Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T11:25:07.324Z Has data issue: false hasContentIssue false

9 - Impact Cratering of Mercury

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Impact craters are the dominant landform on Mercury and range from the largest basins to the smallest young craters.  Peak-ring basins are especially prevalent on Mercury, although basins of all forms are far undersaturated, probably the result of the extensive volcanic emplacement of intercrater plains and younger smooth plains between about 4.1 and 3.5 Ga.  This chapter describes the geology of the two largest well-preserved basins, Caloris and Rembrandt, and the three smaller Raditladi, Rachmaninoff, and Mozart basins.  We describe analyses of crater size–frequency distributions and relate them to populations of asteroid impactors (Late Heavy Bombardment in early epochs and the near-Earth asteroid population observable today during most of Mercury’s history), to secondary cratering, and to exogenic and endogenic processes that degrade and erase craters.  Secondary cratering is more important on Mercury than on other solar system bodies and shaped much of the surface on kilometer and smaller scales, compromising our ability to use craters for relative and absolute age-dating of smaller geological units.  Failure to find “vulcanoids” and satellites of Mercury suggests that such bodies played a negligible role in cratering Mercury.  We describe an absolute cratering chronology for Mercury’s geological evolution as well as its uncertainties. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 217 - 248
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews-Hanna, J. C. and Zuber, M. T. (2010). Elliptical craters and basins on the terrestrial planets. In Large Meteorite Impacts and Planetary Evolution IV, ed. Gibson, R. L. and Reimold., W. U. Special Paper 465. Denver, CO: Geological Society of America, pp. 113, doi:10.1130/2010.2465(01).Google Scholar
Baker, D. M. H. and Head, J. W. (2013). New morphometric measurements of craters and basins on Mercury and the Moon from MESSENGER and LRO altimetry and image data: An observational framework for evaluating models of peak-ring basin formation. Planet. Space Sci., 86, 91116, doi:10.1016/j.pss.2013.07.003.Google Scholar
Baker, D. M. H, Head, J. W., Fassett, C. I., Kadish, S. J., Smith, D. E., Zuber, M. T. and Neumann, G. A. (2011a). The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument. Icarus, 214, 377393, doi:10.1016/j.icarus.2011.05.030.Google Scholar
Baker, D. M. H., Head, J. W., Schon, S. C., Ernst, C. M., Prockter, L. M., Murchie, S. L., Denevi, B. W., Solomon, S. C. and Strom, R. G. (2011b). The transition from complex crater to peak-ring basin on Mercury: New observations from MESSENGER flyby data and constraints on basin-formation models. Planet. Space Sci., 59, 19321948, doi:10.1016/j.pss.2011.05.010.Google Scholar
Baker, D. M. H., Head, J. W., Collins, G. S. and Potter, R. W. K. (2016). The formation of peak-ring basins: Working hypotheses and path forward in using observations to constrain models of impact-basin formation. Icarus, 273, 146163, doi:10.1016/j.icarus.2015.11.033.Google Scholar
Baldwin, R. B. (1963). The Measure of the Moon. Chicago, IL: University of Chicago Press, 488 pp.Google Scholar
Baldwin, R. B. (1965). The crater diameter–depth relationship from Ranger VII photographs. Astron. J., 70, 545547.CrossRefGoogle Scholar
Banks, M. E., Xiao, Z., Watters, T. R., Strom, R. G., Braden, S. E., Chapman, C. R., Solomon, S. C., Klimczak, C. and Byrne, P. K. (2015). Duration of activity on lobate-scarp thrust faults on Mercury. J. Geophys. Res. Planets, 120, 17511762.Google Scholar
Banks, M. E., Xiao, Z., Braden, S. E., Barlow, N. G., Chapman, C. R., Fassett, C. I. and Marchi, S. (2017). Revised constraints on absolute age limits for Mercury’s Kuiperian and Mansurian stratigraphic systems. J. Geophys. Res. Planets, 122, 10101020, doi:10.1002/2016JE005254.Google Scholar
Barnouin, O. S., Ernst, C. M., Heinick, J. T., Sugita, S., Cintala, M. J., Crawford, D. A. and Matsui, T., T. (2011). Experimental results investigating the impact velocity effects on crater growth and the transient crater diameter-to-depth ratio. Lunar Planet. Sci., 42, abstract 2258.Google Scholar
Barnouin, O. S., Zuber, M. T., Smith, D. E., Neumann, G. A., Herrick, R. R., Chappelow, J. E., Murchie, S. L. and Prockter, L. M. (2012). The morphology of craters on Mercury: Results from MESSENGER flybys. Icarus, 219, 414427, doi:10.1016/j.icarus.2012.02.029.Google Scholar
Barnouin, O. S., Ernst, C. M. and Susorney, H. C. M. (2015). The remarkable Hokusai Crater, Mercury. Lunar Planet. Sci., 46, abstract 2672.Google Scholar
Barnouin-Jha, O. S., Baloga, S. and Glaze, L. (2005). Comparing landslides to fluidized crater ejecta on Mars. J. Geophys. Res., 110, E04010, doi:10.1029/2003JE002214.Google Scholar
Barnouin-Jha, O. S., Yamamoto, S., Toriumi, T., Sugita, S. and Matsui, T. (2007). Non-intrusive measurements of crater growth. Icarus, 188, 506521, doi:10.1016/j.icarus.2007.01.009.CrossRefGoogle Scholar
Beach, M. J., Head, J. W., Ostrach, L. R., Robinson, M. S., Denevi, B. W. and Solomon, S. C. (2012). The influence of pre-existing topography on the distribution of impact melt on Mercury. Lunar Planet. Sci., 43, abstract 1335.Google Scholar
Becker, K. J., Robinson, M. S., Becker, T. L., Weller, L. A., Edmundson, K. L., Neumann, G. A., Perry, M. E. and Solomon, S. C. (2016). First global digital elevation model of Mercury. Lunar Planet. Sci., 47, abstract 2959.Google Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W. (1988). Collisional stripping of Mercury’s mantle. Icarus, 74, 516528.Google Scholar
Bierhaus, E. B., Chapman, C. R. and Merline, W. J. (2005). Secondary craters on Europa and implications for cratered surfaces. Nature, 437, 11251127, doi:10.1038/nature04069.Google Scholar
Blair, D. M., Freed, A. M., Byrne, P. K., Klimczak, C., Prockter, L. M., Ernst, C. M., Solomon, S. C., Melosh, H. J. and Zuber, M. T. (2013). The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury. J. Geophys. Res. Planets, 118, 4758, doi:10.1029/2012JE004198.Google Scholar
Blewett, D. T., Chabot, N. L., Denevi, B. W., Ernst, C. M., Head, J. W., Izenberg, N. R., Murchie, S. L., Solomon, S. C., Nittler, L. R., McCoy, T. J., Xiao, Z., Baker, D. M. H., Fassett, C. I., Braden, S. E., Oberst, J., Scholten, F., Preusker, F. and Hurwitz, D. M. (2011). Hollows on Mercury: Evidence for geologically recent volatile-related activity. Science, 333, 18561859, doi:10.1126/science.1211681.Google Scholar
Blewett, D. T., Vaughan, W. M., Xiao, Z., Chabot, N. L., Denevi, B. W., Ernst, C. M., Helbert, J., D’Amore, M., Maturilli, A., Head, J. W. and Solomon, S. C. (2013). Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res. Planets, 118, 10131032, doi:10.1029/2012JE04174.Google Scholar
Bottke, W. F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H. F., Michel, P. and Metcalfe, T. S. (2002). Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus, 156, 399433.Google Scholar
Bottke, W. F., Vokrouhlický, D., Minton, D., Nesvorný, D., Morbidelli, A., Brasser, R., Simonson, B. and Levison, H. F. (2012). An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 485, 7881.Google Scholar
Bottke, W. F., Nesvorný, D., Roig, F., Marchi, S. and Vokrouhlický, D. (2017). Evidence for two impacting populations in the early bombardment of Mars and the Moon. Lunar Planet. Sci., 48, abstract 2572.Google Scholar
Boyce, J. M. and Garbeil, H. (2007). Geometric relationships of pristine Martian complex impact craters, and their implications to Mars geologic history. Geophys. Res. Lett., 34, L16201, doi:10.1029/2007GL029731.Google Scholar
Braden, S. E. and Robinson, M. S. (2013). Relative rates of optical maturation of regolith on Mercury and the Moon, J. Geophys. Res. Planets, 118, 19031914, doi:10.1002/jgre.20143.Google Scholar
Bray, V. J. and Schenk, P. M. (2015). Pristine impact crater morphology on Pluto: Expectations for New Horizons. Icarus, 246, 156164.CrossRefGoogle Scholar
Byrne, P. K., Klimczak, C., Williams, D. A., Hurwitz, D. M., Solomon, S. C., Head, J. W., Preusker, F. and Oberst, J. (2013). An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets, 118, 13031322, doi:10.1002/jgre.20052.Google Scholar
Byrne, P. K., Ostrach, L. R., Fassett, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., Klimczak, C., Banks, M. E., Head, J. W. and Solomon, S. C. (2016). Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett., 43, 74087416.Google Scholar
Campins, H., Davis, D. R., Weidenschilling, S. J. and Magee, M. (1996). Searching for vulcanoids. In Completing the Inventory of the Solar System, ed. Rettig, T. W. and Hahn., J. M. ASP Conference Series, Vol. 107. San Francisco, CA: Astronomical Society of the Pacific, pp. 8596.Google Scholar
Carr, M. H., Crumpler, L. S. and Cutts, J. A. (1977). Martian impact craters and emplacement of ejecta by surface flow. J. Geophys. Res., 82, 40554065.Google Scholar
Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A. E., Ramos-Izquierdo, L., Krebs, D. J., McGarry, J. F., Trunzo, R., Novo-Gradac, A.-M., Britt, J. L., Karsh, J. L., Katz, R. B., Lukemire, A. T., Symkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2007). The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev., 131, 451479, doi:10.1007/s11214-007-9273-4.Google Scholar
Chapman, C. R. (2015). A critique of methods for analysis of crater size–frequency distributions. In Workshop on Issues in Crater Studies and the Dating of Planetary Surfaces. Contribution 1841. Houston, TX: Lunar and Planetary Institute, abstract 9039.Google Scholar
Chapman, C. R. and Haefner, R. R. (1967). A critique of methods for analysis of the diameter–frequency relation for craters with special application to the Moon. J. Geophys. Res., 72, 549557.Google Scholar
Chapman, C. R., Mosher, J. A. and Simmons, G. (1970). Lunar cratering and erosion from Orbiter 5 photographs. J. Geophys. Res., 75, 14451466.Google Scholar
Chapman, C. R., Merline, W. J., Ostrach, L. R., Xiao, Z., Solomon, S. C. and Head, J. W. (2011). Small craters (secondaries) on Mercury’s northern plains. EPSC-DPS Joint Meeting Abstracts and Program, 6, abstract EPSC-DPS2011–1497.Google Scholar
Chapman, C. R., Merline, W. J., Marchi, S., Prockter, L. M., Fassett, C. I., Head, J. W., Solomon, S. C. and Xiao, Z. (2012). The young inner plains of Mercury’s Rachmaninoff basin reconsidered. Lunar Planet. Sci., 43, abstract 1607.Google Scholar
Cibulková, H., Brož, M. and Benavidez, P. G., (2014). A six-part collisional model of the main asteroid belt. Icarus, 241, 358372, doi:10.1016/j.icarus.2014.07.016.Google Scholar
Cintala, M. J. (1979). Mercurian crater rim heights and some interplanetary comparisons. Proc. Lunar Planet. Sci. Conf., 10, 26352650.Google Scholar
Cintala, M. J., Wood, C. A. and Head, J. W. (1977). The effects of target characteristics on fresh crater morphology: Preliminary results for the Moon and Mercury. Proc. Lunar Sci. Conf., 8, 34093425.Google Scholar
Collins, G. S., Melosh, H. J., Morgan, J. V. and Warner, M. R. (2002). Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus, 157, 2433.Google Scholar
Collins, G. S., Melosh, H. J. and Marcus, R. A. (2005). Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci., 40, 817840, doi:10.1111/j.1945-5100.2005.tb00157.x.Google Scholar
Collins, G. S., Elbeshausen, D., Davison, T. M., Robbins, S. J. and Hynek, B. M. (2011). The size–frequency distribution of elliptical impact craters. Earth Planet. Sci. Lett., 310, 18.Google Scholar
Crane, K. T. and Klimczak, C. (2017). Timing and rate of global contraction on Mercury. Geophys. Res. Lett., 44, 30823089, doi:10.1002/2017GL072711.CrossRefGoogle Scholar
Crater Analysis Techniques Working Group (1979). Standard techniques for presentation and analysis of crater size–frequency data. Icarus, 37, 467474.Google Scholar
Croft, S. K. (1985). The scaling of complex craters. J. Geophys. Res., 90, Suppl., C828C842.Google Scholar
Davis, J. C. (2002). Statistics and Data Analysis in Geology, 3rd edn. New York: John Wiley and Sons, 638 pp.Google Scholar
Denevi, B. W. and Robinson, M. S. (2008). Mercury’s albedo from Mariner 10: Implications for the presence of ferrous iron. Icarus, 197, 239246, doi:10.1016/j.icarus.2008.04.021.Google Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618, doi:10.1126/science.1172226.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C. and Peplowski, P. N. (2013). The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets, 118, 891907, doi:10.1002/jgre.20075.Google Scholar
D’Incecco, P., Helbert, J., Head, J. W., D’Amore, M., Maturilli, A., Izenberg, N. R., Holsclaw, G. M., Domingue, D. L., McClintock, W. E. and Solomon, S. C. (2012). Kuiper crater on Mercury: An opportunity to study recent surface weathering trends with MESSENGER. Lunar Planet. Sci., 43, abstract 1815.Google Scholar
Donnison, J. R. (1978). The escape of natural satellites from Mercury and Venus. Astrophys. Space Sci., 59, 499501.Google Scholar
Durda, D. D., Stern, S. A., Colwell, W. B., Parker, J. W., Levison, H. F. and Hassler, D. M. (2000). A new observational search for vulcanoids in SOHO/LASCO coronagraph images. Icarus, 148, 312315, doi:10.1006/icar.2000.6520.CrossRefGoogle Scholar
Elkins-Tanton, L. T. (2012). Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci., 40, 113139.Google Scholar
El-Baz, F. (1972). King crater and its environs. In Apollo 16 Preliminary Science Report, Special Publication SP-315. Washington, DC: National Aeronautics and Space Administration, pp. 29-6229-70.Google Scholar
Ernst, C. M., Murchie, S. L., Barnouin, O. S., Robinson, M. S., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R., Solomon, S. C. and Roberts, J. H. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223.Google Scholar
Ernst, C. M., Denevi, B. W., Barnouin, O. S., Klimczak, C., Chabot, N. L., Head, J. W., Murchie, S. L., Neumann, G. A., Prockter, L. M., Robinson, M. S., Solomon, S. C. and Watters, T. R. (2015). Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 250, 413429, doi:10.1016/j.icarus.2014.11.003.Google Scholar
Ernst, C. M., Denevi, B. W. and Ostrach, L. R. (2017). Updated absolute age estimates for the Tolstoj and Caloris basins, Mercury. Lunar Planet. Sci., 48, abstract 2934.Google Scholar
Evans, A. J., Andrews-Hanna, J. C., Soderblom, J. M., Solomon, S. C. and Zuber, M. T. (2017). Insights into early lunar chronology from GRAIL data. Lunar Planet. Sci., 48, abstract 1276.Google Scholar
Evans, N. W. and Tabachnik, S. (1999). Possible long-lived asteroid belts in the inner solar system. Nature, 399, 4143.Google Scholar
Fassett, C. I. and Crowley, M. C. (2016). High-resolution stereo digital terrain models of Mercury: Crater degradation and morphometry. Lunar Planet. Sci., 47, abstract 1046.Google Scholar
Fassett, C. I., Head, J. W., Blewett, D. T., Chapman, C. R., Dickson, J. L., Murchie, S. L., Solomon, S. C. and Watters, T. R. (2009). Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth Planet. Sci. Lett., 285, 297308.Google Scholar
Fassett, C. I., Kadish, S. J., Head, J. W., Solomon, S. C. and Strom, R. G. (2011). The global population of large craters on Mercury and comparison with the Moon. Geophys. Res. Lett., 38, L10202, doi:10.1029/2011GL047294.Google Scholar
Fassett, C. I., Head, J. W., Baker, D. M. H., Zuber, M. T., Smith, D. E., Neumann, G. A., Solomon, S. C., Klimczak, C., Strom, R. G., Chapman, C. R., Prockter, L. M., Phillips, R. J., Oberst, J. and Preusker, F. (2012). Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. J. Geophys. Res., 117, E00L08, doi:10.1029/2012JE004154.Google Scholar
Fassett, C. I., Crowley, M. C., Leight, C., Dyar, M. D., Minton, D. A., Hirabayashi, M., Thomson, B. J. and Watters, W. A. (2017). Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry. Geophys. Res. Lett., 44, 53265335, doi:10.1002/2017GL073769.Google Scholar
Ferrari, S., Massironi, M., Marchi, S., Byrne, P. K., Klimczak, C., Martellato, E. and Cremonese, G. (2014). Age relationships of the Rembrandt basin and Enterprise Rupes, Mercury. In Volcanism and Tectonism Across the Inner Solar System, ed. Platz, T., Massironi, M., Byrne, P. K. and Hiesinger, H., Special Publication 401. London: Geological Society, pp. 159172, doi:10.1144/SP401.20.Google Scholar
Frank, E. A., Potter, R. W. K., Abramov, O., Mojzsis, S. and Nittler, L. R. (2016). Investigations into the origin of Mercury’s high-magnesium region. Lunar Planet. Sci., 47, abstract 1270.Google Scholar
Frank, E. A., Potter, R. W. K., Abramov, O., James, P. B., Klima, R. L., Mojzsis, S. J. and Nittler, L. R. (2017). Evaluating an impact origin for Mercury’s high-magnesium region. J. Geophys. Res. Planets, 122, 614632, doi:10.1002/2016JE005244.Google Scholar
Freed, A. M., Solomon, S. C., Watters, T. R., Phillips, R. J. and Zuber, M. T. (2009). Could Pantheon Fossae be the result of the Apollodorus crater-forming impact within the Caloris basin, Mercury? Earth Planet. Sci. Lett., 285, 320327.Google Scholar
Freed, A. M., Blair, D. M., Watters, T. R., Klimczak, C., Byrne, P. K., Solomon, S. C., Zuber, M. T. and Melosh, H. J. (2012). On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury’s northern plains. J. Geophys. Res., 117, E00L06, doi:10.1029/2012JE004119.CrossRefGoogle Scholar
Fulmer, C. V. and Roberts, W. A. (1963). Rock induration and crater shape. Icarus, 2, 452465.Google Scholar
Gault, D. E. (1970). Saturation and equilibrium conditions for impact cratering on the lunar surface: Criteria and implications. Radio Science, 5, 273291.Google Scholar
Gault, D. E. and Wedekind, J. A. (1978). Experimental studies of oblique impact. Proc. Lunar Planet. Sci. Conf., 9, 38433875.Google Scholar
Gault, D. E., Guest, J. E., Murray, J. B., Dzurisin, D. and Malin, M. C. (1975). Some comparisons of impact craters on Mercury and the Moon. J. Geophys. Res., 80, 24442460, doi:10.1029/JB080i017p02444.Google Scholar
Greeley, R., Fink, J., Gault, D. E., Snyder, D. B., Guest, J. E. and Schultz, P. H. (1980). Impact cratering in viscous targets: Laboratory experiments. Proc. Lunar Planet. Sci. Conf., 11, 20752097.Google Scholar
Grieve, R. A. F. and Cintala, M. J. (1992). An analysis of differential impact melt-crater scaling and implications for the terrestrial cratering record. Meteoritics, 27, 526538.Google Scholar
Guest, J. E. and Murray, J. B. (1969). Nature and origin of Tsiolkovsky crater, lunar farside. Planet. Space Sci., 17, 121141.Google Scholar
Hartmann, W. K. (1984). Does crater “saturation equilibrium” occur in the solar system? Icarus, 60, 5674, doi:10.1016/0019-1035(84)90138-6.Google Scholar
Hartmann, W. K. and Gaskell, R. W. (1997). Planetary cratering 2: Studies of saturation equilibrium. Meteorit. Planet. Sci., 32, 109121, doi:10.1111/j.1945-5100.1997.tb01246.x.Google Scholar
Hartmann, W. K., Neukum, G. and Werner, S. (2008). Confirmation and utilization of the “production function” size–frequency distributions of Martian impact craters. Geophys. Res. Lett., 35, L02205, doi:10.1029/2007GL031557.Google Scholar
Hawke, B. R. and Head, J. W. (1977a). Impact melt on lunar crater rims. In Impact and Explosion Cratering: Planetary and Terrestrial Implications, ed. Roddy, D. J., Pepin, R. O. and Merrill, R. B.. New York: Pergamon Press, pp. 815841.Google Scholar
Hawke, B. R. and Head, J. W. (1977b). Impact melt in lunar crater interiors. Lunar Sci., 8, 415416.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972, doi:10.1126/science.1159256.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Chapman, C. R., Strom, R. G., Watters, T. R., Blewett, D. T., Gillis-Davis, J. J., Fassett, C. I., Dickson, J. L., Morgan, G. A. and Kerber, L. (2009). Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet. Sci. Lett., 285, 227242, doi:10.1016/j.epsl.2009.03.007.Google Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L. A., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856, doi:10.1126/science.1211997.Google Scholar
Hermalyn, B. and Schultz, P. H. (2011). Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: Effects of projectile density on early-time coupling and crater growth. Icarus, 216, 269279.Google Scholar
Hiesinger, H., Head, J. W. III, Wolf, U., Jaumann, R. and Neukum, G. (2002). Lunar mare basalt flow units: Thicknesses determined from crater size–frequency distributions. Geophys. Res. Lett., 29, 1248, doi:10.1029/2002GL014847.Google Scholar
Holsapple, K. A., (1993). The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci., 21, 333373.Google Scholar
Holsapple, K. A. and Housen, K. R. (2007). A crater and its ejecta: An interpretation of deep impact. Icarus, 191, 586597, doi:10.1016/j.icarus.2006.08.035.Google Scholar
Howard, K. A. (1972). Ejecta blankets of large craters exemplified by King crater. In Apollo 16 Preliminary Science Report, Special Publication SP-315. Washington, DC: National Aeronautics and Space Administration, pp. 29-7029-77.Google Scholar
Howard, K. A. and Wilshire, H. G. (1975). Flows of impact melt at lunar craters. J. Res. U.S. Geol. Surv., 3, 237251.Google Scholar
Ivezić, Ž., Tabachnik, S., Rafikov, R., Lupton, R. H., Quinn, T., Hammergren, M., Eyer, L., Chu, J., Armstrong, J. C., Fan, X., Finlator, K., Geballe, T. R., Gunn, J. E., Hennessy, G. S., Knapp, G. R., Leggett, S. K., Munn, J. A., Pier, J. R., Rockosi, C. M., Schneider, D. P., Strauss, M. A., Yanny, B., Brinkmann, J., Csabai, I., Hindsley, R. B., Kent, S., Lamb, D. Q., Margon, B., McKay, T. A., Smith, J. A., Waddel, P. and York, D. G. (2001). Solar system objects observed in the Sloan Digital Sky Survey commissioning data. Astron. J., 122, 27492784, doi:10.1086/323452.Google Scholar
Izenberg, N. R., Blewett, D. T., McNutt, R. L., Chabot, N. L., Chapman, C. R., Denevi, B. W., Robinson, M. S., Prockter, L. M. and Murchie, S. L. (2009). MESSENGER views of crater rays on Mercury. Lunar Planet. Sci., 40, abstract 1676.Google Scholar
Jedicke, R. and Metcalfe, T. S. (1998). The orbital and absolute magnitude distributions of main belt asteroids. Icarus, 131, 245260, doi:10.1006/icar.1997.5876.Google Scholar
Jutzi, M. and Michel, P. (2014). Hypervelocity impacts on asteroids and momentum transfer. I. Numerical simulations using porous targets. Icarus, 229, 247253.Google Scholar
Kalynn, J., Johnson, C. L., Osinski, G. R. and Barnouin, O. (2013). Topographic characterization of lunar complex craters. Geophys. Res. Lett., 40, 3842, doi:10.1029/2012GL053608.Google Scholar
Kennedy, P. J., Freed, A. M. and Solomon, S. C. (2008). Mechanisms of faulting in and around Caloris basin, Mercury, J. Geophys. Res., 113, E08004, doi:10.1029/2007JE002992.Google Scholar
Kirchoff, M. R., Marchi, S. and Wunnemann, K. (2015). The effects of terrain properties on determining crater model ages on lunar surfaces. Lunar Planet. Sci., 46, abstract 2121.Google Scholar
Klimczak, C., Schultz, R. A. and Nahm, A. L. (2010). Evaluation of the origin hypotheses of Pantheon Fosse, central Caloris basin, Mercury. Icarus, 209, 262270, doi:10.1016/j.icarus.2010.04.014.Google Scholar
Klimczak, C., Watters, T. R., Ernst, C. M., Freed, A. M., Byrne, P. K., Solomon, S. C., Blair, D. M. and Head, J. W. (2012). Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution. J. Geophys. Res., 117, E00L03, doi:10.1029/2012JE004100.Google Scholar
Klimczak, C., Ernst, C. M., Byrne, P. K., Solomon, S. C., Watters, T. R., Murchie, S. L., Preusker, F. and Balcerski, J. A. (2013). Insights into the subsurface structure of the Caloris basin, Mercury, from assessments of mechanical layering and changes in long-wavelength topography. J. Geophys. Res. Planets, 118, 20302044, doi:10.1002/jgre.20157.Google Scholar
Kreslavsky, M. A. and Head, J. W. (2015). A thicker regolith on Mercury. Lunar Planet. Sci., 46, abstract 1246.Google Scholar
Kreslavsky, M. A., Head, J. W., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2014). Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units. Geophys. Res. Lett., 41, 82458251, doi:10.1002/2014GL062162.Google Scholar
Leake, M. A. (1979). The intercrater plains of Mercury. Lunar Planet. Sci., 10, 710712.Google Scholar
Leake, M. A., Chapman, C. R., Weidenschilling, S. J., Davis, D. R. and Greenberg, R. (1987). The chronology of Mercury’s geological and geophysical evolution: The vulcanoid hypothesis. Icarus, 71, 350375.Google Scholar
Lebofsky, L. A. (1975). Stability of frosts in the solar system. Icarus, 25, 205217, doi:10.1016/0019-1035(75)90020-2.Google Scholar
Le Feuvre, M. and Wieczorek, M. A. (2011). Nonuniform cratering of the Moon and a revised crater chronology of the inner solar system. Icarus, 214, 120, doi:10.1016/j.icarus.2011.03.010.Google Scholar
Malin, M. C. and Dzurisin, D. (1977). Landform degradation on Mercury, the Moon, and Mars: Evidence from crater depth/diameter relationships. J. Geophys. Res., 82, 376388.Google Scholar
Mancinelli, P., Minelli, F., Mondini, A., Pauselli, C. and Federico, C. (2014). A downscaling approach for geological characterization of the Raditladi basin of Mercury. In Volcanism and Tectonism Across the Inner Solar System, ed. Platz, T., Massironi, M., Byrne, P. K. and Hiesinger, H., Special Publication 401. London: Geological Society, pp. 5775, doi:10.1144/SP401.10.Google Scholar
Marchi, S., Mottola, S., Cremonese, G., Massironi, M. and Martello, E. (2009). A new chronology for the Moon and Mercury. Astron. J., 137, 49364948, doi:10.1088/0004-6256/137/6/4936.CrossRefGoogle Scholar
Marchi, S., Massironi, M., Cremonese, G., Marellato, E., Giacomini, L. and Prockter, L. (2011). The effects of the target material properties and layering on the crater chronology: The case of Raditladi and Rachmaninoff basins on Mercury. Planet. Space Sci., 59, 19681980.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., Schenk, P., De Sanctis, M. C., Gaskell, R., Jaumann, R., Mottola, S., Preusker, F., Raymond, C. A., Roatsch, T. and Russell, C. T. (2012). The violent collisional history of asteroid 4 Vesta. Science, 336, 690694.Google Scholar
Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F. and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499, 5961, doi:10.1038/nature12280.CrossRefGoogle Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., Wünnemann, K., Kring, D. A., McSween, H. Y., de Sanctis, M. C., O’Brien, D. P., Schenk, P., Raymond, C. A. and Russell, C. T. (2013). High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geosci., 6, 303307.Google Scholar
Marcus, A. H. (1970). Comparison of equilibrium size distributions for lunar craters. J. Geophys. Res., 75, 49774984, doi:10.1029/JB075i026p04977.Google Scholar
Masiero, J. R., Mainzer, A. K., Grav, T., Bauer, J. M., Cutri, R. M., Dailey, J., Eisenhardt, P. R. M., McMillan, R. S., Spahr, T. B., Skrutskie, M. F., Tholen, D., Walker, R. G., Wright, E. L., DeBaun, E., Elsbury, D., Gautier, T., IV, Gomillion, S. and Wilkins, A. (2011). Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. Astrophys. J., 741, 68, 20 pp., doi:10.1088/0004-637X/741/2/68.Google Scholar
Massironi, M., Cremonese, G., Marchi, S., Martellato, E., Mottola, S. and Wagner, R. J. (2009). Mercury’s geochronology revised by applying Model Production Function to Mariner 10 data: Geological implications. Geophys. Res. Lett., 36, L21204, doi:10.1029/2009GL040353.Google Scholar
McCauley, J. F. (1977). Orientale and Caloris. Phys. Earth Planet. Inter., 15, 220250, doi:10.1016/0031-9201(77)90033-4.Google Scholar
McCauley, J. F., Guest, J. E., Schaber, G. G., Trask, N. J. and Greeley, R. (1981). Stratigraphy of the Caloris basin, Mercury. Icarus, 47, 184202.Google Scholar
McEwen, A. S., Preblich, B. S., Turtle, E. P., Artemieva, N. A., Golombek, M. P., Hurst, M., Kirk, R. L., Burr, D. M. and Christensen, P. R. (2005). The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus, 176, 351381.CrossRefGoogle Scholar
McEwen, A. S., Robbins, S. J. and Bierhaus, E. B. (2017). Why are there many more large secondary craters on Mercury than on the Moon or Mars? Lunar Planet. Sci., 48, abstract 2028.Google Scholar
McGetchin, T. R., Settle, M. and Head, J. W. (1973). Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth Planet. Sci. Lett., 20, 226236, doi:10.1016/0012-821X(73)90162-3.CrossRefGoogle Scholar
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. London: Oxford University Press, 253 pp.Google Scholar
Melosh, H. J. and McKinnon, W. B. (1988). The tectonics of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 374400.Google Scholar
Merline, W. J., Chapman, C. R., Tamblyn, P. M., Nair, H., Chabot, N. L., Enke, B. L. and Solomon, S. C. (2016). Search for vulcanoids and Mercury satellites from MESSENGER. Lunar Planet. Sci., 47, abstract 2765.Google Scholar
Michael, G. G. and Neukum, G. (2010). Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett., 294, 223229, doi:10.1016/j.epsl.2009.12.041.Google Scholar
Miljković, K., Wieczorek, M. A., Collins, G. S., Laneuville, M., Neumann, G. A., Melosh, H. J., Solomon, S. C., Phillips, R. J., Smith, D. E. and Zuber, M. T. (2013). Asymmetric distribution of lunar impact basins caused by variations in target properties. Science, 342, 724726, doi:10.1126/science.1243224.Google Scholar
Minton, D. A., Richardson, J. E. and Fassett, C. I. (2015a). Testing crater counting assumptions with the Cratered Terrain Evolution Model. In Workshop on Issues in Crater Studies and the Dating of Planetary Surfaces, Contribution No. 1841. Houston, TX: Lunar and Planetary Institute, abstract 9042.Google Scholar
Minton, D. A., Richardson, J. E. and Fassett, C. I. (2015b). Re-examining the main asteroid belt as the primary source of ancient lunar craters. Icarus, 247, 172190, doi:10.1016/j.icarus.2014.10.018.CrossRefGoogle Scholar
Mohit, P. S., Johnson, C. L., Barnouin-Jha, O., Zuber, M. T. and Solomon, S. C. (2009). Shallow basins on Mercury: Evidence of relaxation? Earth Planet. Sci. Lett., 285, 355363.Google Scholar
Morbidelli, A., Marchi, S., Bottke, W. F. and Kring, D. A. (2012). A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett., 355–356, 144151.Google Scholar
Morbidelli, A., Nesvorný, D., Laurenz, V., Marchi, S., Rubie, D. C., Elkins-Tanton, L. and Jacobson, S. A. (2017). The lunar Late Heavy Bombarment as a tail-end of planet accretion. Lunar Planet. Sci., 48, abstract 2298.Google Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C., McClintock, W. E., Prockter, L. M., Domingue, D. L. and Blewett, D. T. (2008). Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7376, doi:10.1126/science.1159261.Google Scholar
Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O’Leary, B., Strom, R. G., Suomi, V. and Trask, N. (1974). Mercury’s surface: Preliminary description and interpretation from Mariner 10 pictures. Science, 185, 169179.Google Scholar
Neish, C. D., Blewett, D. T., Harmon, J. K., Coman, E. I., Cahill, J. T. S. and Ernst, C. M. (2013). A comparison of rayed craters on the Moon and Mercury. J. Geophys. Res. Planets, 118, 22472261, doi:10.1002/jgre.20166.Google Scholar
Neukum, G. (1983). Meteoritenbombardement und Datierung Planetarer Oberflӓchen. Habilitation dissertation for faculty membership, University of Munich.Google Scholar
Neukum, G. and Horn, P. (1976). Effects of lava flows on lunar crater populations. Moon, 15, 205222, doi:10.1007/BF00562238.Google Scholar
Neukum, G., Ivanov, B. A. and Hartmann, W. K. (2001). Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev., 96, 5586.Google Scholar
Neumann, G. A., Zuber, M. T., Wieczorek, M. A., Head, J. W., Baker, D. M. H., Solomon, S. C., Smith, D. E., Lemoine, F. G., Mazarico, E., Sabaka, T. J., Goossens, S. J., Melosh, H. J., Phillips, R. J., Asmar, S. W., Konopliv, A. S., Williams, J. G., Sori, M. M., Soderblom, J. M., Miljković, K., Andrews-Hanna, J. C., Nimmo, F. and Kiefer, W. S. (2015). Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Science Advances, 1, e1500852, doi:10.1126/sciadv.1500852.Google Scholar
Noyelles, B., Frouard, J., Makarov, V. V. and Efroimsky, M. (2014). Spin–orbit evolution of Mercury revisited. Icarus, 241, 2644, doi:10.1016/j.icarus.2014.05.045.Google Scholar
Oberbeck, V. R. (1975). The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys., 13, 337362.Google Scholar
Oberst, J., Preusker, F., Phillips, R. J., Watters, T. R., Head, J. W., Zuber, M. T. and Solomon, S. C. (2010). The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models. Icarus, 209, 230238, doi:10.1016/j.icarus.2010.03.009.CrossRefGoogle Scholar
Öhman, T., Aittola, M., Kostama, V.-P. and Raitala, J., (2005). The preliminary analysis of polygonal impact craters within greater Hellas region, Mars. In Impact Tectonics, ed. Koeberl, C. and Henkel, H.. Berlin: Springer-Verlag, pp. 131160.CrossRefGoogle Scholar
Orgel, C., Michael, G. G. and Freie, T. (2017). Ancient bombardment of the inner solar system: Reinvestigation of the “fingerprints” of different impactor populations on the lunar surface. Lunar Planet. Sci., 48, abstract 1033.Google Scholar
Osinski, G. R., Tornabene, L. L. and Grieve, R. A. F. (2011). Impact ejecta emplacement on terrestrial planets. Earth Planet. Sci. Lett., 310, 167181, doi:10.1016/j.epsl.2011.08.012.Google Scholar
Ostrach, L. R., Robinson, M. S. and Denevi, B. W. (2012). Distribution of impact melt on Mercury and the Moon. Lunar Planet. Sci., 43, abstract 1113.Google Scholar
Ostrach, L. R., Robinson, M. S., Whitten, J. L., Fassett, C. I., Strom, R. G., Head, J. W. and Solomon, S. C. (2015). Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus, 250, 602622, doi:10.1016/j.icarus.2014.11.010.Google Scholar
Pike, R. J. (1974). Depth/diameter relations of fresh lunar craters: Revision from spacecraft data. Geophys. Res. Lett., 1, 291294.Google Scholar
Pike, R. J. (1980). Control of crater morphology by gravity and target type: Mars, Earth, Moon. Proc. Lunar Planet. Sci. Conf., 11, 21592189.Google Scholar
Pike, R. J. (1988). Geomorphology of impact craters on Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 165273.Google Scholar
Pike, R. J. and Spudis, P. D. (1987). Basin-ring spacing on the moon, Mercury, and Mars. Earth Moon Planets, 39, 129194, doi:10.1007/BF00054060.Google Scholar
Pohn, H. A. and Offield, T. W. (1970). Lunar crater morphology and relative age determination of lunar geologic units. Part 1: Classification. Part 2: Applications. In Geological Survey Research 1970, Professional Paper 700-C. Denver, CO: U.S. Geological Survey, pp. C153C162.Google Scholar
Preusker, F., Oberst, J., Head, J. W., Watters, T. R., Robinson, M. S., Zuber, M. T. and Solomon, S. C. (2011). Stereo topographic models of Mercury after three MESSENGER flybys. Planet. Space Sci., 59, 19101917.Google Scholar
Prockter, L. M., Watters, T. R., Chapman, C. R., Denevi, B. W., Head, J. W. III, Solomon, S. C., Murchie, S. L., Barnouin-Jha, O. S., Robinson, M. S., Blewett, D. T., Gillis-Davis, J. and Gaskell, R. W. (2009). The curious case of Raditladi basin. Lunar Planet. Sci., 40, abstract 1758.Google Scholar
Prockter, L. M., Ernst, C. M., Denevi, B. W., Chapman, C. R., Head, J. W., Fassett, C. I., Merline, W. J., Solomon, S. C., Watters, T. R., Strom, R. G., Cremonese, G., Marchi, S. and Massironi, M. (2010). Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science, 329, 668671, doi:10.1126/science.1188186.Google Scholar
Prockter, L. M., Murchie, S. L., Ernst, C. M., Baker, D. M. H., Byrne, P. K., Head, J. W., Watters, T. R., Denevi, B. W., Chapman, C. R. and Solomon, S. C. (2012). The geology of medium-sized basins on Mercury: Implications for surface processes and evolution. Lunar Planet. Sci., 43, abstract 1326.Google Scholar
Quaide, W. L. and Oberbeck, V. R. (1968). Thickness determinations of the lunar surface layer from lunar impact craters. J. Geophys. Res., 73, 52475270.Google Scholar
Raymond, S. N., Schlichting, H. E., Hersant, F. and Selsis, F. (2013). Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus, 226, 671681.Google Scholar
Richardson, J. E. (2009). Cratering saturation and equilibrium: A new model looks at an old problem. Icarus, 204, 697715, doi:10.1016/j.icarus.2009.07.029.CrossRefGoogle Scholar
Rickman, H., Wiśniowski, T., Gabryszewski, R., Wajer, P., Wójcikowski, K., Szutowicz, S., Valsecchi, G. B. and Morbidelli, A. (2017). Cometary impact rates on the Moon and planets during the late heavy bombardment. Astron. Astrophys., 598, A67, 15 pp., doi:10.1051/0004-6361/201629376.Google Scholar
Rivera-Valentin, E. G. and Barr, A. C. (2014). Estimating the size of late veneer impactors from impact-induced mixing on Mercury. Astrophys. J., 782, L8, doi:10.1088/2041-8205/782/1/L8.Google Scholar
Robbins, S. J. and Hynek, B. M. (2011). Distant secondary craters from Lyot crater, Mars, and implications for surface ages of planetary bodies. Geophys. Res. Lett., 38, L05201, doi:10.1029/2010GL046450.Google Scholar
Robbins, S. J. and Hynek, B. M. (2012). A new global database of Mars impact craters ≥1 km, 2. Global crater properties and regional variations of the simple-to-complex transition diameter. J. Geophys. Res., 117, E06001, doi:101.1029/2011JE003967.Google Scholar
Robbins, S. J., Antonenko, I., Kirchoff, M. R., Chapman, C. R., Fassett, C. I., Herrick, R. R., Singer, K., Zanetti, M., Lehan, C., Huang, D. and Gay, P. L. (2014). The variability of crater identification among expert and community crater analysts. Icarus, 234, 109131, doi:10.1016/j.icarus.2014.02.022.CrossRefGoogle Scholar
Robbins, S. J., Riggs, J., Weaver, B. P., Bierhaus, E. B., Chapman, C. R., Kirchoff, M. R., Singer, K. N. and Gaddis, L. R. (2018). Revised recommended methods for analyzing crater size–frequency distributions. Meteorit. Planet. Sci., 53, 583637.CrossRefGoogle Scholar
Roberts, J. H. and Barnouin, O. S. (2012). The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res., 117, E02007, doi:10.1029/2011JE003876.Google Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E., Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L. Jr., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669, doi:10.1126/science.1160080.Google Scholar
Roig, F. and Nesvorný, D. (2015). The evolution of asteroids in the jumping-Jupiter migration model. Astron. J., 150, article 186, 15 pp.CrossRefGoogle Scholar
Schaber, G. and McCauley, J. F. (1980). Geologic Map of the Tolstoj (H-8) Quadrangle of Mercury, Map I-1199, Miscellaneous Investigations Series. Denver, CO: U.S. Geological Survey.Google Scholar
Schmidt, R. M. and Housen, K. R. (1987). Some recent advances in the scaling of impact and explosion cratering. Int. J. Impact Eng., 5, 543560.Google Scholar
Schultz, P. H. (1976). Moon Morphology: An Interpretation Based on Lunar Orbiter Photography. Austin, TX: University of Texas Press, 626 pp.Google Scholar
Schultz, P. H. (1988). Cratering on Mercury: A relook. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 274335.Google Scholar
Schumacher, G. and Gay, J. (2001). An attempt to detect vulcanoids with SOHO/LASCO images. I. Scale relativity and quantization of the solar system. Astron. Astrophys., 368, 11081114.Google Scholar
Senft, L. E. and Stewart, S. T. (2007). Modeling impact cratering in layered surfaces. J. Geophys. Res., 112, E11002, doi:10.1029/2007JE002894.Google Scholar
Shoemaker, E. M., Batson, R. M., Holt, H. E., Morris, E. C., Rennilson, J. J. and Whitaker, E. A. (1968). Television observations from Surveyor VII. In Surveyor VII: A Preliminary Report, Special Publication SP-173. Washington, DC: National Aeronautics and Space Administration, pp. 1381.Google Scholar
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. New York: Chapman and Hall, 176 pp.Google Scholar
Soderblom, J. M., Evans, A. J., Johnson, B. C., Melosh, H. J., Miljković, K., Phillips, R. J., Andrews-Hanna, J. C., Bierson, C. J., Head, J. W., Milbury, C., Neumann, G. A., Nimmo, F., Smith, D. E., Solomon, S. C., Sori, M. M., Wieczorek, M. A. and Zuber, M. T. (2015). The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering. Geophys. Res. Lett., 42, 69396944, doi:10.1002/2015GL065022.Google Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 118164.Google Scholar
Steffl, A. J., Cunningham, N. J., Shinn, A. B., Durda, D. D. and Stern, S. A. (2013). A search for vulcanoids with the STEREO Heliospheric Imager. Icarus, 223, 4856, doi:10.1016/j.icarus.2012.11.031.Google Scholar
Stern, S. A. and Durda, D. D. (2000). Collisional evolution in the vulcanoid region: Implications for present-day population constraints. Icarus, 143, 360370.Google Scholar
Stewart, S. T. and Valiant, G. J. (2006). Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Lunar Planet. Sci., 37, abstract 2427.Google Scholar
Stewart, S. T., Lock, S. J., Petaev, M. I., Jacobsen, S. B., Sarid, G., Leinhardt, Z. M., Mukhopadhyay, S. and Humayun, M. (2016). Mercury impact origin hypothesis survives the volatile crisis: Implications for terrestrial planet formation. Lunar Planet. Sci., 47, abstract 2954.Google Scholar
Strom, R. G. (1977). Origin and relative age of lunar and Mercurian intercrater plains. Phys. Earth Planet. Inter., 15, 156172, doi:10.1016/0031-9201(77)90028-0.Google Scholar
Strom, R. G., Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B. W., O’Leary, B., Trask, N. J. and Guest, J. E. (1975). Preliminary imaging results from the second Mercury encounter. J. Geophys. Res., 80, 23452356.Google Scholar
Strom, R. G., Malhotra, R., Ito, T., Yoshida, F. and Kring, D. A. (2005). The origin of planetary impactors in the inner solar system. Science, 309, 18471850.CrossRefGoogle ScholarPubMed
Strom, R. G., Chapman, C. R., Merline, W. J., Solomon, S. C. and Head, J. W. (2008). Mercury cratering record viewed from MESSENGER’s first flyby. Science, 321, 7981, doi:10.1126/science.1159317.Google Scholar
Strom, R. G., Banks, M. E., Chapman, C. R., Fassett, C. I., Forde, J. A., Head, J. W., Merline, W. J., Prockter, L. M. and Solomon, S. C. (2011). Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history. Planet. Space Sci., 59, 19601967, doi:10.1016/j.pss.2011.03.018.Google Scholar
Strom, R. G., Malhotra, R., Xiao, Z.-Y., Ito, T., Yoshida, F. and Ostrach, L. R. (2015). The inner solar system cratering record and the evolution of impactor populations. Res. Astron. Astrophys., 15, 407434, doi:10.1088/1674–4527/15/3/009.Google Scholar
Stuart, J. S. and Binzel, R. P. (2004). Bias-corrected population, size distribution, and impact hazard for the near-Earth objects. Icarus, 170, 295311, doi:10.1016/j.icarus.2004.03.018.Google Scholar
Sullivan, W. (1974). A possible moon of Mercury is detected. New York Times, 1 April 1974, p. 65.Google Scholar
Susorney, H. C. M., Barnouin, O. S. and Ernst, C. M. (2015). The surface roughness of Mercury: Investigating the effects of impact cratering, volcanism, and tectonics. Lunar Planet. Sci., 46, abstract 2088.Google Scholar
Susorney, H. C. M., Barnouin, O. S., Ernst, C. M. and Johnson, C. L. (2016). Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging. Icarus, 271, 180193.Google Scholar
Talpe, M. J., Zuber, M. T., Yang, D., Neumann, G. A., Solomon, S. C., Mazarico, E. and Vilas, F. (2012). Characterization of the morphometry of impact craters hosting polar deposits in Mercury’s north polar region. J. Geophys. Res., 117, E00L13, doi:10.1029/2012JE004155.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014). Hollows on Mercury: Materials and mechanisms involved in their formation. Icarus, 229, 221235.Google Scholar
Trask, N. J. (1967). Distribution of lunar craters according to morphology from Ranger VIII and IX photographs. Icarus, 6, 270276.Google Scholar
Trask, N. J. and Guest, J. E. (1975). Preliminary geologic terrain map of Mercury. J. Geophys. Res., 80, 24612477.CrossRefGoogle Scholar
Tsiganis, K., Gomes, R., Morbidelli, A. and Levison, H. F. (2005). Origin of the orbital architecture of the giant planets of the solar system. Nature, 435, 459461.Google Scholar
Tucson Daily Citizen (1974). Arizona man names new moon “Charley.” 1 April 1974, p. 4.Google Scholar
Vaughan, W. M., Head, J. W., Wilson, L. and Hess, P. C. (2013). Geology and petrology of enormous volumes of impact melt on the Moon: A case study of the Orientale basin impact melt sea. Icarus, 223, 749765, doi:10.1016/j.icarus.2013.01.017.CrossRefGoogle Scholar
Vokrouhlický, D., Farinella, P. and Bottke, W. F. (2000). The depletion of the putative vulcanoid population via the Yarkovsky effect. Icarus, 148, 147152.Google Scholar
Walker, R. J. (2009). Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation. Chemie der Erde – Geochemistry, 69, 101125.Google Scholar
Warell, J. and Karlsson, O. (2007). A search for natural satellites of Mercury. Planet. Space Sci., 55, 20372041, doi:10.1016/j.pss.2007.06.004.Google Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. J. Geophys. Res., 98, 17,04917,060, doi:10.1029/93JE01138.Google Scholar
Watters, T. R., Nimmo, F. and Robinson, M. S. (2005). Extensional troughs in the Caloris basin of Mercury: Evidence of lateral crustal flow. Geology, 33, 669672.Google Scholar
Watters, T. R., Head, J. W., Solomon, S. C., Robinson, M. S., Chapman, C. R., Denevi, B. W., Fassett, C. I., Murchie, S. L. and Strom, R. G. (2009a). Evolution of the Rembrandt impact basin on Mercury. Science, 324, 618621, doi:10.1126/science.1172109.Google Scholar
Watters, T. R., Solomon, S. C., Robinson, M. S., Head, J. W., André, S. L., Hauck, S. A. II and Murchie, S. L. (2009b). The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth Planet. Sci. Lett., 285, 283296.Google Scholar
Watters, T. R., Murchie, S. L., Robinson, M. S., Solomon, S. C., Denevi, B. W., André, S. L. and Head, J. W. (2009c). Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury. Earth Planet. Sci. Lett., 285, 309319, doi:10.1016/j.epsl.2009.03.040.CrossRefGoogle Scholar
Watters, T. R., Solomon, S. C., Klimczak, C., Freed, A. M., Head, J. W., Ernst, C. M., Blair, D. M., Goudge, T. A. and Byrne, P. K. (2012). Extension and contraction within volcanically buried impact craters and basins on Mercury. Geology, 40, 11231126, doi:10.1130/G33725.1.Google Scholar
Watters, W. A., Geiger, L. M., Fendrock, M., Gibson, R. and Hundal, C. B. (2017). The role of strength defects in shaping impact crater planforms. Icarus, 286, 1534.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A., Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120.Google Scholar
Weihs, G. T., Leitner, J. J. and Firneis, M. G. (2015). Polygonal impact craters on Mercury. Planet. Space Sci., 111, 7782.Google Scholar
Werner, S. C. (2017). Could Mars have witnessed giant planet migration? Lunar Planet. Sci., 48, abstract 1856.Google Scholar
Wetherill, G. W. (1988). Accumulation of Mercury from planetesimals. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 670691.Google Scholar
Whitten, J. L. and Head, J. W. (2015). Rembrandt impact basin: Distinguishing between volcanic and impact-produced plains on Mercury. Icarus, 258, 350365, doi:10.1016/j.icarus.2015.06.022.Google Scholar
Whitten, J. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2014). Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113.Google Scholar
Wieczorek, M. A., Correia, A. C. M., Le Feuvre, M., Laskar, J. and Rambaux, N. (2012). Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation. Nature Geosci., 5, 1821, doi:10.1038/ngeo1350.Google Scholar
Wilhelms, D. E. (1976). Mercurian volcanism questioned. Icarus, 28, 551558.Google Scholar
Wilhelms, D. E. (1987). The Geologic History of the Moon. Professional Paper 1348. Denver, CO: U.S. Geological Survey.Google Scholar
Williams, D. A., Greeley, R., Werner, S. C., Michael, G., Crown, D. A., Neukum, G. and Raitala, J. (2008). Tyrrhena Patera: Geologic history derived from Mars Express High Resolution Stereo Camera. J. Geophys. Res., 113, E11005, doi:10.1029/2008JE003104.Google Scholar
Wood, C. A., Head, J. W. and Cintala, M. J. (1977). Crater degradation on Mercury and the Moon: Clues to surface evolution. Proc. Lunar Sci. Conf., 8, 35033520.Google Scholar
Woronow, A. (1977). Crater saturation and equilibrium: A Monte Carlo simulation. J. Geophys. Res., 82, 24472456, doi:10.1029/JB082i017p02447.Google Scholar
Xiao, Z. and Komatsu, G. (2013). Impact craters with ejecta flows and central pits on Mercury. Planet. Space Sci., 8283, 6278.Google Scholar
Xiao, Z. and Strom, R. G. (2012). Problems determining relative and absolute ages using the small crater population. Icarus, 220, 254267.Google Scholar
Xiao, Z. and Werner, S. C. (2015). Size–frequency distribution of crater populations in equilibrium on the Moon. J. Geophys. Res. Planets, 120, 22772292, doi:10.1002/2015JE004860.Google Scholar
Xiao, Z., Strom, R. G., Chapman, C. R., Head, J. W., Klimczak, C., Ostrach, L. R., Helbert, J. and D’Incecco, P. (2014a). Comparisons of fresh complex impact craters on Mercury and the Moon: Implications for controlling factors in impact excavation processes. Icarus, 228, 260275, doi:10.1016/j.icarus.2013.10.002.Google Scholar
Xiao, Z., Zeng, Z., Li, Z., Blair, D. M. and Xiao, L. (2014b). Cooling fractures in impact melt deposits on the Moon and Mercury: Implications for cooling solely by thermal radiation. J. Geophys. Res. Planets, 119, 14961515, doi:10.1002/2013JE004560.Google Scholar
Yoshida, F., Nakamura, T., Watanabe, J., Kinoshita, D., Yamamoto, N. and Fuse, T. (2003). Size and spatial distributions of sub-km main-belt asteroids. Publ. Astron. Soc. Jpn., 55, 701715, doi:10.1093/pasj/55.3.701.Google Scholar
Zuber, M. T., Smith, D. E., Phillips, R. J., Solomon, S. C., Neumann, G. A., Hauck, S. A. II, Peale, S. J., Barnouin, O. S., Head, J. W., Johnson, C. L., Lemoine, F. G., Mazarico, E., Sun, X., Torrence, M. H., Freed, A. M., Klimczak, C., Margot, J.-L., Oberst, J., Perry, M. E., McNutt, R. L. Jr., Balcerski, J. A., Michel, N., Talpe, M. J. and Yang, D. (2012). Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science, 336, 217220, doi:10.1126/science.1218805.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×