., Nittler, L. R., Solomon, S. C., Rhodes, E. A., Sprague, A. L., Starr, R. D. and Stockstill-Cahill, K. R. (2011). Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.Google Scholar
Peplowski, P. N., Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Bazell, D., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2015). Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 253, 346353.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geosci., 9, 273276.Google Scholar
Pike, R. J. (1988). Geomorphology of impact craters on Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S., Tucson, AZ: University of Arizona Press, pp.165273.Google Scholar
Plescia, J. B. (1991). Wrinkle ridges in Lunae Planum, Mars: Implications for shortening and strain. Geophys. Res. Lett., 18, 913916.Google Scholar
Pohn, H. A. and Offield, T. W. (1970). Lunar crater morphology and relative age determination of lunar geologic units. Part 1: Classification. In Geological Survey Research 1970, Professional Paper 69–209. Denver, CO: U.S. Geological Survey, 35 pp.Google Scholar
Pollard, D. D., Delaney, P. T., Duffield, W. A., Endo, E. T. and Okamura, A. T. (1983). Surface deformation in volcanic rift zones. Tectonophysics, 94, 541584.Google Scholar
Preusker, F., Oberst, J., Head, J. W., Watters, T. R., Robinson, M. S., Zuber, M. T. and Solomon, S. C. (2011). Stereo topographic models of Mercury after three MESSENGER flybys. Planet. Space Sci., 59, 19101917.Google Scholar
Prockter, L. M., Ernst, C. M., Denevi, B. W., Chapman, C. R., Head, J. W., Fassett, C. I., Merline, W. J., Solomon, S. C., Watters, T. R., Strom, R. G., Cremonese, G., Marchi, S. and Massironi, M. (2010). Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science, 329, 668671.Google Scholar
Prockter, L. M., Kinczyk, M. J., Byrne, P. K., Denevi, B. W., Head, J. W., Fassett, C. I., Whitten, J. L., Thomas, R. J., Buczkowski, D. L., Hynek, B. M., Ostrach, L. R., Blewett, D. T., Ernst, C. M. and the MESSENGER Mapping Group (2016). The first global geological map of Mercury. Lunar Planet. Sci., 47, abstract 1245.Google Scholar
Rava, B. and Hapke, B. (1987). An analysis of the Mariner 10 color ratio map of Mercury. Icarus, 71, 397429.Google Scholar
Riker, J. M., Cashman, K. V., Kauahikaua, J. P. and Montierth, C. M. (2009). The length of channelized lava flows: Insight from the 1859 eruption of Mauna Loa Volcano, Hawai‘i. J. Volcanol. Geotherm. Res., 183, 139156.Google Scholar
Roberts, J. H. and Barnouin, O. S. (2012). The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res., 117, E02007, doi:10.1029/2011JE003876.Google Scholar
Robinson, M. S. and Lucey, P. G. (1997). Recalibrated Mariner 10 color mosaics: Implications for mercurian volcanism. Science, 275, 197200.Google Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E. III, Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L. Jr., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669.Google Scholar
Rothery, D. A., Thomas, R. J. and Kerber, L. (2014). Prolonged eruptive history of a compound volcano on Mercury: Volcanic and tectonic implications. Earth Planet. Sci. Lett., 385, 5967.Google Scholar
Rothery, D. A., Mancinelli, P., Guzzetta, L. and Wright, J. (2017). Mercury’s Caloris basin: Continuity between the interior and exterior plains. J. Geophys. Res. Planets, 122, 560576.Google Scholar
Rubin, A. M. (1992). Dike-induced faulting and graben subsidence in volcanic rift zones: J. Geophys. Res., 97, 18391858.Google Scholar
Rubin, A. M. (1993). Dikes vs. diapirs in viscoelastic rock. Earth Planet. Sci. Lett., 117, 653670.Google Scholar
Santos, A. R., Agee, C. B., McCubbin, F. M., Shearer, C. K., Burger, P. V., Tartese, R. and Anand, M. (2015). Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust. Geochim. Cosmochim. Acta, 157, 5685.Google Scholar
Schaber, G. G. and McCauley, J. F. (1980). Geologic Map of the Tolstoj (H-8) Quadrangle of Mercury, Map I-1199. Denver, CO: U.S. Geological Survey.Google Scholar
Schlemm, C. E. II, Starr, R. D., Ho, G. C., Bechtold, K. E., Hamilton, S. A., Boldt, J. D., Boynton, W. V., Bradley, W., Fraemen, M. E., Gold, R. E., Goldsten, J. O., Hayes, J. R., Jaskulek, S. E., Rossano, E., Rumpf, R. A., Schaefer, E. D., Strohbehn, K., Shelton, R. G., Thompson, R. E., Trombka, J. I. and Williams, B. D. (2007) The X-Ray Spectrometer on the MESSENGER spacecraft. Space Sci. Rev., 131, 393415.Google Scholar
Schubert, G., Lingenfelter, R. E. and Peale, S. J. (1970). The morphology, distribution, and origin of lunar sinuous rilles. Rev. Geophys., 8, 199224.Google Scholar
Schultz, P. H. (1976). Floor-fractured lunar craters. Moon, 15, 241273.Google Scholar
Schultz, R. A., Okubo, C. H., Goudy, C. L. and Wilkins, S. J. (2004). Igneous dikes on Mars revealed by Mars Orbiter Laser Altimeter topography. Geology, 32, 889892.Google Scholar
Schultz, R. A., Hauber, E., Kattenhorn, S. A., Okubo, C. H. and Watters, T. R. (2010). Interpretation and analysis of planetary structures. J. Struct. Geol., 32, 855875.Google Scholar
Scott, E. D., Wilson, L. and Head, J. W. (2002). Emplacement of giant radial dikes in the northern Tharsis region of Mars. J. Geophys. Res., 107 (E4), 5019, doi:10.1029/2000JE001431.Google Scholar
Sehlke, A. and Whittington, A. G. (2015). Rheology of lava flows on Mercury: An analog experimental study. J. Geophys. Res. Planets, 120, 19241955.Google Scholar
Shaw, H. R. (1972). Viscosities of magmatic silicate liquids: An empirical method of prediction. Amer. J. Sci., 272, 870893.Google Scholar
Shirey, S. B. and Hanson, G. N. (1984) Mantle-derived Archaean monzodiorites and trachyandesites. Nature, 310, 222224.Google Scholar
Sibson, R. H. (2003). Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes. Amer. Assoc. Petrol. Geol. Bull., 87, 901908.Google Scholar
Solomon, S. C. (1977). The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Inter., 15, 135145.Google Scholar
Solomon, S. C. (1978). On volcanism and thermal tectonics on one‐plate planets. Geophys. Res. Lett., 5, 461464.Google Scholar
Solomon, S. C. and Chaiken, J. (1976). Thermal expansion and thermal stress in the Moon and terrestrial planets: Clues to early thermal history. Proc. Lunar Sci. Conf., 7, 32293243.Google Scholar
Solomon, S. C. and Head, J. W. (1979). Vertical movement in mare basins: Relation to mare emplacement, basin tectonics, and lunar thermal history. J. Geophys. Res., 84, 16671682.Google Scholar
Solomon, S. C., McNutt, R. L., Watters, T. R., Lawrence, D. J., Feldman, W. C., Head, J. W., Krimigis, S. M., Murchie, S. L., Phillips, R. J., Slavin, J. A. and Zuber, M. T. (2008). Return to Mercury: A global perspective on MESSENGER’s first Mercury flyby. Science, 321, 5962.Google Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S., Tucson, AZ: University of Arizona Press, pp. 118164.Google Scholar
Spudis, P. D. and Prosser, J. G. (1984). Geologic Map of the Michaelangelo (H-12) Quadrangle of Mercury, Map I-1659. Denver, CO: U.S. Geological Survey.Google Scholar
Stephenson, P. J., Burch-Johnson, A. T., Whitehead, R. W. and Stanton, D. (1998). Three long lava flows in north Queensland. J. Geophys. Res., 103, 27,35927,370.Google Scholar
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R., Weider, S. Z. and Hauck, S.A. II (2012). Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. J. Geophys. Res., 117, E00L15, doi:10.1029/2012JE004140.Google Scholar
Stofan, E. R., Guest, J. E., Anderson, S. W. and Smrekar, S. E. (1998). Development of planetary lava flow fields. Lunar Planet. Sci., 29, abstract 1099.Google Scholar
Stolper, E. M., Baker, M. B., Newcombe, M. E., Schmidt, M. E., Treiman, A. H., Cousin, A., Dyar, M. D., Fisk, M. R., Gellert, R., King, P. L., Leshin, L., Maurice, S., McLennan, S. M., Minitti, M. E., Perrett, G., Rowland, S., Sautter, V., Wiens, R. C. and MSL Team (2013). The petrochemistry of Jake_M: A Martian mugearite. Science, 341, 1239463.Google Scholar
Strom, R.G. (1977). Origin and relative age of lunar and mercurian intercrater plains. Phys. Earth Planet. Inter., 15, 156172.Google Scholar
Strom, R. G., Trask, N. J. and Guest, J. E. (1975). Tectonism and volcanism on Mercury. J. Geophys. Res., 80, 24782507.Google Scholar
Strom, R. G., Malin, M. C. and Leake, M. A. (1990). Geologic Map of the Bach (H-15) Quadrangle of Mercury, Map I-2015. Denver, CO: U.S. Geological Survey.Google Scholar
Strom, R. G., Chapman, C. R., Merline, W. J., Solomon, S. C. and Head, J.W. (2008). Mercury cratering record viewed from MESSENGER’s first flyby. Science, 321, 7981.Google Scholar
Strom, R. G., Banks, M. E., Chapman, C. R., Fassett, C. I., Forde, J. A., Head, J. W., Merline, W. J., Prockter, L. M. and Solomon, S. C. (2011). Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history. Planet. Space Sci., 59, 19601967.Google Scholar
Taylor, S. R. (1989). Growth of planetary crust. Tectonophysics, 161, 147156.Google Scholar
Taylor, S. R. and McLennan, S. M. (2010). Planetary Crusts: Their Composition, Origin and Evolution. Cambridge Planetary Science. Cambridge: Cambridge University Press.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014a). Long-lived explosive volcanism on Mercury. Geophys. Res. Lett., 41, 60846092.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014b). Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. J. Geophys. Res. Planets, 119, 22392254.Google Scholar
Thordarson, T., Self, S., Oskarsson, N. and Hulsebosch, T. (1996). Sulfur, chlorine and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftar fires) eruption in Iceland. Bull. Volcanol., 58, 205225.Google Scholar
Tosi, N., Grott, M., Plesa, A. C. and Breuer, D. (2013). Thermochemical evolution of Mercury’s interior. J. Geophys. Res. Planets, 118, 24742487.Google Scholar
Trask, N. J. (1971). Geologic comparison of mare materials in the lunar equatorial belt, including Apollo 11 and Apollo 12 landing sites. In Geological Survey Research 1971, Professional Paper 750-D. Denver, CO: U.S. Geological Survey, pp. 138144.Google Scholar
Trask, N. J. (1975). Cratering history of the heavily cratered terrain on Mercury. Proc. Int. Colloq. Planet. Geol., Geol. Rom., 15, 471476.Google Scholar
Trask, N. J. and Strom, R. G. (1976) Additional evidence of Mercurian volcanism. Icarus, 28, 559563.Google Scholar
Trask, N. J. and Dzurisin, D. (1984). Geologic Map of the Discovery (H-11) Quadrangle of Mercury, Map I-1658. Denver, CO: U.S. Geological Survey.Google Scholar
Trask, N. J. and Guest, J. E. (1975). Preliminary geologic terrain map of Mercury. J. Geophys. Res., 80, 24612477.Google Scholar
van der Bogert, C. H., Gaddis, L., Hiesinger, H., Ivanov, M., Jolliff, B. Mahanti, P. and Paskert, J. H. (2016). Revisiting the CSFDs of the Taurus Littrow dark mantle deposit: Implications for age determinations of pyroclastic deposits. Lunar Planet. Sci., 47, abstract 1616.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2016) The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta, 173, 246263.Google Scholar
Vander Kaaden, K. E., McCubbin, F. M., Nittler, L. R., Peplowski, P. N., Weider, S. Z., Frank, E. A. and McCoy, T. J. (2017). Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus, 285, 155168.Google Scholar
Vilas, F. (1985). Mercury: Absence of crystalline Fe2+ in the regolith. Icarus, 64, 133138.Google Scholar
Vilas, F. (1988). Surface composition of Mercury from reflectance spectrophotometry. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 5976.Google Scholar
Walker, D., Kirkpatrick, R. J., Longhi, J. and Hays, J. F. (1976). Crystallization history of lunar picritic basalt sample 12002: Phase-equilibria and cooling-rate studies. Geol. Soc. Amer. Bull., 87, 646656.Google Scholar
Walker, G. P. L. (1973). Lengths of lava flows. Phil. Trans. Roy. Soc. London A, 274, 107118.Google Scholar
Watanabe, T., Koyaguchi, T. and Seno, T. (1999). Tectonic stress controls on ascent and emplacement of magmas. J. Volcanol. Geotherm. Res., 91, 6578.Google Scholar
Watters, T. R., Head, J. W., Solomon, S. C., Robinson, M. S., Chapman, C. R., Denevi, B. W., Fassett, C. I., Murchie, S. L. and Strom, R. G. (2009). Evolution of the Rembrandt impact basin on Mercury. Science, 324, 618621.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012JE004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A. II, Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120.Google Scholar
Weider, S. Z., Nittler, L. R., Murchie, S. L., Peplowski, P. N., McCoy, T. J., Kerber, L., Klimczak, C., Ernst, C. M., Goudge, T. A., Starr, R. D., Izenberg, N. R., Klima, R. L. and Solomon, S. C. (2016). Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys. Res. Lett., 43, 36533661.Google Scholar
Whitten, J. L. and Head, J. W. (2015). Rembrandt impact basin: Distinguishing between volcanic and impact-produced plains on Mercury. Icarus, 258, 350365.Google Scholar
Whitten, J. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2014). Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113.Google Scholar
Wichman, R. W. and Schultz, P. H. (1996). Crater-centered laccoliths on the Moon: Modeling intrusion depth and magmatic pressure at the crater Taruntius. Icarus, 122, 193199.Google Scholar
Wilhelms, D. E. (1976). Mercurian volcanism questioned. Icarus, 28, 551558.Google Scholar
Wilhelms, D. E. (1987). The Geologic History of the Moon. Professional Paper 1348. Denver, CO: U.S. Geological Survey.Google Scholar
Williams, D. A., Kerr, R. C. and Lesher, C. M. (1999). Thermal and fluid dynamics of komatiitic lavas associated with magmatic Ni-Cu-(PGE) sulphide deposits. In Dynamic Processes in Magmatic Ore Deposits and their Application in Mineral Exploration, ed. Keays, R. R., Lesher, C. M., Lightfoor, P. C. and Farrow, C. E.. Short Course, Geological Association Canada, 13, 367412.Google Scholar
Williams, D. A., Fagents, S. A. and Greeley, R. (2000). A reassessment of the emplacement and erosional potential of turbulent, low-viscosity lavas on the Moon. J. Geophys. Res., 105, 20,18920,205.Google Scholar
Williams, D. A., Kerr, R. C., Lesher, C. M. and Barnes, S. J. (2001a). Analytical/numerical modeling of komatiite lava emplacement and thermal erosion at Perseverance, Western Australia. J. Volcanol. Geotherm. Res., 110, 2755.Google Scholar
Williams, D. A., Greeley, R., Lopes, R. M. and Davies, A. G. (2001b). Evaluation of sulfur flow emplacement on Io from Galileo data and numerical modeling. J. Geophys. Res., 106, 33,16133,174.Google Scholar
Wilson, L. and Head, J. W. (1983). A comparison of eruption processes on Earth, Moon, Mars, Io and Venus. Nature, 302, 663669.Google Scholar
Wilson, L. and Head, J. W. (2008). Volcanism on Mercury: A new model for the history of magma ascent and eruption. Geophys. Res. Lett., 35, L23205, doi:10.1029/2008GL035620.Google Scholar
Wilson, L., Hawke, B. R., Giguere, T. A. and Petrycki, E. R. (2011). An igneous origin for Rima Hyginus and Hyginus crater on the Moon. Icarus, 215, 584595.Google Scholar
Wöhler, C., Lena, R. and the Geologic Lunar Research Group (2009). Lunar intrusive domes: Morphometric analysis and laccolith modeling. Icarus, 204, 381398.Google Scholar
Wright, J., Rothery, D. A., Balme, M. R. and Conway, S. J. (2017). Volcanic shields on Mercury identified at last? Lunar Planet. Sci., 48, abstract 1871.Google Scholar
Wyrick, D. Y., Ferill, D. A., Morris, A. P., Colton, S. L. and Sims, D. W. (2004). Distribution, morphology, and origins of Martian pit crater chains. J. Geophys. Res., 109, E06005, doi:10.1029/2004JE002240.Google Scholar
Zimbelman, J. R. (1998). Emplacement of long lava flows on planetary surfaces. J. Geophys. Res., 103, 27,50327,516.Google Scholar
Zolotov, M. Yu. (2011). On the chemistry of mantle and magmatic volatiles on Mercury. Icarus, 212, 2441.Google Scholar
Zolotov, M. Yu., Sprague, A. L., Hauck, S. A. II, Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets, 118, 138146.Google Scholar
Zuber, M. T., Smith, D. E., Phillips, R. J., Solomon, S. C., Neumann, G. A., Hauck, S. A., Peale, S. J., Barnouin, O. S., Head, J. W., Johnson, C. L., Lemoine, F. G., Mazarico, E., Sun, X., Torrence, M. H., Freed, A. M., Margot, J. L., Oberst, J., Perry, M. E., McNutt, R. L., Balcerski, J. A., Michel, N., Talpe, M. J. and Yang, D. (2012). Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science, 336, 217220.Google Scholar
Zuber, M. T., Smith, D. E., Watkins, M. M., Asmar, S. W., Konopliv, A. S., Lemoine, F. G., Melosh, H. J., Neumann, G. A., Phillips, R. J., Solomon, S. C., Wieczorek, M. A., Williams, J. G., Goossens, S. J., Kruizinga, G., Mazarico, E., Park, R. S. and Yuan, D.-N. (2013). Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science, 339, 668671.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×