Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T01:10:51.553Z Has data issue: false hasContentIssue false

20 - Polymers

Published online by Cambridge University Press:  05 June 2012

William F. Hosford
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

A separate chapter is devoted to polymers because of their engineering importance and because their mechanical behavior is so different from that of metals and ceramics. The mechanical response of polymers is far more time dependent than that of crystalline materials. Viscoelastic effects (Chapter 15) are much more important in polymers than in metals or ceramics. The properties of polymers are also much more sensitive to temperature than those of other materials. Changes of molecular orientation with deformation cause large changes in properties and a much greater degree of anisotropy than is observed in metals or ceramics. The phenomena of crazing and rubber elasticity have no analogs in crystalline materials. Some polymers exhibit very large tensile elongations. Although a few alloys exhibit shape-memory behavior, the effect is much greater in polymers, more common, and of greater technological importance.

Elastic Behavior

Elastic strains in metals and ceramics occur by stretching of primary metallic, covalent, or ionic bonds. The elastic modulus of most crystals varies with direction by less than a factor of 3. The effects of alloying, thermal, and mechanical treatments on the elastic moduli of crystals are relatively small. As the temperature is increased from absolute zero to the melting point, Young's modulus usually decreases by a factor of no more than 5. For polymers, however, a temperature change of 30°C may change the elastic modulus by a factor of 1, 000. Elastic deformation of polymeric involves stretching of the weak van der Waals bonds between neighboring molecular chains and rotation of covalent bonds.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Polymers
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Mechanical Behavior of Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810923.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Polymers
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Mechanical Behavior of Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810923.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Polymers
  • William F. Hosford, University of Michigan, Ann Arbor
  • Book: Mechanical Behavior of Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810923.021
Available formats
×