Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T23:20:51.226Z Has data issue: false hasContentIssue false

1 - Biofilm-Dependent Regulation of Gene Expression

Published online by Cambridge University Press:  23 November 2009

Philippe Lejeune
Affiliation:
Laboratoire de Microbiologie et Génétiquè, Institut National des Sciences Appliquées de Lyon, Lyon, France
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION

Microbial development and biofilm formation on implanted biomaterials and hospital equipment are important sources of nosocomial infections, mainly because surface-associated contaminants express biofilm-specific properties such as increased resistance to biocides, antibiotics, and immunological defences. Although it has long been recognised that the presence of a solid phase can influence many bacterial functions (ZoBell, 1943; Costerton et al., 1987; Van Loosdrecht et al., 1990), we are just beginning to understand the regulatory processes at the molecular level. There is no doubt that the identification of the structures involved in the sensing of the particular microenvironments encountered at interfaces and in developing biofilms and the description of the regulatory networks allowing the appropriate genetic responses will lead to the development of surface coatings and preventive or curative drugs able to deal with these life-threatening infections.

BIOFILM FORMATION IS A DEVELOPMENTAL PROCESS

An invidual bacterium present on, or introduced into, the human body can reach the surface of an indwelling medical device by three different mechanisms (Van Loosdrecht et al., 1990): passive transport due to air or liquid flow, diffusive transport resulting from Brownian motion, and active movement involving flagella. Although contact is, therefore, frequently a question of chance, chemotactic processes can direct motile bacteria in response to any concentration gradient that may exist in the interfacial region. Following contact, the next stage may be initial adhesion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupa, M. and Marrie, T. J. (1987). Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464CrossRefGoogle ScholarPubMed
Costerton, J. W., Lewandowski, Z., Beer, D., Caldwell, D., Korber, D. and James, C. (1994). Biofilms, the customized microniche. Journal of Bacteriology, 176, 2137–2142CrossRefGoogle ScholarPubMed
Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I. and Penadés, J. R. (2001). Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, 183, 2888–2896CrossRefGoogle ScholarPubMed
Danese, P. N., Snyder, W. B., Cosma, C. L., Davis, L. J. and Silhavy, T. J. (1995). The Cpx two-component system signal transduction pathway of Escherichia coli regulates transcription of the genes specifying the stress-inducible periplasmic protease, DegP. Genes and Development, 9, 387–398CrossRefGoogle Scholar
Davies, D. G., Chakrabarty, A. M. and Geesey, G. G. (1993). Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 59, 1181–1186Google ScholarPubMed
Davies, D. G. and Geesey, G. G. (1995). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Applied and Environmental Microbiology, 61, 860–867Google ScholarPubMed
Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. and Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of bacterial biofilm. Science, 280, 295–298CrossRefGoogle ScholarPubMed
Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I. and Lejeune, P. (1999). Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiology Letters, 178, 169–175CrossRefGoogle ScholarPubMed
Epstein, W. and Schultz, S. G. (1965). Cation transport in Escherichia coli. V. Regulation of cation content. Journal of General Physiology, 49, 221–234CrossRefGoogle ScholarPubMed
Genevaux, P., Bauda, P., DuBow, M. S. and Oudega, B. (1999a). Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Archives of Microbiology, 172, 1–8CrossRefGoogle Scholar
Genevaux, P., Bauda, P., DuBow, M. S. and Oudega, B. (1999b). Identification of Tn10 insertions in the dsbA gene affecting Escherichia coli biofilm formation. FEMS Microbiology Letters, 173, 403–409CrossRefGoogle Scholar
Ghigo, J. M. (2001). Natural conjugative plasmids induce bacterial biofilm development. Nature, 412, 442–445CrossRefGoogle ScholarPubMed
Hausner, M. and Wuertz, S. (1999). High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Applied and Environmental Microbiology, 65, 3710–3713Google ScholarPubMed
Heilmann, C., Hussain, M., Peters, G. and Götz, F. (1997). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Molecular Microbiology, 24, 1013–1024CrossRefGoogle ScholarPubMed
Thi, T. T., Prigent-Combaret, C., Dorel, C. and Lejeune, P. (2001). First stages of biofilm formation: characterization and quantification of bacterial functions involved in colonization process. Methods in Enzymology, 336, 152–159CrossRefGoogle ScholarPubMed
Loo, C. Y., Corliss, D. A. and Ganeshkumar, N. (2000). Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. Journal of Bacteriology, 182, 1374–1382CrossRefGoogle ScholarPubMed
Marshall, K. C. (1992). Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News, 58, 202–207Google Scholar
McLean, R. J. C., Whitely, M., Stickler, D. J. and Fuqua, W. C. (1997). Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiology Letters, 154, 259–263CrossRefGoogle ScholarPubMed
Mireles, J. R. II, Togushi, A. and Harshey, R. M. (2001). Salmonella enterica Serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. Journal of Bacteriology, 183, 5848–5854CrossRefGoogle ScholarPubMed
O'Toole, G., Kaplan, H. B. and Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79CrossRefGoogle ScholarPubMed
O'Toole, G. A. and Kolter, R. (1998a). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304CrossRefGoogle Scholar
O'Toole, G. A. and Kolter, R. (1998b). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28, 449–461CrossRefGoogle Scholar
Pratt, L. A. and Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30, 285–293CrossRefGoogle ScholarPubMed
Prigent-Combaret, C. (2000). Processus de régulations métaboliques au cours de la colonisation des surfaces inertes par Escherichia coli K-12. Ph.D. Thesis, University of Paris, 7
Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P. and Dorel, C. (2001). Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. Journal of Bacteriology, 183, 7213–7223CrossRefGoogle ScholarPubMed
Prigent-Combaret, C. and Lejeune, P. (1999). Monitoring gene expression in biofilms. Methods in Enzymology, 310, 56–79CrossRefGoogle ScholarPubMed
Prigent-Combaret, C., Prensier, G., Thi, T. T., Vidal, O., Lejeune, P. and Dorel, C. (2000). Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli, and colanic acid. Environmental Microbiology, 2, 450–464CrossRefGoogle ScholarPubMed
Prigent-Combaret, C., Vidal, O., Dorel, C. and Lejeune, P. (1999). Abiotic surface sensing and biofilm-dependent gene expression in Escherichia coli. Journal of Bacteriology, 181, 5993–6002Google ScholarPubMed
Sauer, K. and Camper, A. K. (2001). Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. Journal of Bacteriology, 183, 6579–6589CrossRefGoogle ScholarPubMed
Stickler, D. J., Morris, N. A., McLean, R. J. C. and Fuqua, C. (1998). Biofilms on indwelling urethral catheters produce quorum-sensing molecules in-situ. Applied and Environmental Microbiology, 64, 3486–3490Google ScholarPubMed
Uhlich, G. A., Keen, J. E. and Elder, R. O. (2002). Variations in the csgD promoter of Escherichia coli O157:H7 associated with increased virulence in mice and increased invasion of HEp-2 cells. Infection and Immunity, 70, 395–399CrossRefGoogle ScholarPubMed
Vallet, I., Olson, J. W., Lory, S., Ladzunski, A. and Filloux, A. (2001). The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proceedings of the National Academy of Sciences of the USA, 98, 6911–6916CrossRefGoogle ScholarPubMed
Loosdrecht, M. C. M., Lyklema, J., Norde, W. and Zehnder, A. J. B. (1990). Influence of interfaces on microbial activity. Microbiological Reviews, 54, 75–87Google ScholarPubMed
Vidal, O., Longin, R., Prigent-Combaret, C., Dorel, C., Hooreman, M. and Lejeune, P. (1998). Isolation of an Escherichia coli mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. Journal of Bacteriology, 180, 2442–2449Google ScholarPubMed
Watnick, P. I. and Kolter, R. (1999). Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular Microbiology, 34, 586–595CrossRefGoogle ScholarPubMed
Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teltzel, G. M., Lory, S. and Greenberg, E. P. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864CrossRefGoogle ScholarPubMed
ZoBell, C. E. (1943). The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 46, 39–56Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×