Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T11:43:20.425Z Has data issue: false hasContentIssue false

19 - Mercury’s Global Evolution

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

MESSENGER’s exploration of Mercury has revealed a rich and dynamic geological history and provided constraints on the processes that control the planet’s internal evolution. That history includes resurfacing by impacts and volcanism prior to the end of the late heavy bombardment and a subsequent rapid waning of effusive volcanism. MESSENGER also revealed a global distribution of thrust faults that collectively accommodated a decrease in Mercury’s radius far greater than thought before the mission. Measurements of elemental abundances on Mercury’s surface indicate the planet is strongly chemically reduced, helping to characterize the composition and manner of crystallization of the metallic core. The discovery of a northward offset of the weak, axially aligned internal magnetic field, and of crustal magnetization in the planet’s ancient crust, places new limits on the history of the core dynamo and the entire interior. Models of Mercury’s thermochemical evolution subject to these observational constraints indicate that mantle convection may persist to the present but has been incapable of significantly homogenizing the mantle. These models also indicate that Mercury’s dynamo generation is influenced by both a static layer at the top of the core and convective motions within the core driven by compositional buoyancy.
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 516 - 543
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L Jr., Raines, J. M. and Zurbuchen, T. H. (2011). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 1859–1862, doi:10.1126/science.1211001.CrossRefGoogle ScholarPubMed
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T. and McNutt, R. L Jr. (2012). Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res., 117, E00L12, doi:10.1029/2012je004159.Google Scholar
Anderson, J. D., Jurgens, R. F., Lau, E. L., Slade, M. A. III and Schubert, G. (1996). Shape and orientation of Mercury from radar ranging data. Icarus, 124, 690697, doi:10.1006/icar.1996.0242.CrossRefGoogle Scholar
Banks, M. E., Xiao, Z., Watters, T. R., Strom, R. G., Braden, S. E., Chapman, C. R., Solomon, S. C., Klimczak, C. and Byrne, P. K. (2015). Duration of activity on lobate-scarp thrust faults on Mercury. J. Geophys. Res. Planets, 120, 17511762, doi:10.1002/2015je004828.Google Scholar
Berthet, S., Malavergne, V. and Righter, K. (2009). Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochim. Cosmochim. Acta, 73, 64026420, doi:10.1016/j.gca.2009.07.030.Google Scholar
Beuthe, M. (2010). East–west faults due to planetary contraction. Icarus, 209, 795817, doi:10.1016/j.icarus.2010.04.019.CrossRefGoogle Scholar
Blair, D. M., Freed, A. M., Byrne, P. K., Klimczak, C., Prockter, L. M., Ernst, C. M., Solomon, S. C., Melosh, H. J. and Zuber, M. T. (2013). The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury. J. Geophys. Res. Planets, 118, 4758, doi:10.1029/2012JE004198.CrossRefGoogle Scholar
Breuer, D., Hauck, S. A. II, Buske, M., Pauer, M. and Spohn, T. (2007). Interior evolution of Mercury. Space Sci. Rev., 132, 229260, doi:10.1007/s11214-007-9228-9.Google Scholar
Brown, S. M. and Elkins-Tanton, L. T. (2009). Compositions of Mercury’s earliest crust from magma ocean models. Earth Planet. Sci. Lett., 286, 446455, doi:10.1016/j.epsl.2009.07.010.Google Scholar
Bullard, E. and Gellman, H. (1954). Homogeneous dynamos and terrestrial magnetism. Phil. Trans. Roy. Soc. London A, 247, 213278, doi:10.1098/rsta.1954.0018.Google Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., Benedix, G. K., Cloutis, E. A. and Dickinson, T. L. (2002). Spectra of extremely reduced assemblages: Implications for Mercury. Meteorit. Planet. Sci., 37, 12331244, doi:10.1111/j.1945-5100.2002.tb00892.x.Google Scholar
Byrne, P. K., Klimczak, C., Williams, D. A., Hurwitz, D. M., Solomon, S. C., Head, J. W., Preusker, F. and Oberst, J. (2013). An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets, 118, 13031322, doi:10.1002/jgre.20052.CrossRefGoogle Scholar
Byrne, P. K., Klimczak, C., Şengör, A. M. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. II (2014). Mercury’s global contraction much greater than earlier estimates. Nature Geosci., 7, 301307, doi:10.1038/ngeo2097.Google Scholar
Byrne, P. K., Ostrach, L. R., Fassett, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., Klimczak, C., Banks, M. E., Head, J. W. and Solomon, S. C. (2016). Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett., 43, 74087416, doi:10.1002/2016GL069412.Google Scholar
Cao, H., Aurnou, J. M., Wicht, J., Dietrich, W., Soderlund, K. M. and Russell, C. T. (2014). A dynamo explanation for Mercury’s anomalous magnetic field. Geophys. Res. Lett., 41, 41274134, doi:10.1002/2014gl060196.Google Scholar
Chabot, N. L., Wollack, E. A., Klima, R. L. and Minitti, M. E. (2014). Experimental constraints on Mercury’s core composition. Earth Planet. Sci. Lett., 390, 199208, doi:10.1016/j.epsl.2014.01.004.Google Scholar
Charlier, B., Grove, T. L. and Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett., 363, 5060, doi:10.1016/j.epsl.2012.12.021.CrossRefGoogle Scholar
Chen, B., Li, J. and Hauck, S. A. II (2008). Non-ideal liquidus curve in the Fe–S system and Mercury’s snowing core. Geophys. Res. Lett., 35, L07201, doi:10.1029/2008gl033311.Google Scholar
Christensen, U. R. (2006). A deep dynamo generating Mercury’s magnetic field. Nature, 444, 10561058, doi:10.1038/nature05342.Google Scholar
Christensen, U. R. and Wicht, J. (2008). Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn. Icarus, 196, 1634, doi:10.1016/j.icarus.2008.02.013.Google Scholar
Chudinovskikh, L. and Boehler, R. (2007). Eutectic melting in the system Fe–S to 44 GPa. Earth Planet. Sci. Lett., 257, 97103, doi:10.1016/j.epsl.2007.02.024.Google Scholar
Correia, A. C. M. and Laskar, J. (2004). Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature, 429, 848850, doi:10.1038/nature02609.Google Scholar
Dasgupta, R., Buono, A., Whelan, G. and Walker, D. (2009). High-pressure melting relations in Fe–C–S systems: Implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim. Cosmochim. Acta, 73, 66786691, doi:10.1016/j.gca.2009.08.001.Google Scholar
de Koker, N., Steinle-Neumann, G. and Vlcek, V. (2012). Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proc. Natl. Acad. Sci., 109, 40704073, doi:10.1073/pnas.1111841109.CrossRefGoogle Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618, doi:10.1126/science.1172226.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C. and Peplowski, P. N. (2013a). The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets, 118, 891907, doi:10.1002/jgre.20075.Google Scholar
Denevi, B. W., Ernst, C. M., Whitten, J. L., Head, J. W., Murchie, S. L., Watters, T. R., Byrne, P. K., Blewett, D. T., Solomon, S. C. and Fassett, C. I. (2013b). The volcanic origin of a region of intercrater plains on Mercury. Lunar Planet. Sci., 44, abstract 1218.Google Scholar
Deng, L., Fei, Y., Liu, X., Gong, Z. and Shahar, A. (2013a). Effect of carbon, sulfur and silicon on iron melting at high pressure: Implications for composition and evolution of the planetary terrestrial cores. Geochim. Cosmochim. Acta, 114, 220233, doi:10.1016/j.gca.2013.01.023.Google Scholar
Deng, L., Seagle, C., Fei, Y. and Shahar, A. (2013b). High pressure and temperature electrical resistivity of iron and implications for planetary cores. Geophys. Res. Lett., 40, 3337, doi:10.1029/2012GL054347.Google Scholar
Di Achille, G., Popa, C., Massironi, M., Epifani, E. M., Zusi, M., Cremonese, G. and Palumbo, P. (2012). Mercury’s radius change estimates revisited using MESSENGER data. Icarus, 221, 456460.Google Scholar
Dombard, A. and Hauck, S. A. II (2008). Despinning plus global contraction and the orientation of lobate scarps on Mercury: Predictions for MESSENGER. Icarus, 198, 274276, doi:10.1016/j.icarus.2008.06.008.Google Scholar
Dumberry, M. and Rivoldini, A. (2015). Mercury’s inner core size and core-crystallization regime. Icarus, 248, 254268, doi:10.1016/j.icarus.2014.10.038.CrossRefGoogle Scholar
Egea-González, I., Ruiz, J., Fernández, C., Williams, J.-P., Márquez, Á. and Lara, L. M. (2012). Depth of faulting and ancient heat flows in the Kuiper region of Mercury from lobate scarp topography. Planet. Space Sci., 60, 193198, doi:10.1016/j.pss.2011.08.003.Google Scholar
Ernst, C. M., Murchie, S. L., Barnouin, O. S., Robinson, M. S., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R., Solomon, S. C. and Roberts, J. H. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223, doi:10.1016/j.icarus.2010.05.022.CrossRefGoogle Scholar
Ernst, C. M., Denevi, B. W., Barnouin, O. S., Klimczak, C., Chabot, N. L., Head, J. W., Murchie, S. L., Neumann, G. A., Prockter, L. M., Robinson, M. S., Solomon, S. C. and Watters, T. R. (2015). Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 250, 413429, doi:10.1016/j.icarus.2014.11.003.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012je004178.Google Scholar
Evans, L. G., Peplowski, P. N., McCubbin, F. M., McCoy, T. J., Nittler, L. R., Zolotov, M. Yu., Ebel, D. S., Lawrence, D. J., Starr, R. D., Weider, S. Z. and Solomon, S. C. (2015). Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427, doi:10.1016/j.icarus.2015.04.039.Google Scholar
Fassett, C. I., Head, J. W., Blewett, D. T., Chapman, C. R., Dickson, J. L., Murchie, S. L., Solomon, S. C. and Watters, T. R. (2009). Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth Planet. Sci. Lett., 285, 297308, doi:10.1016/j.epsl.2009.05.022.Google Scholar
Fassett, C. I., Kadish, S. J., Head, J. W., Solomon, S. C. and Strom, R. G. (2011). The global population of large craters on Mercury and comparison with the Moon. Geophys. Res. Lett., 38, L10202, doi:10.1029/2011gl047294.Google Scholar
Fei, Y., Bertka, C. M. and Finger, L. W. (1997). High-pressure iron sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science, 275, 16211623, doi:10.1126/science.275.5306.1621.Google Scholar
Fei, Y., Li, J., Bertka, C. M. and Prewitt, C. T. (2000). Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. Amer. Mineral., 85, 18301833, doi:10.2138/am-2000-11-1229.CrossRefGoogle Scholar
Fei, Y., Hillgren, V. J., Shahar, A. and Solomon, S. C. (2011). On the silicon content of Mercury’s core and implications for core mineralogy, structure, and density. Lunar Planet. Sci., 42, abstract 1949.Google Scholar
Ferrari, S., Massironi, M., Marchi, S., Byrne, P. K., Klimczak, C., Martellato, E. and Cremonese, G. (2014). Age relationships of the Rembrandt basin and Enterprise Rupes, Mercury. In Volcanism and Tectonism Across the Solar System, ed. Platz, T., Massironi, M., Byrne, P. K. and Hiesinger, H., Special Publication 401. London: Geological Society, pp. 159172, doi:10.1144/SP401.20.Google Scholar
Fischer, R. A., Campbell, A. J., Reaman, D. M., Miller, N. A., Heinz, D. L., Dera, P. and Prakapenka, V. B. (2013). Phase relations in the Fe–FeSi system at high pressures and temperatures. Earth Planet. Sci. Lett., 373, 5464, doi:10.1016/j.epsl.2013.04.035.Google Scholar
Freed, A. M., Solomon, S. C., Watters, T. R., Phillips, R. J. and Zuber, M. T. (2009). Could Pantheon Fossae be the result of the Apollodorus crater-forming impact within the Caloris basin, Mercury? Earth Planet. Sci. Lett., 285, 320327, doi:10.1016/j.epsl.2009.02.038.Google Scholar
Freed, A. M., Blair, D. M., Watters, T. R., Klimczak, C., Byrne, P. K., Solomon, S. C., Zuber, M. T. and Melosh, H. J. (2012). On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury’s northern plains. J. Geophys. Res., 117, E00L06, doi:10.1029/2012je004119.Google Scholar
Glassmeier, K.-H., Auster, H.-U. and Motschmann, U. (2007). A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett., 34, L22201, doi:10.1029/2007gl031662.Google Scholar
Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J. and Hernlund, J. W. (2013). The high conductivity of iron and thermal evolution of the Earth’s core. Phys. Earth Planet. Inter., 224, 88103, doi:10.1016/j.pepi.2013.07.010.Google Scholar
Grasset, O. and Parmentier, E. M. (1998). Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution. J. Geophys. Res., 103, 18,17118,181, doi:10.1029/98JB01492.Google Scholar
Grott, M., Breuer, D. and Laneuville, M. (2011). Thermo-chemical evolution and global contraction of Mercury. Earth Planet. Sci. Lett., 307, 135146, doi:10.1016/j.epsl.2011.04.040.Google Scholar
Hauck, S. A. II and Phillips, R. J. (2002). Thermal and crustal evolution of Mars. J. Geophys. Res., 107, 5052, doi:10.1029/2001JE001801.CrossRefGoogle Scholar
Hauck, S. A. II, Dombard, A. J., Phillips, R. J. and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett., 222, 713728, doi:10.1016/j.epsl.2004.03.037.Google Scholar
Hauck, S. A. II, Aurnou, J. M. and Dombard, A. J. (2006). Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J. Geophys. Res., 111, E09008, doi:10.1029/2005je002557.CrossRefGoogle Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220, doi:10.1002/jgre.20091.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER Flyby. Science, 321, 6972, doi:10.1126/science.1159256.CrossRefGoogle ScholarPubMed
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856, doi:10.1126/science.1211997.Google Scholar
Heimpel, M. H., Aurnou, J. M., Al-Shamali, F. M. and Gomez Perez, N. (2005). A numerical study of dynamo action as a function of spherical shell geometry. Earth Planet. Sci. Lett., 236, 542557, doi:10.1016/j.epsl.2005.04.032.Google Scholar
Herzberg, C. T., Raterron, P. and Zhang, J. (2000). New experimental observations on the anhydrous solidus for peridotite KLB-1. Geophys. Geochem. Geosyst., 1, doi:10.1029/2000GC000089.Google Scholar
Heyner, D., Wicht, J., Gómez-Pérez, N., Schmitt, D., Auster, H.-U. and Glassmeier, K.-H. (2011). Evidence from numerical experiments for a feedback dynamo generating Mercury’s magnetic field. Science, 334, 16901693, doi:10.1126/science.1207290.Google Scholar
Hurwitz, D. M., Head, J. W., Byrne, P. K., Xiao, Z., Solomon, S. C., Zuber, M. T., Smith, D. E. and Neumann, G. A. (2013). Investigating the origin of candidate lava channels on Mercury with MESSENGER data: Theory and observations. J. Geophys. Res. Planets, 118, 471486, doi:10.1029/2012je004103.Google Scholar
James, P. B., Zuber, M. T., Phillips, R. J. and Solomon, S. C. (2015). Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography. J. Geophys. Res. Planets, 120, 287310, doi:10.1002/2014je004713.Google Scholar
Jing, Z., Wang, Y., Kono, Y., Yu, T., Sakamaki, T., Park, C., Rivers, M. L., Sutton, S. R. and Shen, G. (2014). Sound velocity of Fe–S liquids at high pressure: Implications for the Moon’s molten outer core. Earth Planet. Sci. Lett., 396, 7887, doi:10.1016/j.epsl.2014.04.015.Google Scholar
Johnson, C. L., Phillips, R. J., Purucker, M. E., Anderson, B. J., Byrne, P. K., Denevi, B. W., Feinberg, J. M., Hauck, S. A., Head, J. W., Korth, H., James, P. B., Mazarico, E., Neumann, G. A., Philpott, L. C., Siegler, M. A., Tsyganenko, N. A. and Solomon, S. C. (2015). Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field. Science, 348, 892895, doi:10.1126/science.aaa8720.CrossRefGoogle ScholarPubMed
Johnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck, S. A. II, Heyner, D., Phillips, R. J., Winslow, R. M. and Solomon, S. C. (2016). MESSENGER observations of induced magnetic fields in Mercury’s core, Geophys. Res. Lett., 43, 24362444, doi:10.1002/2015GL067370.Google Scholar
Kaula, W. M. (1975). The seven ages of a planet. Icarus, 26, 115, doi:10.1016/0019-1035(75)90138-4.Google Scholar
Keil, K. (1989). Enstatite meteorites and their parent bodies. Meteoritics, 24, 195208.Google Scholar
Kennedy, P. J., Freed, A. M. and Solomon, S. C. (2008). Mechanisms of faulting in and around Caloris basin, Mercury. J. Geophys. Res., 113, E08004, doi:10.1029/2007JE002992.Google Scholar
Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T. and Wilson, L. (2009). Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett., 285, 263271, doi:10.1016/j.epsl.2009.04.037.Google Scholar
Kerber, L., Head, J. W., Blewett, D. T., Solomon, S. C., Wilson, L., Murchie, S. L., Robinson, M. S., Denevi, B. W. and Domingue, D. L. (2011). The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planet. Space Sci., 59, 18951909, doi:10.1016/j.pss.2011.03.020.Google Scholar
King, S. D. (2008). Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection. Nature Geosci., 1, 229232, doi:10.1038/ngeo152.CrossRefGoogle Scholar
Kirk, R. L. and Stevenson, D. J. (1989). The competition between thermal contraction and differentiation in the stress history of the Moon. J. Geophys. Res., 94, 1213312144, doi:10.1029/JB094iB09p12133.Google Scholar
Klima, R. L., Blewett, D. T., Denevi, B. W. Ernst, C. M., Frank, E. A., Head, J. W. III, Izenberg, N. R., Murchie, S. L., Nittler, L. R., Peplowski, P. N. and Solomon, S. C. (2016). Global distribution and spectral properties of low-reflectance material on Mercury. Lunar Planet. Sci., 47, abstract 1195.Google Scholar
Klimczak, C. (2015). Limits on the brittle strength of planetary lithospheres undergoing global contraction. J. Geophys. Res. Planets, 120, 21352151, doi:10.1002/2015je004851.Google Scholar
Klimczak, C., Watters, T. R., Ernst, C. M., Freed, A. M., Byrne, P. K., Solomon, S. C., Blair, D. M. and Head, J. W. (2012). Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution. J. Geophys. Res., 117, E00L03, doi:10.1029/2012je004100.Google Scholar
Knibbe, J. S. and van Westrenen, W. (2015). The interior configuration of planet Mercury constrained by moment of inertia and planetary contraction. J. Geophys. Res. Planets, 120, 19041923, doi:10.1002/2015JE004908.Google Scholar
Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. and Goncharov, A. F. (2016). Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature, 534, 99101, doi:10.1038/nature18009.Google Scholar
Kuwayama, Y. and Hirose, K. (2004). Phase relations in the system Fe–FeSi at 21 GPa. Amer. Mineral., 89, 273276, doi:10.2138/am-2004-2-303.Google Scholar
Le Feuvre, M. and Wieczorek, M. A. (2011). Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus, 214, 120, doi:10.1016/j.icarus.2011.03.010.CrossRefGoogle Scholar
Li, J., Fei, Y., Mao, H. K., Hirose, K. and Shieh, S. R. (2001). Sulfur in the Earth’s inner core. Earth Planet. Sci. Lett., 193, 509514, doi:10.1016/S0012-821X(01)00521-0.Google Scholar
Lord, O. T., Walter, M. J., Dasgupta, R., Walker, D. and Clark, S. M. (2009). Melting in the Fe–C system to 70 GPa. Earth Planet. Sci. Lett., 284, 157167, doi:10.1016/j.epsl.2009.04.017.CrossRefGoogle Scholar
Malavergne, V., Toplis, M. J., Berthet, S. and Jones, J. (2010). Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field. Icarus, 206, 199209, doi:10.1016/j.icarus.2009.09.001.Google Scholar
Manglik, A., Wicht, J. and Christensen, U. R. (2010). A dynamo model with double diffusive convection for Mercury’s core. Earth Planet. Sci. Lett., 289, 619628, doi:10.1016/j.epsl.2009.12.007.Google Scholar
Marchi, S., Mottola, S., Cremonese, G., Massironi, M. and Martellato, E. (2009). A new chronology for the Moon and Mercury. Astron. J., 137, 49364948, doi:10.1088/0004-6256/137/6/4936.Google Scholar
Marchi, S., Massironi, M., Cremonese, G., Martellato, E., Giacomini, L. and Prockter, L. (2011). The effects of the target material properties and layering on the crater chronology: The case of Raditladi and Rachmaninoff basins on Mercury. Planet. Space Sci., 59, 19681980, doi:10.1016/j.pss.2011.06.007.Google Scholar
Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F. and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499, 5961, doi:10.1038/nature12280.Google Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. and Holin, I. V. (2007). Large longitude libration of Mercury reveals a molten core. Science, 316, 710714, doi:10.1126/science.1140514.Google Scholar
Margot, J.-L., Peale, S. J., Solomon, S. C., Hauck, S. A. II, Ghigo, F. D., Jurgens, R. F., Padovan, S. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res., 117, E00L09, doi:10.1029/2012JE004161.Google Scholar
Martin, A. M., Van Orman, J., Hauck, S. A. II, Chen, B. II, Sun, N., Moore, R. D. and Han, J. (2014). In situ determination of the eutectic melting temperature of Fe–FeS–Fe3C between 4.5 and 24.5 GPa and implications for Mercury’s core. Lunar Planet. Sci., 45, abstract 2854.Google Scholar
Martin, A. M., Van Orman, J., Hauck, S. A. II, Sun, N., Yu, T. and Wang, Y. (2015). Role of sulfur, silicon and carbon on the crystallization processes in Mercury’s core inferred from in-situ melting experiments between 4.5 and 15.5 GPa. Lunar Planet. Sci., 46, abstract 2627.Google Scholar
Matsuyama, I. and Nimmo, F. (2009). Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. J. Geophys. Res., 114, E01010, doi:10.1029/2008je003252.Google Scholar
Mazarico, E., Genova, A., Goossens, S., Lemoine, F. G., Neumann, G. A., Zuber, M. T., Smith, D. E. and Solomon, S. C. (2014). The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. Planets, 119, 24172436, doi:10.1002/2014je004675.Google Scholar
McCoy, T. J., Dickinson, T. L. and Lofgren, G. E. (1999). Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci., 34, 735746, doi:10.1111/j.1945-5100.1999.tb01386.x.Google Scholar
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E. and Burkemper, L. K. (2012). Is Mercury a volatile-rich planet? Geophys. Res. Lett., 39, L09202, doi:10.1029/2012gl051711.Google Scholar
Melosh, H. J. (1977). Global tectonics of a despun planet. Icarus, 31, 221243, doi:10.1016/0019-1035(77)90035-5.Google Scholar
Melosh, H. J. and Dzurisin, D. (1978). Mercurian global tectonics: A consequence of tidal despinning? Icarus, 35, 227236, doi:10.1016/0019-1035(78)90007-6.Google Scholar
Melosh, H. J. and McKinnon, W. B. (1988). The tectonics of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 374400.Google Scholar
Michel, N. C., Hauck, S. A. II, Solomon, S. C., Phillips, R. J., Roberts, J. H. and Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. J. Geophys. Res. Planets, 118, 10331044, doi:10.1002/jgre.20049.Google Scholar
Morard, G. and Katsura, T. (2010). Pressure–temperature cartography of Fe–S–Si immiscible system. Geochim. Cosmochim. Acta, 74, 36593667, doi:10.1016/j.gca.2010.03.025.Google Scholar
Morard, G., Andrault, D., Guignot, N., Siebert, J., Garbarino, G. and Antonangeli, D. (2011). Melting of Fe–Ni–Si and Fe–Ni–S alloys at megabar pressures: Implications for the core–mantle boundary temperature. Phys. Chem. Minerals, 38, 767776, doi:10.1007/s00269-011-0449-9.Google Scholar
Moresi, L. N. and Solomatov, V. S. (1995). Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids, 7, 21542162, doi:10.1063/1.868465.Google Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C., McClintock, W. E., Prockter, L. M., Domingue, D. L. and Blewett, D. T. (2008). Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7376, doi:10.1126/science.1159261.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305, doi:10.1016/j.icarus.2015.03.027.Google Scholar
Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O’Leary, B., Strom, R. G., Suomi, V. and Trask, N. (1974). Mercury’s surface: Preliminary description and interpretation from Mariner 10 pictures. Science, 185, 169179.Google Scholar
Murray, B. C., Strom, R. G., Trask, N. J. and Gault, D. E. (1975). Surface history of Mercury: Implications for terrestrial planets. J. Geophys. Res., 80, 25082514, doi:10.1029/JB080i017p02508.Google Scholar
Namur, O. and Charlier, B. (2017). Silicate mineralogy at the surface of Mercury. Nature Geosci., 10, 913, doi:10.1038/ngeo2860.Google Scholar
Namur, O., Collinet, M., Charlier, B., Grove, T. L., Holtz, F. and McCammon, C. (2016). Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett., 439, 117128, doi:10.1016/j.epsl.2016.01.030.Google Scholar
Ness, N. F. (1979). The magnetic field of Mercury. Phys. Earth Planet. Inter., 20, 209217, doi:10.1016/0031-9201(79)90044-X.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1975). The magnetic field of Mercury. I. J. Geophys. Res., 80, 27082716, doi:10.1029/JA080i019p02708.Google Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. and Whang, Y. C. (1976). Observations of Mercury’s magnetic field. Icarus, 28, 479488, doi:10.1016/0019-1035(76)90121-4.Google Scholar
Neukum, G., Ivanov, B. A. and Hartmann, W. K. (2001). Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev., 96, 5586.Google Scholar
Nimmo, F. and Stevenson, D. J. (2001). Estimates of Martian crustal thickness from viscous relaxation of topography. J. Geophys. Res., 106, 50855098, doi:10.1029/2000JE001331.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E. II, Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850, doi:10.1126/science.1211567.Google Scholar
Noyelles, B., Frouard, J., Makarov, V. V. and Efroimsky, M. (2014). Spin-orbit evolution of Mercury revisited. Icarus, 241, 2644, doi:10.1016/j.icarus.2014.05.045.Google Scholar
Ostrach, L. R., Robinson, M. S., Whitten, J. L., Fassett, C. I., Strom, R. G., Head, J. W. and Solomon, S. C. (2015). Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus, 250, 602622, doi:10.1016/j.icarus.2014.11.010.Google Scholar
Padovan, S., Margot, J.-L., Hauck, S. A. II, Moore, W. B. and Solomon, S. C. (2014). The tides of Mercury and possible implications for its interior structure. J. Geophys. Res. Planets, 119, 850866, doi:10.1002/2013je004459.Google Scholar
Padovan, S., Wieczorek, M. A., Margot, J.-L., Tosi, N. and Solomon, S. C. (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys. Res. Lett., 42, 10291038, doi:10.1002/2014gl062487.Google Scholar
Peale, S. J. (1988). The rotational dynamics of Mercury and the state of its core. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 461493.Google Scholar
Peale, S. J., Phillips, R. J., Solomon, S. C., Smith, D. E. and Zuber, M. T. (2002). A procedure for determining the nature of Mercury’s core. Meteorit. Planet. Sci., 37, 12691283, doi:10.1111/j.1945-5100.2002.tb00895.x.Google Scholar
Peale, S. J., Margot, J.-L., Hauck, S. A. II and Solomon, S. C. (2016). Consequences of a solid inner core on Mercury’s spin configuration. Icarus, 264, 443455, doi:10.1016/j.icarus.2015.09.024.Google Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A. II, McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., Ebel, D. S., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Nittler, L. R., Solomon, S. C., Rhodes, E. A., Sprague, A. L., Starr, R. D. and Stockstill-Cahill, K. R. (2011). Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852, doi:10.1126/science.1211576.CrossRefGoogle ScholarPubMed
Peplowski, P. N., Lawrence, D. J., Rhodes, E. A., Sprague, A. L., McCoy, T. J., Denevi, B. W., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C., Stockstill-Cahill, K. R. and Weider, S. Z. (2012). Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L04, doi:10.1029/2012JE004141.Google Scholar
Peplowski, P. N., Lawrence, D. J., Evans, L. G., Klima, R. L., Blewett, D. T., Goldsten, J. O., Murchie, S. L., McCoy, T. J., Nittler, L. R., Solomon, S. C., Starr, R. D. and Weider, S. Z. (2015a). Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planet. Space Sci., 108, 98107, doi:10.1016/j.pss.2015.01.008.Google Scholar
Peplowski, P. N., Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Bazell, D., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2015b). Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 253, 346363, doi:10.1016/j.icarus.2015.02.002.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L. R. and Solomon, S. C. (2016), Remote sensing evidence for an ancient carbon-bearing crust on Mercury, Nature Geosci., 9, 273276, doi:10.1038/ngeo2669.Google Scholar
Perry, M. E., Neumann, G. A., Phillips, R. J., Barnouin, O. S., Ernst, C. M., Kahan, D. S., Solomon, S. C., Zuber, M. T., Smith, D. E., Hauck, S. A. II, Peale, S. J., Margot, J.-L., Mazarico, E., Johnson, C. L., Gaskell, R. W., Roberts, J. H., McNutt, R. L Jr. and Oberst, J. (2015). The low-degree shape of Mercury. Geophys. Res. Lett., 42, 69516958, doi:10.1002/2015gl065101.Google Scholar
Philpott, L. C., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., Purucker, M. E. and Solomon, S. C. (2014). Constraints on the secular variation of Mercury’s magnetic field from the combined analysis of MESSENGER and Mariner 10 data. Geophys. Res. Lett., 41, 66276634, doi:10.1002/2014gl061401.Google Scholar
Plesa, A. C., Tosi, N. and Hüttig, C. (2013). Thermo-chemical convection in planetary mantles: Advection methods and magma ocean overturn simulations. In Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences, ed. Claus-Peter, R.. Hershey, PA: IGI Global, pp. 302323, doi:10.4018/978-1-4666-2190-9.ch015.Google Scholar
Pozzo, M., Davies, C., Gubbins, D. and Alfe, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485, 355358, doi:10.1038/nature11031.Google Scholar
Prockter, L. M., Ernst, C. M., Denevi, B. W., Chapman, C. R., Head, J. W., Fassett, C. I., Merline, W. J., Solomon, S. C., Watters, T. R., Strom, R. G., Cremonese, G., Marchi, S. and Massironi, M. (2010). Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science, 329, 668671, doi:10.1126/science.1188186.Google Scholar
Raghavan, V. (1988). Phase Diagrams of Ternary Iron Alloys, Part 2: Ternary Systems Containing Iron and Sulphur. Calcutta: Indian Institute of Metals.Google Scholar
Redmond, H. L. and King, S. D. (2007). Does mantle convection currently exist on Mercury? Phys. Earth Planet. Inter., 164, 221231, doi:10.1016/j.pepi.2007.07.004.Google Scholar
Reese, C. C., Solomatov, V. S. and Moresi, L. N. (1998). Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Venus and Mars. J. Geophys. Res., 103, 1364313658, doi:10.1029/98JE01047.Google Scholar
Riner, M. A., Lucey, P. G., Desch, S. J. and McCubbin, F. M. (2009). Nature of opaque components on Mercury: Insights into a Mercurian magma ocean. Geophys. Res. Lett., 36, L02201, doi:10.1029/2008GL036128.Google Scholar
Rivera-Valentin, E. G. and Barr, A. C. (2014). Impact-induced compositional variations on Mercury. Earth Planet. Sci. Lett., 391, 234242, doi:10.1016/j.epsl.2014.02.003.Google Scholar
Rivoldini, A. and Van Hoolst, T. (2013). The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth Planet. Sci. Lett., 377378, 6272, doi:10.1016/j.epsl.2013.07.021.Google Scholar
Roberts, J. H. and Barnouin, O. S. (2012). The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res., 117, E02007, doi:10.1029/2011JE003876.Google Scholar
Robinson, M. S. and Lucey, P. G. (1997). Recalibrated Mariner 10 color mosaics: Implications for Mercurian volcanism. Science, 275, 197200, doi:10.1126/science.275.5297.197.Google Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E., Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669, doi:10.1126/science.1160080.Google Scholar
Rückriemen, T., Breuer, D. and Spohn, T. (2015). The Fe snow regime in Ganymede’s core: A deep-seated dynamo below a stable snow zone. J. Geophys. Res. Planets, 120, 10951118, doi:10.1002/2014JE004781.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 429460.Google Scholar
Schumacher, S. and Breuer, D. (2006). Influence of a variable thermal conductivity on the thermochemical evolution of Mars. J. Geophys. Res., 111, E02006, doi:10.1029/2005JE002429.Google Scholar
Seagle, C. T., Cottrell, E., Fei, Y., Hummer, D. R. and Prakapenka, V. B. (2013). Electrical and thermal transport properties of iron and iron–silicon alloy at high pressure. Geophys. Res. Lett., 40, 53775381, doi:10.1002/2013gl057930.Google Scholar
Siegfried, R. W. II and Solomon, S. C. (1974). Mercury: Internal structure and thermal evolution. Icarus, 23, 192205, doi:10.1016/0019-1035(74)90005-0.Google Scholar
Smith, D. E., Zuber, M. T., Lemoine, F. G., Solomon, S. C., Hauck, S. A. II, Lemoine, F. G., Mazarico, E., Phillips, R. J., Neumann, G. A., Peale, S. J., Margot, J.-L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217, doi:10.1126/science.1218809.Google Scholar
Solomon, S. C. (1976). Some aspects of core formation in Mercury. Icarus, 28, 509521, doi:10.1016/0019-1035(76)90124-X.Google Scholar
Solomon, S. C. (1977). The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Inter., 15, 135145, doi:10.1016/0031-9201(77)90026-7.Google Scholar
Solomon, S. C. (2003). Mercury: The enigmatic innermost planet. Earth Planet. Sci. Lett., 216, 441455, doi:10.1016/s0012-821x(03)00546-6.Google Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 118164.Google Scholar
Stanley, S. and Bloxham, J. (2016). On the secular variation of Saturn’s magnetic field. Phys. Earth Planet. Inter., 250, 3134, doi:10.1016/j.pepi.2015.11.002.Google Scholar
Stanley, S., Bloxham, J., Hutchison, W. and Zuber, M. (2005). Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett., 234, 2738, doi:10.1016/j.epsl.2005.02.040.Google Scholar
Stevenson, D. J., Spohn, T. and Schubert, G. (1983). Magnetism and thermal evolution of the terrestrial planets. Icarus, 54, 466489, doi:10.1016/0019-1035(83)90241-5.Google Scholar
Stewart, A. J., Schmidt, M. W., van Westrenen, W. and Liebske, C. (2007). Mars: A new core-crystallization regime. Science, 316, 13231325, doi:10.1126/science.1140549.Google Scholar
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R., Weider, S. Z. and Hauck, S. A. II (2012). Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. J. Geophys. Res., 117, E00L15, doi:10.1029/2012JE004140.Google Scholar
Strom, R. G. (1977). Origin and relative age of lunar and Mercurian intercrater plains. Phys. Earth Planet. Inter., 15, 156172, doi:10.1016/0031-9201(77)90028-0.Google Scholar
Strom, R. G. and Neukum, G. (1988). The cratering record on Mercury and the origin of impacting objects. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 336373.Google Scholar
Strom, R. G., Trask, N. J. and Guest, J. E. (1975). Tectonism and volcanism on Mercury. J. Geophys. Res., 80, 24782507, doi:10.1029/JB080i017p02478.Google Scholar
Strom, R. G., Chapman, C. R., Merline, W. J., Solomon, S. C. and Head, J. W. (2008). Mercury cratering record viewed from MESSENGER’s first flyby. Science, 321, 7981, doi:10.1126/science.1159317.Google Scholar
Strom, R. G., Banks, M. E., Chapman, C. R., Fassett, C. I., Forde, J. A., Head, J. W. III, Merline, W. J., Prockter, L. M. and Solomon, S. C. (2011). Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history. Planet. Space Sci., 59, 1960–1967, doi:10.1016/j.pss.2011.03.018.Google Scholar
Taylor, G. J. and Scott, E. R. D. (2003). Mercury. In Meteorites, Comets and Planets, ed. Davis, A. M., Treatise on Geochemistry, Vol. 1, ed. Holland, H. D. and Turekian, K. K.. Oxford: Pergamon, pp. 477485, doi:10.1016/B0-08-043751-6/01071-9.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014). Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. J. Geophys. Res. Planets, 119, 22392254, doi:10.1002/2014je004692.Google Scholar
Tian, Z., Zuber, M. T. and Stanley, S. (2015). Magnetic field modeling for Mercury using dynamo models with a stable layer and laterally variable heat flux. Icarus, 260, 263268, doi:10.1016/j.icarus.2015.07.019.Google Scholar
Tosi, N., Grott, M., Plesa, A. C. and Breuer, D. (2013). Thermochemical evolution of Mercury’s interior. J. Geophys. Res. Planets, 118, 24742487, doi:10.1002/jgre.20168.Google Scholar
Tosi, N., Čadek, O., Běhounková, M., Káňová, M., Plesa, A. C., Grott, M., Breuer, D., Padovan, S. and Wieczorek, M. A. (2015). Mercury’s low-degree geoid and topography controlled by insolation-driven elastic deformation. Geophys. Res. Lett., 42, 73277335, doi:10.1002/2015gl065314.Google Scholar
Trask, N. J. and Guest, J. E. (1975). Preliminary geologic terrain map of Mercury. J. Geophys. Res., 80, 24612477, doi:10.1029/JB080i017p02461.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209, doi:10.1002/2014je004733.CrossRefGoogle Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2016). The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta, 173, 246263, doi:10.1016/j.gca.2015.10.016.Google Scholar
Vander Kaaden, K. E., McCubbin, F. M., Nittler, L. R., Peplowski, P. N., Weider, S. Z., Frank, E. A. and McCoy, T. J. (2017). Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus, 285, 155168, doi:10.1016/j.icarus.2016.11.041.Google Scholar
Vasavada, A. R., Paige, D. A. and Wood, S. E. (1999). Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179193, doi:10.1006/icar.1999.6175.Google Scholar
Verma, A. and Margot, J.-L. (2016). Mercury’s gravity, tides, and spin from MESSENGER radio science data, J. Geophys. Res. Planets, 121, 16271640, doi:10.1002/2016JE005037.Google Scholar
Vilim, R., Stanley, S. and Hauck, S. A. II (2010). Iron snow zones as a mechanism for generating Mercury’s weak observed magnetic field. J. Geophys. Res., 115, E11003, doi:10.1029/2009JE003528.Google Scholar
Watters, T. R. and Nimmo, F. (2010). Tectonism on Mercury. In Planetary Tectonics, ed. Watters, T. R. and Schultz, R. A.. Cambridge: Cambridge University Press, pp. 1580.Google Scholar
Watters, T. R., Robinson, M. S. and Cook, A. C. (1998). Topography of lobate scarps on Mercury: New constraints on the planet’s contraction. Geology, 26, 991994.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R., Solomon, S. C., Robinson, M. S., Head, J. W., André, S. L., Hauck, S. A. II and Murchie, S. L. (2009). The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth Planet. Sci. Lett., 285, 283296, doi:10.1016/j.epsl.2009.01.025.Google Scholar
Watters, T. R., Selvans, M. M., Banks, M. E., Hauck, S. A. II, Becker, K. J. and Robinson, M. S. (2015a). Distribution of large-scale contractional tectonic landforms on Mercury: Implications for the origin of global stresses. Geophys. Res. Lett., 42, 37553763, doi:10.1002/2015gl063570.Google Scholar
Watters, T. R., Solomon, S. C., Daud, K., Banks, M. E., Selvans, M. M., Robinson, M. S., Murchie, S. L., Chabot, N. L., Denevi, B. W., Ernst, C. M., Chapman, C. R., Fassett, C. I., Klimczak, C., Byrne, P. K. and Blewett, D. T. (2015b). Small thrust fault scarps on Mercury revealed in low-alitude MESSENGER images. Lunar Planet. Sci., 46, abstract 2240.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012je004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A. II, Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120, doi:10.1016/j.epsl.2015.01.023.Google Scholar
Whitten, J. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2014). Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113, doi:10.1016/j.icarus.2014.06.013.Google Scholar
Wicht, J. and Heyner, D. (2014). Mercury’s magnetic field in the MESSENGER era. In Planetary Geodesy and Remote Sensing, ed. Jin, S.. New York: CRC Press, pp. 223262.Google Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F., Kiefer, W. S., Taylor, G. J., Melosh, H. J., Phillips, R. J., Solomon, S. C., Andrews-Hanna, J. C., Asmar, S. W., Konopliv, A. S., Lemoine, F. G., Smith, D. E., Watkins, M. M., Williams, J. G. and Zuber, M. T. (2013). The crust of the Moon as seen by GRAIL. Science, 339, 671675, doi:10.1126/science.1231530.Google Scholar
Williams, J.-P., Ruiz, J., Rosenburg, M. A., Aharonson, O. and Phillips, R. J. (2011). Insolation driven variations of Mercury’s lithospheric strength. J. Geophys. Res., 116, E01008, doi:10.1029/2010JE003655.Google Scholar
Williams, Q. (2009). Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth Planet. Sci. Lett., 284, 564569, doi:10.1016/j.epsl.2009.05.019.Google Scholar
Zhang, P., Cohen, R. E. and Haule, K. (2015). Effects of electron correlations on transport properties of iron at Earth’s core conditions. Nature, 517, 605607, doi:10.1038/nature14090.Google Scholar
Zolotov, M. Yu., Sprague, A. L., Hauck, S. A. II, Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets, 118, 138146, doi:10.1029/2012je004274.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×