Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-20T16:33:31.021Z Has data issue: false hasContentIssue false

8 - Spectral Reflectance Constraints on the Composition and Evolution of Mercury’s Surface

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

MESSENGER characterized the spectral reflectance of Mercury using the Mercury Dual Imaging System wide-angle camera and the Mercury Atmospheric and Surface Composition Spectrometer. Compared with other differentiated silicate bodies, Mercury lacks the 1-µm crystal-field absorption due to ferrous iron in silicate yet is unusually low in reflectance. Spectral modeling suggests that the likely darkening phase is graphite, and surficial carbon has been confirmed with data from MESSENGER's Neutron Spectrometer. Control of reflectance by this minor opaque phase, rather than by the abundance of iron in silicates as on the Moon, prevents the correlation of spectral reflectance and major element composition as on the Moon. Variations in reflectance and color nevertheless serve as markers for the structure of the upper crust, revealing that at least 5 km of volcanic plains overlie carbon-enriched low-reflectance material. The one definitive absorption due to oxidized iron, an oxygen-metal charge transfer (OMCT) band in the ultraviolet observed in bright, pyroclastic deposits, may originate by oxidation of darkening carbon and sulfides, reducing sufficient iron to metal to unsaturate the OMCT band. The content of ferrous iron implied by the presence of this feature and the lack of a 1-µm feature is between 0.1 and 1 wt%. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 191 - 216
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. B. and McCord, T. B. (1970). Remote sensing of lunar surface mineralogy: Implications from visible and near-infrared reflectivity of Apollo 11 samples. Proc. Apollo 11 Lunar Science Conf., 3, 19371945.Google Scholar
Blewett, D. T., Lucey, P. G., Hawke, B. R. and Jolliff, B. L. (1997a). Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. J. Geophys. Res., 102, 1631916325.CrossRefGoogle Scholar
Blewett, D. T., Lucey, P. G., Hawke, B. R., Ling, G. G. and Robinson, M. S. (1997b). A comparison of mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.Google Scholar
Blewett, D. T., Hawke, B. R., Lucey, P. G. and Robinson, M. S. (2007). A Mariner 10 color study of Mercurian craters. J. Geophys. Res., 112, E02005, doi:10.1029/2006JE002713.Google Scholar
Blewett, D. T., Robinson, M. S., Denevi, B. W., Gillis-Davis, J. J., Head, J. W., Solomon, S. C., Holsclaw, G. M. and McClintock, W. E. (2009). Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth Planet. Sci. Lett., 285, 272282.CrossRefGoogle Scholar
Blewett, D. T., Chabot, N. L., Denevi, B. W., Ernst, C. M., Head, J. W., Izenberg, N. R., Murchie, S. L., Solomon, S. C., Nittler, L. R., McCoy, T. J., Xiao, Z., Baker, D. M. H., Fassett, C. I., Braden, S. E., Oberst, J., Scholten, F., Preusker, F. and Hurwitz, D. M. (2011). Hollows on Mercury: Evidence from MESSENGER for geologically recent volatile-related activity. Science, 333, 18561859.CrossRefGoogle ScholarPubMed
Blewett, D. T., Vaughan, W. V., Xiao, Z., Chabot, N. L., Denevi, B. W., Ernst, C. M., Helbert, J., D’Amore, M., Maturilli, A., Head, J. W. and Solomon, S. C. (2013). Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res. Planets, 118, 10131032.Google Scholar
Blewett, D. T., Levy, C. L., Chabot, N. L., Denevi, B. W., Ernst, C. M. and Murchie, S. L (2014). Phase-ratio images of the surface of Mercury: Evidence for differences in sub-resolution texture. Icarus, 242, 142148.Google Scholar
Blewett, D. T., Stadermann, A., Susorney, H. C., Ernst, C. M., Xiao, Z., Chabot, N. L., Denevi, B. W., Murchie, S. L., McCubbin, F. M., Kinczyk, M. J., Gillis-Davis, J. J. and and Solomon, S. C. (2016). Analysis of MESSENGER high-resolution images of Mercury’s hollows and implications for hollow formation. J. Geophys. Res. Planets, 121, 1798–1813, doi:10.1002/2016JE005070.Google Scholar
Braden, S. E. and Robinson, M. S. (2013). Relative rates of optical maturation of regolith on Mercury and the Moon. J. Geophys. Res. Planets, 118, 19031914.CrossRefGoogle Scholar
Bruck Syal, M., Schultz, P. H. and Riner, M. A. (2015). Darkening of Mercury’s surface by cometary carbon. Nature Geosci., 8, 352356.CrossRefGoogle Scholar
Charette, M. P., McCord, T. B., Pieters, C. M. and Adams, J. B. (1974). Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J. Geophys. Res., 79, 16051613.Google Scholar
Charlier, B., Grove, T. L. and Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett., 363, 5060.CrossRefGoogle Scholar
Cintala, M. J. (1992). Impact-induced thermal effects in the lunar and mercurian regoliths. J. Geophys. Res., 97, 947973.Google Scholar
Clark, B. E., Veverka, J., Helfenstein, P., Thomas, P. C., Bell, J. F., Harch, A., Robinson, M. S., Murchie, S. L., McFadden, L. A. and Chapman, C. R. (1999). NEAR photometry of asteroid 253 Mathilde. Icarus, 140, 5365.Google Scholar
Clegg, R. N., Jolliff, B. L., Robinson, M. S., Hapke, B. W. and Plescia, J. B. (2014). Effects of rocket exhaust on lunar soil reflectance properties. Icarus, 227, 176194.CrossRefGoogle Scholar
Cloutis, E. A., McCormack, K. A., Bell, J. F., Hendrix, A. R., Bailey, D. T., Craig, M. A., Mertzman, S. A., Robinson, M. S. and Riner, M. A. (2008). Ultraviolet spectral reflectance properties of common planetary minerals. Icarus, 197, 321347.CrossRefGoogle Scholar
Cloutis, E. A., Hudon, P., Hiroi, T., Gaffey, M. J. and Mann, P. (2011). Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites. Icarus, 216, 309346.Google Scholar
D’Amore, M., Helbert, J., Maturilli, A., Head, J. W., Sprague, A. L., Izenberg, N. R., Holsclaw, G. M., McClintock, W. E., Vilas, F. and Solomon, S. C. (2012). Global classification of MESSENGER spectral reflectance data and a detailed look at Rudaki plains. Lunar Planet. Sci., 43, abstract 1413.Google Scholar
D’Amore, M., Helbert, J., Holsclaw, G. M., Izenberg, N. R., McClintock, W. E., Head, J. W. and Solomon, S. C. (2013). Exploiting the Mercury surface reflectance spectroscopy dataset from MESSENGER: Making sense of three million spectra. Lunar Planet. Sci., 44, abstract 1900.Google Scholar
D’Amore, M., Helbert, J., Ferrari, S., Maturilli, A., Nittler, L. R., Domingue, D. L., Weider, S. Z., Starr, R. D., Crapster-Pregont, E. J., Ebel, D. S. and Solomon, S. C. (2014). Unsupervised classification of Mercury’s visible–near-infrared reflectance spectra: Comparison with major element compositions. Lunar Planet. Sci., 45, abstract 1073.Google Scholar
Davis, J. C. (1973). Statistics and Data Analysis in Geology. New York: John Wiley & Sons, 550 pp.Google Scholar
Denevi, B. W. and Robinson, M. S. (2008). Mercury’s albedo from Mariner 10: Implications for the presence of ferrous iron. Icarus, 197, 239246.CrossRefGoogle Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C. and Peplowski, P. N. (2013a). The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets, 118, 891907.Google Scholar
Denevi, B. W., Ernst, C. M., Whitten, J. L., Head, J. W., Murchie, S. L., Watters, T. R., Byrne, P. K., Blewett, D. T., Solomon, S. C. and Fassett, C. I. (2013b). The volcanic origin of a region of intercrater plains on Mercury. Lunar Planet. Sci., 44, abstract 1218.Google Scholar
Denevi, B. W., Chabot, N. L., Murchie, S. L., Becker, K. J., Blewett, D. T., Domingue, D. I., Ernst, C. M., Hash, C. D., Hawkins, S. E. III, Keller, M. R., Laslo, N. R., Nair, H., Robinson, M. S., Seelos, F. P., Stephens, G. K., Turner, F. S. and Solomon, S. C. (2018). Calibration, projection, and final image products of MESSENGER’s Mercury Dual Imaging System. Space Sci. Rev., 214, 2.CrossRefGoogle Scholar
Domingue, D. L., Robinson, M., Carcich, B., Joseph, J., Thomas, P. and Clark, B. E. (2002). Disk-integrated photometry of 433 Eros. Icarus, 155, 205219.Google Scholar
Domingue, D. L., Vilas, F., Holsclaw, G. M., Warell, J., Izenberg, N. R., Murchie, S. L., Denevi, B. W., Blewett, D. T., McClintock, W. E., Anderson, B. J. and Sarantos, M. (2010). Whole-disk spectrophotometric properties of Mercury: Synthesis of MESSENGER and ground-based observations. Icarus, 209, 101124.CrossRefGoogle Scholar
Domingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., Benna, M., Slavin, J. A., Schriver, D., Travnicek, P. M., Orlando, T. M., Sprague, A. L., Blewett, D. T., Gillis-Davis, J. J., Feldman, W. C., Lawrence, D. J., Ho, G. C., Ebel, D. S., Nittler, L. R., Vilas, F., Pieters, C. M., Solomon, S. C., Johnson, C. L., Winslow, R. M., Helbert, J., Peplowski, P. N., Weider, S. Z., Izenberg, N. R. and McClintock, W. E. (2014). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev., 181, 121214.Google Scholar
Domingue, D. L., Murchie, S. L., Denevi, B. W., Ernst, C. M. and Chabot, N. L. (2015). Mercury’s global color mosaic: An update from MESSENGER’s orbital observations. Icarus, 257, 477488.Google Scholar
Domingue, D. L., Denevi, B. W., Murchie, S. L. and Hash, C. (2016). Application of multiple photometric models to disk-resolved measurements of Mercury’s surface: Insights into Mercury’s regolith characteristics. Icarus, 268, 172203.Google Scholar
Emery, J. P., Sprague, A. L., Witteborn, F. C., Colwell, J. E., Kozlowski, R. W. H. and Wooden, D. H. (1998). Mercury: Thermal modeling and mid-infrared (5–12 µm) observations. Icarus, 136, 104123.CrossRefGoogle Scholar
Ernst, C. M., Murchie, S. L., Barnouin-Jha, O. S., Robinson, M. S., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R. and Solomon, S. C. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223.Google Scholar
Ernst, C. M., Denevi, B. W., Barnouin, O. S., Klimczak, C., Chabot, N. L., Head, J. W., Murchie, S. L., Neumann, G. A., Prockter, L. M., Robinson, M. S., Solomon, S. C. and Watters, T. R. (2015). Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 250, 413429.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V. and Hamara, D. K. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.CrossRefGoogle Scholar
Fassett, C. I., Head, J. W., Blewett, D. T., Chapman, C. R., Dickson, J. L., Murchie, S. L., Solomon, S. C. and Watters, T. R. (2009), Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth Planet. Sci. Lett., 285, 297308, doi:10.1016/j.epsl.2009.05.022.CrossRefGoogle Scholar
Fassett, C. I., Head, J. W., Baker, D. M. H., Zuber, M. T., Smith, D. E., Neumann, G. A., Solomon, S. C., Klimczak, C., Strom, R. G., Chapman, C. R., Prockter, L. M., Phillips, R. J., Oberst, J. and Preusker, F. (2012). Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. J. Geophys. Res., 117, E00L08, doi:10.1029/2012JE004154.Google Scholar
Fischer, E. M. and Pieters, C. M. (1994). Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods. Icarus, 111, 475488.Google Scholar
Gaffey, S. J., McFadden, L. A., Nash, D. and Pieters, C. M. (1993). Ultraviolet, visible, and near-infrared reflectance spectroscopy: Laboratory spectra of geologic materials. In Remote Geochemical Analysis: Elemental and Mineralogic Composition, ed. Pieters, C. M. and Englert, P. A. J.. Cambridge: Cambridge University Press, pp. 4378.Google Scholar
Gillis-Davis, J. J., van Niekerk, D., Scott, E. R. D., McCubbin, F. M. and Blewett, D. T. (2013). Impact darkening: A possible mechanism to explain why Mercury is spectrally dark and featureless. Presented at 2013 Fall Meeting, American Geophysical Union, abstract P11A–07, San Francisco, CA, 9–13 December.Google Scholar
Goguen, J. D., Stone, T. C., Kieffer, H. H. and Buratti, B. J. (2010). A new look at photometry of the Moon, Icarus, 208, 548557.Google Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Eckels, J. D., Miller, W. O., Burks, M. T., Hagler, L. B., DeTeresa, S. J. and Witte, M. C. (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391.CrossRefGoogle Scholar
Goudge, T. A., Head, J. W., Kerber, L., Blewett, D. T., Denevi, B. W., Domingue, D. L., Gillis-Davis, J. J., Gwinner, K., Helbert, J., Holsclaw, G. M., Izenberg, N. R., Klima, R. L., McClintock, W. E., Murchie, S. L., Neumann, G. A., Smith, D. E., Strom, R. G., Xiao, Z., Zuber, M. T. and Solomon, S. C. (2014). Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. Planets, 119, 635658.Google Scholar
Green, R. O., Pieters, C., Mouroulis, P., Eastwood, M., Boardman, J., Glavich, T., Isaacson, P., Annadurai, M., Besse, S., Barr, D., Buratti, B., Cate, D., Chatterjee, A., Clark, R., Cheek, L., Combe, J., Dhingra, D., Essandoh, V., Geier, S., Goswami, J. N., Green, R., Haemmerle, V., Head, J., Hovland, L., Hyman, S., Klima, R., Koch, T., Kramer, G., Kumar, A. S. K., Lee, K., Lundeen, S., Malaret, E., McCord, T., McLaughlin, S., Mustard, J., Nettles, J., Petro, N., Plourde, K., Racho, C., Rodriquez, J., Runyon, C., Sellar, G., Smith, C., Sobel, H., Staid, M., Sunshine, J., Taylor, L., Thaisen, K., Tompkins, S., Tseng, H., Vane, G., Varanasi, P., White, M. and Wilson, D. (2011). The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res., 116, E00G19, doi:10.1029/2011JE003797.Google Scholar
Hapke, B. (1977). Interpretations of optical observations of Mercury and the Moon, Phys. Earth Planet. Inter., 15, 264274.Google Scholar
Hapke, B. (1981). Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res., 86, 30393054.Google Scholar
Hapke, B. (1984). Bidirectional reflectance spectroscopy, 3: Correction for macroscopic roughness. Icarus, 59, 4159.Google Scholar
Hapke, B. (1986). Bidirectional reflectance spectroscopy, 4: The extinction coefficient and opposition effect. Icarus, 67, 264280.Google Scholar
Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy. Cambridge: Cambridge University Press, 455 pp.Google Scholar
Hapke, B. (2001). Space weathering from Mercury to the asteroid belt. J. Geophys. Res., 106, 10,03910,073.CrossRefGoogle Scholar
Hapke, B. (2002). Bidirectional reflectance spectroscopy, 5: The coherent backscatter opposition effect and anisotropic scattering. Icarus, 157, 523534.CrossRefGoogle Scholar
Hapke, B. (2008). Bidirectional reflectance spectroscopy. 6. Effects of porosity. Icarus, 195, 918926.Google Scholar
Hapke, B. (2012a). Theory of Reflectance and Emittance Spectroscopy, 2nd edn. Cambridge: Cambridge University Press, 513 pp.CrossRefGoogle Scholar
Hapke, B., (2012b). Bidirectional reflectance spectroscopy, 7. The single particle phase function hockey stick relation. Icarus, 221, 10791083.Google Scholar
Hapke, B., Danielson, G. E., Klaasen, K. and Wilson, L. (1975). Photometric observations of Mercury from Mariner 10. J. Geophys. Res., 80, 24312443.Google Scholar
Haskin, L. and Warren, P. (1991). Lunar chemistry. In A User’s Guide to the Moon, ed. Heiken, G. H., Vaniman, D. T. and French, B. M.. New York: Cambridge University Press, pp. 357474.Google Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J. Jr., Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E. II, Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.CrossRefGoogle Scholar
Hawkins, S. E. III, Murchie, S. L., Becker, K. J., Selby, C. M., Turner, F. S., Noble, M. W., Chabot, N. L., Choo, T. H., Darlington, E. H., Denevi, B. W., Domingue, D. L., Ernst, C. M., Holsclaw, G. M., Laslo, N. H., McClintock, W. E., Prockter, L. M., Robinson, M. S., Solomon, S. C. and Sterner, R. E. (2009). In-flight performance of MESSENGER’s Mercury Dual Imaging System. In Instruments and Methods for Astrobiology and Planetary Missions XII, SPIE Proceedings, Vol. 7441, ed. Hoover, R. B., Levin, G. V., Rozanov, A. Y. and Retherford, K. D.. Paper 74410Z, 12 pp.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Chapman, C. R., Strom, R. G., Watters, T. R., Blewett, D. T., Gillis-Davis, J. J., Fassett, C. I., Dickson, J. L., Morgan, G. A. and Kerber, L. (2009). Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet. Sci. Lett., 285, 227242.Google Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the high northern latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856.Google Scholar
Helbert, J., D’Amore, M., Izenberg, N. R., Domingue, D. L., Head, J. W., D’Incecco, P., Maturilli, A., Holsclaw, G. M., McClintock, W. E. and Solomon, S. C. (2012). Surface units on Mercury defined by unsupervised classification analysis of MESSENGER spectral reflectance data from the first year in orbit. Presented at 2012 Fall Meeting, American Geophysical Union, abstract P33B-1939, San Francisco, CA, 10–14 December.Google Scholar
Helbert, J., Maturilli, A. and D’Amore., M. (2013). Visible and near-infrared reflectance spectra of thermally processed synthetic sulfides as a potential analog for the hollow forming materials on Mercury. Earth Planet. Sci. Lett., 369, 233238.Google Scholar
Helfenstein, P. and Shepard, M. K. (1999). Submillimeter-scale topography of the lunar regolith. Icarus, 141, 107131.Google Scholar
Helfenstein, P. and Shepard, M. K. (2011). Testing the Hapke photometric model: Improved inversion and the porosity correction. Icarus, 215, 83100.Google Scholar
Hendrix, A. R. and Vilas, F. (2006). The effects of space weathering at UV wavelengths: S-class asteroids. Astron. J., 132, 13961404.CrossRefGoogle Scholar
Hendrix, A. R., Retherford, K. D., Gladstone, G. R., Hurley, D. M., Feldman, P. D., Egan, A. F., Kaufmann, D. E., Miles, P. F., Parker, J. W., Horvath, D., Rojas, P. M., Versteeg, M. H., Davis, M. W., Greathouse, T. K., Mukherjee, J., Steffl, A. J., Pryor, W. R. and Stern, S. A. (2012). The lunar far-UV albedo: Indicator of hydration and weathering. J. Geophys. Res., 117, E12001, doi:10.1029/2012JE004252.Google Scholar
Izenberg, N. R. and Ward, J. G. (2016). MESSENGER MASCS VIRS Calibrated Data Record, Derived Data Record, and Derived Analysis Product Software Interface Specification. Available online, http://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mascs-3-virs-cdr-caldata-v1/messmas_2001/document/virs_cdr_ddr_dap_sis.pdf.Google Scholar
Izenberg, N. R., Klima, R. L., Murchie, S. L., Blewett, D. T., Holsclaw, G. M., McClintock, W. E., Malaret, E., Mauceri, C., Vilas, F., Sprague, A. L., Helbert, J., Domingue, D. L., Head, J. W. III, Goudge, T. A., Solomon, S. C., Hibbitts, C. A. and Dyar, M. D. (2014). The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 228, 364374.Google Scholar
Izenberg, N. R., Thomas, R. J., Blewett, D. T. and Nittler, L. R. (2015). Are there compositionally different types of hollows on Mercury? Lunar Planet. Sci., 46, abstract 1344.Google Scholar
Izenberg, N. R., Domingue, D. L., Holsclaw, G. M. and McClintock, W. E. (2016). Photometric normalization error in MASCS pipeline: Effects and remediation. Available online, http://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mascs-3-virs-cdr-caldata-v1/messmas_2001/document/mascs_photometric_error.pdf.Google Scholar
Kaasalainen, M., Torppa, J. and Muinonen, K. (2001). Optimization methods for asteroid lightcurve inversion. Icarus, 153, 3751.CrossRefGoogle Scholar
Kaydash, V. G. and Shkuratov, Yu. G. (2012). Structural disturbances of the lunar surface caused by spacecraft. Solar Syst. Res., 46, 108118.Google Scholar
Kaydash, V. G. and Shkuratov, Yu. G. (2014). Structural disturbances of the lunar surface near the Lunokhod-1 spacecraft landing site. Solar Syst. Res., 48, 167175.Google Scholar
Kaydash, V., Shkuratov, Yu., Korokhin, V. and Videen, G. (2011). Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter. Icarus, 211, 8996.Google Scholar
Kaydash, V., Shkuratov, Yu. and Videen, G. (2012). Phase-ratio imagery as a planetary remote-sensing tool. J. Quant. Spectrosc. Radiat. Trans., 113, 26012607.Google Scholar
Kaydash, V., Shkuratov, Yu. and Videen, G. (2014). Dark halos and rays of young lunar craters: A new insight into interpretation. Icarus, 231, 2233.Google Scholar
Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T. and Wilson, L. (2009). Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett., 285, 263271.Google Scholar
Kerber, L., Head, J. W., Blewett, D. T., Solomon, S. C., Wilson, L., Murchie, S. L., Robinson, M. S., Denevi, B. W. and Domingue, D. L. (2011). The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planet. Space Sci., 59, 18951909.Google Scholar
Kerber, L., Besse, S., Head, J. W., Blewett, D. T., Goudge, T. A. and Jussieu, P. (2014). The global distribution of pyroclastic deposits on Mercury: The view from orbit. Lunar Planet. Sci., 45, abstract 2862.Google Scholar
Killen, R., Shemansky, D. and Mouawad, N. (2009). Expected emission from Mercury’s exospheric species, and their ultraviolet–visible signatures. Astrophys. J. Supp., 181, 351359.Google Scholar
Klima, R. L., Dyar, M. D. and Pieters, C. M. (2011). Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteorit. Planet. Sci., 42, 235253.Google Scholar
Klima, R. L., Izenberg, N. R., Murchie, S. L., Meyer, H. M., Stockstill-Cahill, K. R., Blewett, D. T., D’Amore, M., Denevi, B. W., Ernst, C. M., Helbert, J., McCoy, T. J., Sprague, A. L., Vilas, F. and Weider, S. Z. (2013). Constraining the ferrous iron content of minerals in Mercury’s crust. Lunar Planet. Sci., 44, abstract 1602.Google Scholar
Klima, R. L., Denevi, B. W., Ernst, C. M., Murchie, S. L. and Peplowski, P. N. (2018). Global distribution and spectral properties of low-reflectance material on Mercury. Geophys. Res. Lett., 45, 29452953.Google Scholar
Kreslavsky, M. A. and Shkuratov, Yu. G. (2003). Photometric anomalies of the lunar surface: Results from Clementine data. J. Geophys. Res., 108, 5015, doi:10.1029/2002JE001937, E3.Google Scholar
Li, J.-Y., Le Corre, L., Schröder, S. E., Reddy, V., Denevi, B. W., Buratti, B. J., Mottola, S., Hoffmann, M., Gutierrez-Marques, P., Nathues, A., Russell, C. T. and Raymond, C. A. (2013). Global photometric properties of asteroid (4) Vesta observed with Dawn Framing Camera. Icarus, 226, 12521274.Google Scholar
Lodders, K. and Fegley, B. (1998). The Planetary Scientist’s Companion. New York: Oxford University Press.CrossRefGoogle Scholar
Lucey, P. G. and Riner, M. A. (2011). The optical effects of small iron particles that darken but do not redden: Evidence of intense space weathering on Mercury. Icarus, 212, 451462.CrossRefGoogle Scholar
Lucey, P. G., Taylor, G. J. and Malaret, E. (1995). Abundance and distribution of iron on the Moon. Science, 268, 11501153.CrossRefGoogle ScholarPubMed
Lucey, P. G., Blewett, D. T. and Hawke, B. R. (1998). Mapping the FeO and TiO2 content of the lunar surface with multispectral imaging. J. Geophys. Res., 103, 36793699.Google Scholar
Lucey, P. G., Blewett, D. T. and Jolliff, B. L. (2000a). Lunar iron and titanium abundance algorithms based on final processing of Clementine UVVIS data. J. Geophys. Res., 105, 20,29720,306.CrossRefGoogle Scholar
Lucey, P. G., Blewett, D. T., Taylor, G. J. and Hawke, B. R. (2000b). Imaging of lunar surface maturity. J. Geophys. Res., 105, 20,37720,386.Google Scholar
Lumme, K. and Bowell, E. (1981). Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. Astron. J., 86, 16941704.Google Scholar
Mallama, A., Wang., D. and Howard, R. A. (2002). Photometry of Mercury from SOHO/LASCO and Earth: The phase function from 2 to 170°. Icarus, 155, 253264.Google Scholar
Maxwell, R. E., Izenberg, N. R. and Holsclaw, G. M. (2016). Implications for iron and carbon in Mercury surface materials from ultraviolet reflectance. Lunar Planet. Sci., 47, abstract 1606.Google Scholar
McClintock, W. E. and Lankton, M. R. (2007). The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission. Space Sci. Rev., 131, 481522.Google Scholar
McClintock, W. E., Izenberg, N. R., Holsclaw, G. M., Blewett, D. T., Domingue, D. L., Head, , J. W., III, Helbert, , J., McCoy, , T. J., Murchie, , S. L., Robinson, , M. S., Solomon, , S. C., Sprague, , A. L. and Vilas, , F. (2008). Spectroscopic observations of Mercury’s surface reflectance during MESSENGER’s first Mercury flyby. Science, 321, 6265, doi:10.1126/science.1159933.Google Scholar
McCord, T. B. and Adams, J. B. (1972a). Mercury: Surface composition from the reflection spectrum. Science, 178, 745747.Google Scholar
McCord, T. B. and Adams, J. B. (1972b). Mercury: Interpretation of optical observations. Icarus, 17, 585588.Google Scholar
McCord, T. B. and Clark, R. N. (1979). The Mercury soil: Presence of Fe2+. J. Geophys. Res., 84, 76647668.Google Scholar
McGuire, A. and Hapke, B. (1995). An experimental study of light scattering by large irregular particles. Icarus, 113, 134155.Google Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C, McClintock, W. E., Prockter, L. M., Domingue, D. L. and Blewett, D. T. (2008). Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7376.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E. II, Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.Google Scholar
Peplowski, P. N., Lawrence, D. J., Evans, L. G., Klima, R. L., Blewett, D. T., Goldsten, J. O., Murchie, S. L., McCoy, T. J., Nittler, L. R., Solomon, S. C., Starr, R. D. and Weider, S. Z. (2015a). Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planet. Space Sci., 108, 98107.CrossRefGoogle Scholar
Peplowski, P. N., Bazell, D., Evans, L. G., Goldsten, J. O., Lawrence, D. J. and Nittler, L. R. (2015b). Hydrogen and major element concentrations on 433 Eros: Evidence for an L- or LL-chondrite-like surface composition. Meteorit. Planet. Sci., 50, 353367.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L. R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geosci., 9, 273276, doi:10.1038/ngeo2669.Google Scholar
Pieters, C. M. (1993). Compositional diversity and stratigraphy of the lunar crust derived from reflectance spectroscopy. In Remote Geochemical Analysis: Elemental and Mineralogic Composition, ed. Pieters, C. M. and Englert, P. A. J.. Cambridge: Cambridge University Press, pp. 309340.Google Scholar
Prockter, L. M., Murchie, S. L., Solomon, S. C., Nittler, L. R., McNutt, R. L. Jr., Chabot, N. L., Lawrence, D. J., Evans, L. G., Johnson, C. L., Phillips, R. J., Vervack, R. J. Jr., Korth, H., Perry, M. E., Bedini, P. D. and Winters, H. L. (2013). MESSENGER’s second extended mission: Exploring Mercury’s dynamic magnetosphere and complex surface at unprecedented scales. Lunar Planet. Sci., 44, abstract 2907.Google Scholar
Rava, B. and Hapke, B. (1987). An analysis of the Mariner 10 color ratio map of Mercury. Icarus, 71, 397429.Google Scholar
Rivera-Valentin, E. G. and Barr, A. C. (2014). Impact-induced compositional variations on Mercury. Earth Planet. Sci. Lett., 391, 234242.Google Scholar
Robinson, M. S. and Lucey, P. G. (1997). Recalibrated Mariner 10 color mosaics: Implications for mercurian volcanism. Science, 275, 197200.Google Scholar
Robinson, M. S. and Taylor, G. J. (2001). Ferrous oxide in Mercury’s crust and mantle. Meteorit. Planet. Sci., 36, 841847.Google Scholar
Robinson, M. S., Hawke, B. R., Lucey, P. G. and Smith, G. A. (1992). Mariner 10 multispectral images of the eastern limb and farside of the Moon. J. Geophys. Res., 97, 18,26518,274.Google Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E. III, Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L. Jr., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., De Sanctis, M. C., Jaumann, R., Konopliv, A. S., Preusker, F., Asmar, S. W., Park, R. S., Gaskell, R., Keller, H. U., Mottola, S., Roatsch, T., Scully, J. E. C., Smith, D. E., Tricarico, P., Toplis, M. J., Christensen, U. R., Feldman, W. C., Lawrence, D. J., McCoy, T. J., Prettyman, T. H., Reedy, R. C., Sykes, M. E. and Titus, T. N. (2012). Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Sato, H., Robinson, M. S., Hapke, B., Denevi, B. W. and Boyd, A. K. (2014). Resolved Hapke parameter maps of the Moon. J. Geophys. Res. Planets, 119, 17751805.Google Scholar
Schlemm, C. E. II, Starr, R. D., Ho, G. C., Bechtold, K. E., Hamilton, S. A., Boldt, J. D., Boynton, W. V., Bradley, W., Fraeman, M. E., Gold, R. E., Goldsten, J. O., Hayes, J. R., Jaskulek, S. E., Rossano, E., Rumpf, R. A., Schaefer, E. D., Strohbehn, K., Shelton, R. G., Thompson, R. E., Trombka, J. I. and Williams, B. D. (2007). The X-Ray Spectrometer on the MESSENGER spacecraft. Space Sci. Rev., 131, 393415.Google Scholar
Schröder, S. E., Mottola, S., Keller, H. U., Raymond, C. A. and Russell, C. T. (2013). Resolved photometry of Vesta reveals physical properties of crater regolith. Planet. Space Sci., 85, 198213.Google Scholar
Shepard, M. K. and Campbell, R. (1998). Shadows on a planetary surface and implications for photometric roughness. Icarus, 134, 279291.Google Scholar
Shepard, M. K. and Helfenstein, P. (2007). A test of the Hapke photometric model, J. Geophys. Res., 112, E03001, doi:10.1029/2005JE002625.Google Scholar
Shkuratov, Yu., Starukhina, L., Hoffmann, H. and Arnold, G. (1999). A model of spectral albedo of particulate surfaces: Implication to optical properties of the Moon. Icarus, 137, 235246.Google Scholar
Shkuratov, Yu., Bondarenko, S., Kaydash, V., Videen, G., Munos, O. and Volten, H. (2007). Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles. J. Quant. Spectrosc. Radiat. Trans., 106, 487508.Google Scholar
Shkuratov, Yu., Kaydash, V., Korokhin, V., Velikodsky, Y., Opanasenko, N. and Videen, G. (2011). Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci., 59, 13261371.Google Scholar
Shkuratov, Yu., Kaydash, V., Korokhin, V., Velikodsky, Y., Petrov, D., Zubko, E., Stankevich, D. and Videen, G. (2012a). A critical assessment of the Hapke photometric model. J. Quant. Spectrosc. Radiat. Trans., 113, 24312456.Google Scholar
Shkuratov, Yu., Kaydash, V. and Videen, G. (2012b). The lunar crater Giordano Bruno as seen with optical roughness imagery. Icarus, 218, 525533.Google Scholar
Shkuratov, Yu., Kaydash, V., Sysolyatina, X., Razim, A. and Videen, G. (2013). Lunar surface traces of engine jets of Soviet sample return probes: The enigma of the Luna-23 and Luna-24 landing sites. Planet. Space Sci., 75, 2836.Google Scholar
Simonelli, D. P., Wisz, M., Switala, A., Adinolfi, D., Veverka, J., Thomas, P. C. and Helfenstein, P. (1998). Photometric properties of Phobos surface materials from Viking images. Icarus, 131, 5277.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Gold, R. E., Acuña, M. H., Baker, D. N., Boynton, W. V., Chapman, C. R., Cheng, A. F., Gloeckler, G., Head, J. W. III, Krimigis, S. M., McClintock, W. E., Murchie, S. L., Peale, S. J., Phillips, R. J., Robinson, M. S., Slavin, J. A., Smith, D. E., Strom, R. G., Trombka, J. I. and Zuber, M. T. (2001). The MESSENGER mission to Mercury: Scientific objectives and implementation. Planet. Space Sci., 49, 14451465.CrossRefGoogle Scholar
Souchon, A. L., Pinet, P. C., Chevrel, S. D., Daydou, Y. H., Baratoux, D., Kurita, K., Shepard, M. K. and Helfenstein, P. (2011). An experimental study of Hapke’s modeling of natural granular surface samples. Icarus, 215, 313331.Google Scholar
Sprague, A. L., Kozlowski, R. W. H., Witteborn, F. C., Cruikshank, D. P. and Wooden, D. H. (1994). Mercury: Evidence for anorthosite and basalt from mid-infrared (7.3–13.5 micrometers) spectroscopy. Icarus, 109, 156167.Google Scholar
Sprague, A. L., Hunten, D. M. and Lodders, K. (1995). Sulfur at Mercury, elemental at the poles and sulfides in the regolith. Icarus, 118, 211215.Google Scholar
Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K. and Mazuk, A. L. (2002). Mercury: Mid-infrared (3–13.5 µm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteorit. Planet. Sci., 37, 12551268.Google Scholar
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R., Weider, S. Z. and Hauck, S.A. II (2012). Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. J. Geophys. Res., 117, E00L15, doi:10.1029/2012JE004140.Google Scholar
Thomas, P.C., Adinolfi, D., Helfenstein, P., Simonelli, D. and Veverka, J. (1996). The surface of Deimos: Contribution of materials and processes to its unique appearance. Icarus, 123, 536556.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014a). Hollows on Mercury: Materials and mechanisms involved in their formation. Icarus, 229, 221235.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014b). Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. J. Geophys. Res. Planets, 119, 22392254.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014c). Long-lived explosive volcanism on Mercury. Geophys. Res. Lett., 41, 60846092.Google Scholar
Trang, D., Lucey, P. G. and Izenberg, N. R. (2016). Mapping of submicroscopic carbon and iron on Mercury with radiative transfer modeling of MESSENGER VIRS reflectance spectra. Lunar Planet. Sci., 47, abstract 1396.Google Scholar
Trask, N. J. and Guest, J. E. (1975). Preliminary geologic terrain map of Mercury. J. Geophys. Res., 80, 24612477.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209.Google Scholar
Vander Kaaden, K. E., McCubbin, F. M., Nittler, L. R., Peplowski, P. N., Weider, S. Z., Frank, E. A. and McCoy, T. J. (2017). Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus, 285, 155168.Google Scholar
Vaughan, W. M., Helbert, J., Blewett, D. T., Head, J. W., Murchie, S. L., Gwinner, K., McCoy, T. J. and Solomon, S. C. (2012). Hollow-forming layers in impact craters on Mercury: Massive sulfide deposits formed by impact melt differentiation? Lunar Planet Sci., 43, abstract 1187.Google Scholar
Vilas, F. and McCord, T. B. (1976). Mercury: Spectral reflectance measurements (0.33–1.06 μm) 1974/75. Icarus, 28, 593599.Google Scholar
Vilas, F., Leake, M. A. and Mendell, W. W. (1984). The dependence of reflectance spectra of Mercury on surface terrain. Icarus, 59, 6068.Google Scholar
Vilas, F., Domingue, D. L., Helbert, J., D’Amore, M., Maturilli, A., Klima, R. L., Stockstill-Cahill, K. R., Murchie, S. L., Izenberg, N. R., Blewett, D. T., Vaughan, W. M. and Head, J. W. (2016). Mineralogical indicators of Mercury’s hollows composition in MESSENGER color observations. Geophys. Res. Lett., 43, 14501456, doi:10.1002/2015GL067515.Google Scholar
Wänke, H. (1981). Constitution of terrestrial planets. Phil. Trans. Roy. Soc. London A, 303, 287302.Google Scholar
Wänke, H. and Dreibus, G. (1994). Water abundance and accretion history of terrestrial planets. In Papers Presented to the Conference on Deep Earth and Planetary Volatiles. Houston, TX: Lunar and Planetary Institute, p. 46.Google Scholar
Warell, J. and Blewett, D. T. (2004). Properties of the hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modeling. Icarus, 168, 257276.Google Scholar
Warell, J., Sprague, A. L., Emery, J. P., Kozlowski, R. W. H. and Long, A. (2006). The 0.7–5.3 μm spectra of Mercury and the Moon: Evidence for high-Ca pyroxene on Mercury. Icarus, 180, 281291.Google Scholar
Watters, T. R., Murchie, S. L., Robinson, M. S., Solomon, S. C., Denevi, B. W., André, S. L. and Head, J. W. (2009). Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury. Earth Planet. Sci. Lett., 285, 309319.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012JE004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J. and Solomon, S. C. (2014). Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A. II, Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120.Google Scholar
Weider, S. Z., Nittler, L. R., Murchie, S. L., Peplowski, P. N., McCoy, T. J., Kerber, L., Klimczak, C., Ernst, C. M., Goudge, T. A., Starr, R. D., Izenberg, N. R., Klima, R. L. and Solomon, S. C. (2016). Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys. Res. Lett., 43, 36533661, doi:10.1002/2016GL068325.Google Scholar
Whitten, J. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2014). Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113.Google Scholar
Xiao, Z., Strom, R. G., Blewett, D. T., Byrne, P. K., Solomon, S. C., Murchie, S. L., Sprague, A. L., Domingue, D. L. and Helbert, J. (2013). Dark spots on Mercury: A distinctive low-reflectance material and its relation to hollows. J. Geophys. Res. Planets, 118, 17521765,Google Scholar
Zolotov, M. Yu. (2011). On the chemistry of mantle and magmatic volatiles on Mercury. Icarus, 212, 2441.Google Scholar
Zolotov, M. Yu., Sprague, A. L., Hauck, S. A. II, Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets, 118, 138146.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×