Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T14:18:46.541Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Steven D. Galbraith
Affiliation:
University of Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M., Abdalla, M., Bellare and P., Rogaway, DHIES: An Encryption Scheme based on the Diffie–Hellman Problem, Preprint, 2001.
[2] L. M., Adleman and J., DeMarrais, A subexponential algorithm for discrete logarithms over all finite fields, Math. Comp. 61(203) (1993), 1–15.Google Scholar
[3] L. M., Adleman, K. L., Manders and G. L., Miller, On taking roots in finite fields, Foundations of Computer Science (FOCS), IEEE, 1977, 175–178.Google Scholar
[4] L.M., Adleman, J., De Marrais and M.-D., Huang, A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields. In ANTS I (L. M., Adleman and M.-D., Huang, eds.), LNCS, vol. 877, Springer, 1994, pp. 28–40.Google Scholar
[5] G. B., Agnew, R. C., Mullin, I. M., Onyszchuk and S. A., Vanstone, An implementation for a fast public-key cryptosystem, J. Crypt. 3(2) (1991), 63–79.Google Scholar
[6] M., Agrawal, N., Kayal and N., Saxena, PRIMES is in P, Ann. of Math. 160(2) (2004), 781–793.Google Scholar
[7] E., Agrell, T., Eriksson, A., Vardy and K., Zeger, Closest point search in lattices, IEEE Trans. Inf. Theory 48(8) (2002), 2201–2214.Google Scholar
[8] A., Akavia, Solving hidden number problem with one bit oracle and advice. In CRYPTO 2009 (S., Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 337–354.Google Scholar
[9] W., Alexi, B., Chor, O., Goldreich and C.-P., Schnorr, RSA and Rabin functions: certain parts are as hard as the whole, SIAM J. Comput. 17(2) (1988), 194–209.Google Scholar
[10] W. R., Alford, A., Granville and C., Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 139(3) (1994), 703–722.Google Scholar
[11] A., Antipa, D. R. L., Brown, R. P., Gallant, R. J., Lambert, R., Struik and S. A., Vanstone, Accelerated verification of ECDSA signatures. In SAC 2005 (B., Preneel and S. E., Tavares, eds.), LNCS, vol. 3897, Springer, 2006, pp. 307–318.Google Scholar
[12] C., Arène, T., Lange, M., Naehrig and C., Ritzenthaler, Faster computation of the Tate pairing, J. Number Theory 131(5) (2011), 842–857.Google Scholar
[13] J., Arney and E. D., Bender, Random mappings with constraints on coalescence and number of origins, Pacific J. Math. 103 (1982), 269–294.Google Scholar
[14] E., Artin, Galois Theory, 2nd edn, Notre Dame, 1959.Google Scholar
[15] M. F., Atiyah and I. G., Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.Google Scholar
[16] R., Avanzi, H., Cohen, C., Doche, G., Frey, T., Lange, K., Nguyen and F., Vercauteren, Handbook of Elliptic and Hyperelliptic Cryptography, Chapman & Hall/CRC, 2006.
[17] L., Babai, On Lovász lattice reduction and the nearest lattice point problem, Combinatorica 6(1) (1986), 1–13.Google Scholar
[18] L., Babai and E., Szemerédi, On the complexity of matrix group problems I, Foundations of Computer Science (FOCS) (1996), 229–240.Google Scholar
[19] E., Bach, Bounds for primality testing and related problems, Math. Comp. 55(191) (1990), 355–380.Google Scholar
[20] E., Bach, Toward a theory of Pollard's rho method, Inf. Comput. 90(2) (1991), 139–155.Google Scholar
[21] E., Bach and J., Shallit, Algorithmic Number Theory, MIT Press, 1996.Google Scholar
[22] E., Bach and J., Sorenson, Sieve algorithms for perfect power testing, Algorithmica 9 (1993), 313–328.Google Scholar
[23] S., Bai and R. P., Brent, On the efficiency of Pollard's rho method for discrete logarithms, CATS 2008 (J., Harland and P., Manyem, eds.), Australian Computer Society, 2008, pp. 125–131.Google Scholar
[24] D. V., Bailey, L., Batina, D. J., Bernstein, P., Birkner, J. W., Bos, H.-C., Chen, C.-M., Cheng, G., van Damme, G., de Meulenaer, L., Julian Dominguez Perez, J., Fan, T., Güneysu, F., Gurkaynak, T., Kleinjung, T., Lange, N., Mentens, R., Niederhagen, C., Paar, F., Regazzoni, P., Schwabe, L., Uhsadel, A., Van Herrewege and B.-Y., Yang, Breaking ECC2K-130, Cryptology ePrint Archive, Report 2009/541, 2009.Google Scholar
[25] R., Balasubramanian and N., Koblitz, The improbability that an elliptic curve has sub-exponential discrete log problem under the Menezes–Okamoto–Vanstone algorithm, J. Crypt. 11(2) (1998), 141–145.Google Scholar
[26] P. S. L. M., Barreto, S. D., Galbraith, C. Ó, hÉigeartaigh and M., Scott, Efficient pairing computation on supersingular abelian varieties, Des. Codes Crypt. 42(3) (2007), 239–271.Google Scholar
[27] P. S. L. M., Barreto, H. Y., Kim, B., Lynn and M., Scott, Efficient algorithms for pairing-based cryptosystems, CRYPTO 2002 (M., Yung, ed.), LNCS, vol. 2442, Springer, 2002, pp. 354–369.Google Scholar
[28] P. S. L. M., Barreto and M., Naehrig, Pairing-friendly elliptic curves of prime order, SAC 2005 (B., Preneel and S. E., Tavares, eds.), LNCS, vol. 3897, Springer, 2006, pp. 319–331.Google Scholar
[29] A., Bauer, Vers une généralisation rigoureuse des méthodes de Coppersmith pour la recherche de petites racines de polynmes, Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelines, 2008.
[30] M., Bellare, R., Canetti and H., Krawczyk, A modular approach to the design and analysis of authentication and key exchange protocols, Symposium on the Theory of Computing (STOC), ACM, 1998, pp. 419–428.Google Scholar
[31] M., Bellare, J. A., Garay and T., Rabin, Fast batch verification for modular exponentiation and digital signatures, EUROCRYPT 1998 (K., Nyberg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 236–250.Google Scholar
[32] M., Bellare, S., Goldwasser and D., Micciancio, “Pseudo-Random” number generation within cryptographic algorithms: the DSS case, CRYPTO 1997 (B. S., Kaliski Jr., ed.), LNCS, vol. 1294, Springer, 1997, pp. 277–291.Google Scholar
[33] M., Bellare and G., Neven, Multi-signatures in the plain public-key model and a general forking lemma, CCS 2006 (A., Juels, R. N., Wright and S., De Capitani di Vimercati, eds.), ACM, 2006, pp. 390–399.Google Scholar
[34] M., Bellare, D., Pointcheval and P., Rogaway, Authenticated key exchange secure against dictionary attacks, EUROCRYPT 2000 (B., Preneel, ed.), LNCS, vol. 1807, Springer, 2000, pp. 139–155.Google Scholar
[35] M., Bellare and P., Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, CCS 1993, ACM, 1993, pp. 62–73.Google Scholar
[36] M., BellareEntity authentication and key distribution, CRYPTO 1993 (D. R., Stinson, ed.), LNCS, vol. 773, Springer, 1994, pp. 232–249.Google Scholar
[37] M., BellareOptimal asymmetric encryption – how to encrypt with RSA, EUROCRYPT 1994 (A., De Santis, ed.), LNCS, vol. 950, Springer, 1995, pp. 92–111.Google Scholar
[38] M., BellareThe exact security of digital signatures – how to sign with RSA and Rabin. In EUROCRYPT 1996 (U. M., Maurer, ed.), LNCS, vol. 1070, Springer, 1996, pp. 399–416.Google Scholar
[39] K., Bentahar, The equivalence between the DHP and DLP for elliptic curves used in practical applications, revisited. In IMA Cryptography and Coding (N. P., Smart, ed.), LNCS, vol. 3796, Springer, 2005, pp. 376–391.Google Scholar
[40] K., Bentahar, Theoretical and practical efficiency aspects in cryptography, Ph.D. thesis, University of Bristol, 2008.
[41] D. J., Bernstein, Pippenger's exponentiation algorithm, Preprint, 2002.Google Scholar
[42] D. J., Bernstein, T., Lange and P., Schwabe, On the correct use of the negation map in the Pollard rho method. In PKC 2011 (D., Catalano, N., Fazio, R., Gennaro, and A., Nicolosi, eds.), LNCS, vol. 6571, Springer, 2011, pp. 128–146.Google Scholar
[43] D. J., Bernstein, T., Lange and P., Schwabe, Curve 25519: New Diffie–Hellman speed records. In PKC 2006 (M., Yung, Y., Dodis, A., Kiayias and T., Malkin, eds.), LNCS, vol. 3958, Springer, 2006, pp. 207–228.Google Scholar
[44] D. J., Bernstein, T., Lange and P., Schwabe, Proving tight security for Rabin–Williams signatures. In EUROCRYPT 2008 (N. P., Smart, ed.), LNCS, vol. 4965, Springer, 2008, pp. 70–87.Google Scholar
[45] D. J., Bernstein, T., Lange and P., Schwabe, Faster rho for elliptic curves, Rump session talk, ANTS IX, 2010.Google Scholar
[46] D. J., Bernstein, P., Birkner, M., Joye, T., Lange and C., Peters, Twisted Edwards curves. In Africacrypt 2008 (S., Vaudenay, ed.), LNCS, vol. 5023, Springer, 2008, pp. 389–405.Google Scholar
[47] D. J., Bernstein, P., Birkner, T., Lange and C., Peters, ECM using Edwards Curves, Cryptology ePrint Archive, Report 2008/016, 2008.
[48] D. J., Bernstein, J., Buchmann and E., Dahmen, Post Quantum Cryptography, Springer, 2008.Google Scholar
[49] D. J., Bernstein and T., Lange, Explicit Formulas Database, 2007 (www.hyperelliptic.org/EFD).
[50] D. J., BernsteinFaster addition and doubling on elliptic curves. In ASIACRYPT 2007 (K., Kurosawa, ed.), LNCS, vol. 4833, Springer, 2007, pp. 29–50.
[51] D. J., BernsteinAnalysis and optimization of elliptic-curve single-scalar multiplication, Contemporary Mathematics 461 (2008), 1–19.Google Scholar
[52] D. J., BernsteinType-II optimal polynomial bases. In WAIFI 2010 (M. A., Hasan and T., Helleseth, eds.), LNCS, vol. 6087, Springer, 2010, pp. 41–61.Google Scholar
[53] D. J., Bernstein, T., Lange and R. R., Farashahi, Binary Edwards curves. In CHES 2008, (E., Oswald and P., Rohatgi, eds.), LNCS, vol. 5154, Springer, 2008, pp. 244–265.Google Scholar
[54] G., Bisson and A. V., Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field, J. Number Theory 131(5) (2011), 815–831.Google Scholar
[55] S. R., Blackburn and S., Murphy, The number of partitions in Pollard rho, unpublished manuscript, 1998.
[56] S. R., Blackburn and E., Teske, Baby-step–giant-step algorithms for non-uniform distributions. In ANTS IV (W., Bosma, ed.), LNCS, vol. 1838, Springer, 2000, pp. 153–168.Google Scholar
[57] I. F., Blake, R., Fuji-Hara, R. C., Mullin and S. A., Vanstone, Computing logarithms in finite fields of characteristic two, SIAM J. Algebraic and Discrete Methods 5(2) (1984), 272–285.Google Scholar
[58] I. F., Blake and T., Garefalakis, On the complexity of the discrete logarithm and Diffie–Hellman problems, J. Complexity 20(2–3) (2004), 148–170.Google Scholar
[59] I. F., Blake, T., Garefalakis and I. E., Shparlinski, On the bit security of the Diffie–Hellman key, Appl. Algebra Eng. Commun. Comput. 16(6) (2006), 397–404.Google Scholar
[60] I. F., Blake, G., Seroussi and N. P., Smart, Elliptic Curves in Cryptography, Cambridge University Press, 1999.
[61] I. F., Blake, G., Seroussi and N. P., Smart, Advances in Elliptic Curve Cryptography, Cambridge University Press, 2005.Google Scholar
[62] D., Bleichenbacher, Generating ElGamal signatures without knowing the secret key, EUROCRYPT 1996 (U. M., Maurer, ed.), LNCS, vol. 1070, Springer, 1996, pp. 10–18.Google Scholar
[63] D., Bleichenbaucher, Compressing Rabin signatures. In CT-RSA 2004 (T., Okamoto, ed.), LNCS, vol. 2964, Springer, 2004, pp. 126–128.Google Scholar
[64] D., Bleichenbacher and A., May, New attacks on RSA with small secret CRT-exponents. In PKC 2006 (M., Yung, Y., Dodis, A., Kiayias and T., Malkin, eds.), LNCS, vol. 3958, Springer, 2006, pp. 1–13.Google Scholar
[65] D., Bleichenbacher and P. Q., Nguyen, Noisy polynomial interpolation and noisy Chinese remaindering. In EUROCRYPT 2000 (B., Preneel, ed.), LNCS, vol. 1807, Springer, 2000, pp. 53–69.Google Scholar
[66] J., Blömer and A., May, Low secret exponent RSA revisited. In Cryptography and Lattices (CaLC) (J. H., Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 4–19.Google Scholar
[67] J., Blömer and A., May, A tool kit for finding small roots of bivariate polynomials over the integers. In EUROCRYPT 2005 (R., Cramer, ed.), LNCS, vol. 3494, Springer, 2005, pp. 251–267.Google Scholar
[68] M., Blum and S., Micali, How to generate cryptographically strong sequences of pseudo-random bits, SIAM J. Comput. 13(4) (1984), 850–864.Google Scholar
[69] D., Boneh, Simplified OAEP for the RSA and Rabin functions. In CRYPTO 2001 (J., Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 275–291.Google Scholar
[70] D., Boneh, Finding smooth integers in short intervals using CRT decoding, J. Comput. Syst. Sci. 64(4) (2002), 768–784.Google Scholar
[71] D., Boneh and X., Boyen, Short signatures without random oracles. In EUROCRYPT 2004 (C., Cachin and J., Camenisch, eds.), LNCS, vol. 3027, Springer, 2004, pp. 56–73.Google Scholar
[72] D., Boneh and X., Boyen, Short signatures without random oracles and the SDH assumption in bilinear groups, J. Crypt. 21(2) (2008), 149–177.Google Scholar
[73] D., Boneh and G., Durfee, Cryptanalysis of RSA with private key d less than N0.292, IEEE Trans. Inf. Theory 46(4) (2000), 1339–1349.Google Scholar
[74] D., Boneh, G., Durfee and N., Howgrave-Graham, Factoring N = pr q for large r. In CRYPTO 1999 (M. J., Wiener, ed.), LNCS, vol. 1666, Springer, 1999, pp. 326–337.Google Scholar
[75] D., Boneh and M. K., Franklin, Identity based encryption from the Weil pairing. In CRYPTO 2001 (J., Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 213–229.Google Scholar
[76] D., Boneh and M. K., Franklin, Identity based encryption from theWeil pairing, SIAM J. Comput. 32(3) (2003), 586–615.Google Scholar
[77] D., Boneh, A., Joux and P., Nguyen, Why textbook ElGamal and RSA encryption are insecure. In ASIACRYPT 2000 (T., Okamoto, ed.), LNCS, vol. 1976, Springer, 2000, pp. 30–43.Google Scholar
[78] D., Boneh and R. J., Lipton, Algorithms for black-box fields and their application to cryptography. In CRYPTO 1996 (N., Koblitz, ed.), LNCS, vol. 1109, Springer, 1996, pp. 283–297.Google Scholar
[79] D., Boneh and I. E., Shparlinski, On the unpredictability of bits of the elliptic curve Diffie–Hellman scheme. In CRYPTO 2001 (J., Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 201–212.Google Scholar
[80] D., Boneh and R., Venkatesan, Hardness of computing the most significant bits of secret keys in Diffie–Hellman and related schemes. In CRYPTO 1996 (N., Koblitz, ed.), LNCS, vol. 1109, Springer, 1996, pp. 129–142.Google Scholar
[81] D., Boneh and R., Venkatesan, Rounding in lattices and its cryptographic applications. In Symposium on Discrete Algorithms (SODA), ACM/SIAM, 1997, pp. 675–681.Google Scholar
[82] D., Boneh and R., Venkatesan, Breaking RSA may not be equivalent to factoring. In EUROCRYPT 1998 (K., Nyberg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 59–71.Google Scholar
[83] A., Borodin and I., Munro, The Computational Complexity of Algebraic and Numeric Problems, Elsevier, 1975.Google Scholar
[84] J. W., Bos, M. E., Kaihara and T., Kleinjung, Pollard Rho on Elliptic Curves, Preprint, 2009.Google Scholar
[85] J. W., Bos, M. E., Kaihara and P. L., Montgomery, Pollard rho on the Playstation 3, Handouts of SHARCS 2009, 2009, pp. 35–50.
[86] J. W., Bos, T., Kleinjung and A. K., Lenstra, On the use of the negation map in the Pollard rho method. In ANTS IX (G., Hanrot, F., Morain and E., Thomé, eds.), LNCS, vol. 6197, Springer, 2010, pp. 66–82.Google Scholar
[87] W., Bosma and H. W., Lenstra Jr., Complete systems of two addition laws for elliptic curves, J. Number Theory 53 (1995), 229–240.Google Scholar
[88] A., Bostan, F., Morain, B., Salvy and E., Schost, Fast algorithms for computing isogenies between elliptic curves, Math. Comp. 77(263) (2008), 1755–1778.Google Scholar
[89] C., Boyd and A., Mathuria, Protocols for authentication and key establishment, Information Security and Cryptography, Springer, 2003.Google Scholar
[90] X., Boyen, The uber-assumption family. In Pairing 2008 (S. D., Galbraith and K. G., Paterson, eds.), LNCS, vol. 5209, Springer, 2008, pp. 39–56.Google Scholar
[91] V., Boyko, M., Peinado and R., Venkatesan, Speeding up discrete log and factoring based schemes via precomputations. In EUROCRYPT 1998 (K., Nyberg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 221–235.Google Scholar
[92] S., Brands, An efficient off-line electronic cash system based on the representation problem, Tech. report, CWI Amsterdam, 1993, CS-R9323.
[93] R. P., Brent, An improved Monte Carlo factorization algorithm, BIT (1980), 176–184.Google Scholar
[94] R. P., Brent and J. M., Pollard, Factorization of the eighth Fermat number, Math. Comp. 36(154) (1981), 627–630.Google Scholar
[95] R. P., Brent and P., Zimmermann, Modern Computer Arithmetic, Cambridge University Press, 2010.Google Scholar
[96] R. P., Brent and P., Zimmermann, An O(M(n)logn) algorithm for the Jacobi symbol. In ANTS IX (G., Hanrot, F., Morain and E., Thomé, eds.), LNCS, vol. 6197, Springer, 2010, pp. 83–95.Google Scholar
[97] E., Bresson, Y., Lakhnech, L., Mazaré and B., Warinschi, A generalization of DDH with applications to protocol analysis and computational soundness. In CRYPTO 2007 (A. J., Menezes, ed.), LNCS, vol. 4622, Springer, 2007, pp. 482–499.Google Scholar
[98] E. F., Brickell, D., Pointcheval, S., Vaudenay and M., Yung, Design validations for discrete logarithm based signature schemes. In PKC 2000 (H., Imai and Y., Zheng, eds.), LNCS, vol. 1751, Springer, 2000, pp. 276–292.Google Scholar
[99] E., Brier, C., Clavier and D., Naccache, Cryptanalysis of RSA signatures with fixed-pattern padding. In CRYPTO 2001 (J., Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 433–439.Google Scholar
[100] R., Bröker, Constructing supersingular elliptic curves, J. Comb. Number Theory 1(3) (2009), 269–273.Google Scholar
[101] R., Bröker, D. X., Charles and K., Lauter, Evaluating large degree isogenies and applications to pairing based cryptography. In Pairing 2008 (S. D., Galbraith and K. G., Paterson, eds.), LNCS, vol. 5209, Springer, 2008, pp. 100–112.Google Scholar
[102] R., Bröker, K., Lauter and A. V., Sutherland, Modular polynomials via isogeny volcanoes, http://arxiv.org/abs/1001.0402, 2010, to appear in Math. Comp..
[103] R., Bröker and A. V., Sutherland, An explicit height bound for the classical modular polynomial, The Ramanujan Journal 22(3) (2010), 293–313.Google Scholar
[104] D. R. L., Brown and R. P., Gallant, The static Diffie–Hellman problem, Cryptology ePrint Archive, Report 2004/306, 2004.
[105] B. B., Brumley and K. U., Järvinen, Koblitz curves and integer equivalents of Frobenius expansions. In SAC 2007 (C. M., Adams, A., Miri and M. J., Wiener, eds.), LNCS, vol. 4876, Springer, 2007, pp. 126–137.Google Scholar
[106] J. P., Buhler and P., Stevenhagen, Algorithmic Number Theory, MSRI Publications, Cambridge University Press, 2008.Google Scholar
[107] M., Burmester and Y., Desmedt, A secure and efficient conference key distribution system. In EUROCRYPT 1994 (A., De Santis, ed.), LNCS, vol. 950, Springer, 1995, pp. 267–275.Google Scholar
[108] R., Canetti, O., Goldreich and S., Halevi, The random oracle model, revisited. In Symposium on the Theory of Computing (STOC), ACM, 1998, pp. 209–218.Google Scholar
[109] R., Canetti and H., Krawczyk, Analysis of key-exchange protocols and their use for building secure channels. In EUROCRYPT 2001 (B., Pfitzmann, ed.), LNCS, vol. 2045, Springer, 2001, pp. 453–474.Google Scholar
[110] E. R., Canfield, P., Erdös and C., Pomerance, On a problem of Oppenheim concerning “factorisatio numerorum”, J. Number Theory 17(1) (1983), 1–28.Google Scholar
[111] D. G., Cantor, Computing in the Jacobian of an hyperelliptic curve, Math. Comp. 48(177) (1987), 95–101.Google Scholar
[112] D., Cash, E., Kiltz and V., Shoup, The twin Diffie–Hellman problem and applications. In EUROCRYPT 2008 (N. P., Smart, ed.), LNCS, vol. 4965, Springer, 2008, pp. 127–145.Google Scholar
[113] J. W. S., Cassels, An Introduction to the Geometry of Numbers, Springer, 1959.Google Scholar
[114] J. W. S., Cassels, Lectures on Elliptic Curves, Cambridge University Press, 1991.Google Scholar
[115] J. W. S., Cassels and E. V., Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, Cambridge University Press, 1996.Google Scholar
[116] J. W. S., Cassels and A., Frölich, Algebraic Number Theory, Academic Press, 1967.Google Scholar
[117] D., Catalano, R., Gennaro, N., Howgrave-Graham and P. Q., Nguyen, Paillier's cryptosystem revisited. In CCS 2001, ACM, 2001, pp. 206–214.Google Scholar
[118] L. S., Charlap and R., Coley, An elementary introduction to elliptic curves II, CCR Expository Report 34, Institute for Defense Analysis, 1990.
[119] L. S., Charlap and D. P., Robbins, An elementary introduction to elliptic curves, CRD Expository Report 31, 1988.
[120] D. X., Charles, K. E., Lauter and E. Z., Goren, Cryptographic hash functions from expander graphs, J. Crypt. 22(1) (2009), 93–113.Google Scholar
[121] D., Chaum, E., van Heijst and B., Pfitzmann, Cryptographically strong undeniable signatures, unconditionally secure for the signer. In CRYPTO 1991 (J., Feigenbaum, ed.), LNCS, vol. 576, Springer, 1992, pp. 470–484.Google Scholar
[122] J.-H., Cheon, Security analysis of the strong Diffie–Hellman problem. In EUROCRYPT 2006 (S., Vaudenay, ed.), LNCS, vol. 4004, Springer, 2006, pp. 1–11.Google Scholar
[123] J.-H., Cheon, Discrete logarithm problem with auxiliary inputs, J. Crypt. 23(3) (2010), 457–476.Google Scholar
[124] J. H., Cheon, J., Hong and M., Kim, Speeding up the Pollard rho method on prime fields. In ASIACRYPT 2008 (J., Pieprzyk, ed.), LNCS, vol. 5350, Springer, 2008, pp. 471–488.Google Scholar
[125] J. H., Cheon and H.-T., Kim, Analysis of low Hamming weight products, Discrete Appl. Math. 156(12) (2008), 2264–2269.Google Scholar
[126] M. A., Cherepnev, On the connection between the discrete logarithms and the Diffie–Hellman problem, Discr. Math. Appl. 6(4) (1996), 341–349.Google Scholar
[127] H., Cohen, A Course in Computational Algebraic Number Theory, GTM 138, Springer, 1993.Google Scholar
[128] P., Cohen, On the coefficients of the transformation polynomials for the elliptic modular function, Math. Proc. Cambridge Philos. Soc. 95(3) (1984), 389–402.Google Scholar
[129] S. A., Cook, An overviewof computational complexity, Commun. ACM 26(6) (1983), 400–408.Google Scholar
[130] D., Coppersmith, Fast evaluation of logarithms in fields of characteristic 2, IEEE Trans. Inf. Theory 30(4) (1984), 587–594.Google Scholar
[131] D., Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities, J. Crypt. 10(4) (1997), 233–260.Google Scholar
[132] D., Coppersmith, Finding small solutions to small degree polynomials. In Cryptography and Lattices (CaLC) (J. H., Silverman, ed.) LNCS, vol. 2146, Springer, 2001, pp. 20–31.Google Scholar
[133] D., Coppersmith, J.-S., Coron, F., Grieu, S., Halevi, C., Jutla, D., Naccache and J. P., Stern, Cryptanalysis of ISO/IEC 9796-1, J. Crypt. 21(1) (2008), 27–51.Google Scholar
[134] D., Coppersmith, M. K., Franklin, J., Patarin and M. K., Reiter, Low-exponent RSA with related messages In EUROCRYPT 1996 (U.M., Maurer, ed.), LNCS, vol. 1070, Springer, 1996, pp. 1–9.
[135] D., Coppersmith, A. M., Odlzyko and R., Schroeppel, Discrete logarithms inGF(p), Algorithmica 1(1–4) (1986), 1–15.Google Scholar
[136] T. H., Cormen, C. E., Leiserson, R. L., Rivest and C., Stein, Introduction to Algorithms, 2nd edn, MIT press, 2001.Google Scholar
[137] J.-S., Coron, On the exact security of full domain hash. In CRYPTO 2000 (M., Bellare, ed.), LNCS, vol. 1880, Springer, 2000, pp. 229–235.Google Scholar
[138]J.-S., CoronOptimal security proofs for PSS and other signature schemes. In EUROCRYPT 2002 (L. R., Knudsen, ed.), LNCS, vol. 2332, Springer, 2002, pp. 272–287.Google Scholar
[139]J.-S., CoronFinding small roots of bivariate integer polynomial equations: a direct approach. In CRYPTO 2007 (A., Menezes, ed.), LNCS, vol. 4622, Springer, 2007, pp. 379–394.Google Scholar
[140] J.-S., Coron and A., May, Deterministic polynomial-time equivalence of computing the RSA secret key and factoring, J. Crypt. 20(1) (2007), 39–50.Google Scholar
[141] J.-S., Coron, D. M'Raïhi and C., Tymen, Fast generation of pairs (k, [k]P) for Koblitz elliptic curves. In SAC 2001 (S., Vaudenay and A.M., Youssef, eds.), vol. 2259, Springer, 2001, pp. 151–164.Google Scholar
[142] J.-S., Coron, D., Naccache, M., Tibouchi and R.-P., Weinmann, Practical cryptanalysis of ISO/IEC 9796-2 and EMV signatures. In CRYPTO 2009 (S., Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 428–444.Google Scholar
[143] J.-M., Couveignes, Computing l-isogenies with the p-torsion. In ANTS II (H., Cohen, ed.), LNCS, vol. 1122, Springer, 1996, pp. 59–65.Google Scholar
[144] J.-M., Couveignes, L., Dewaghe and F., Morain, Isogeny cycles and the Schoof–Elkies–Atkin algorithm, Research Report LIX/RR/96/03, 1996.
[145] D. A., Cox, Primes of the Form x2 + ny2, Wiley, 1989.Google Scholar
[146] D. A., Cox, J., Little and D. O'Shea, Ideals, Varieties and Algorithms: an Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd edn, Springer, 1997.Google Scholar
[147] R., Cramer and V., Shoup, A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In CRYPTO 1998 (H., Krawczyk, ed.), LNCS, vol. 1462, Springer, 1998, pp. 13–25.Google Scholar
[148]R., Cramer and V., ShoupUniversal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In EUROCRYPT 2002 (L.R., Knudsen, ed.), LNCS, vol. 2332, Springer, 2002, pp. 45–64.Google Scholar
[149]R., Cramer and V., ShoupDesign and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack, SIAM J. Comput. 33(1) (2003), 167–226.Google Scholar
[150] R., Crandall and C., Pomerance, Prime Numbers: A Computational Perspective, 2nd edn, Springer, 2005.Google Scholar
[151] C.W., Curtis, Linear Algebra: An Introductory Approach, Undergraduate Texts in Mathematics, Springer, 1984.Google Scholar
[152] I., Damgård, On the randomness of Legendre and Jacobi sequences. In CRYPTO 1988 (S., Goldwasser, ed.), LNCS, vol. 403, Springer, 1990, pp. 163–172.Google Scholar
[153] G., Davidoff, P., Sarnak and A., Valette, Elementary Number Theory, Group Theory, and Ramanujan Graphs, Cambridge University Press, 2003.Google Scholar
[154] M., Davis and E. J., Weyuker, Computability, Complexity and Languages, Academic Press, 1983.Google Scholar
[155] P., de Rooij, On Schnorr's preprocessing for digital signature schemes, J.|Crypt. 10(1) (1997), 1–16.Google Scholar
[156] B., den Boer, Diffie–Hellman is as strong as discrete log for certain primes. In CRYPTO 1988 (S., Goldwasser, ed.), LNCS, vol. 403, Springer, 1990, pp. 530–539.Google Scholar
[157] Y., Desmedt and A. M., Odlyzko, A chosen text attack on the RSA cryptosystem and some discrete logarithm schemes. In CRYPTO 1985 (H., C.Williams, ed.), LNCS, vol. 218, Springer, 1986, pp. 516–522.Google Scholar
[158] L., Dewaghe, Un corollaire aux formules de Vélu, Preprint, 1995.Google Scholar
[159] C., Diem, The GHS-attack in odd characteristic, J.|Ramanujan Math.|Soc. 18(1) (2003), 1–32.Google Scholar
[160]C., Diem On the discrete logarithm problem in elliptic curves over non-prime finite fields, Lecture at ECC 2004, 2004.
[161]C., DiemAn index calculus algorithm for plane curves of small degree. In ANTS VII (F., Hess, S., Pauli and M.E., Pohst, eds.), LNCS, vol. 4076, Springer, 2006, pp. 543–557.Google Scholar
[162] C., Diem, An index calculus algorithm for non-singular plane curves of high genus, talk at ECC 2006.
[163]C., DiemOn the Discrete Logarithm Problem in Elliptic Curves, Compositio Math. 147 (2011), 75–104.Google Scholar
[164]C., DiemOn the discrete logarithm problem in class groups of curves, Math.|Comp. 80(273) (2011), 443–475.Google Scholar
[165] C., Diem and E., Thomé, Index calculus in class groups of non-hyperelliptic curves of genus three, J.|Crypt. 21(4) (2008), 593–611.
[166] W., Diffie and M. E., Hellman, New directions in cryptography, IEEE Trans.|Inf. Theory 22 (1976), 644–654.Google Scholar
[167] V. S., Dimitrov, G. A., Jullien and W. C., Miller, Theory and applications of the double-base number system, IEEE Trans. Computers 48(10) (1999), 1098–1106.Google Scholar
[168] V. S., Dimitrov, K. U. Järvinen, M. J., Jacobson, W. F., Chan and Z., Huang, Provably sublinear point multiplication on Koblitz curves and its hardware implementation, IEEE Trans. Computers 57(11) (2008), 1469–1481.Google Scholar
[169] C., Doche, T., Icart and D. R., Kohel, Efficient scalar multiplication by isogeny decompositions. In PKC 2006 (M., Yung, Y., Dodis, A., Kiayias and T., Malkin, eds.), LNCS, vol. 3958, Springer, 2006, pp. 191–206.Google Scholar
[170] A., Dujella, A variant of Wiener's attack on RSA, Computing 85(1–2) (2009), 77–83.Google Scholar
[171] I. M., Duursma, Class numbers for some hyperelliptic curves. In Arithmetic, Geometry and Coding Theory (R., Pellikaan, M., Perret and S.G., Vladut, eds.), Walter de Gruyter, 1996, pp. 45–52.Google Scholar
[172] I. M., Duursma, P., Gaudry and F., Morain, Speeding up the discrete log computation on curves with automorphisms. In ASIACRYPT 1999 (K., Y.|Lam, E., Okamoto and C., Xing, eds.), LNCS, vol. 1716, Springer, 1999, pp. 103–121.Google Scholar
[173] I. M., Duursma and H.-s., Lee, Tate pairing implementation for hyperelliptic curves y2 = xp – x + d. In ASIACRYPT 2003 (C.-s., Laih, ed.), LNCS, vol. 2894, Springer, 2003, pp. 111–123.Google Scholar
[174] S., Edixhoven, Le couplage Weil: de la géométrie à l'arithmétique, Notes from a seminar inRennes, 2002.
[175] H. M., Edwards, A normal form for elliptic curves, Bulletin of the AMS 44 (2007), 393–422.Google Scholar
[176] D., Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, GTM, vol. 150, Springer, 1999.Google Scholar
[177] T., ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms. In CRYPTO 1984 (G.R., Blakley and D., Chaum, eds.), LNCS, vol. 196, Springer, 1985, pp. 10–18.Google Scholar
[178] N. D., Elkies, Elliptic and modular curves over finite fields and related computational issues. In Computational Perspectives on Number Theory (D.A., Buell and J.T., Teitelbaum, eds.), Studies in Advanced Mathematics, AMS, 1998, pp. 21–76.Google Scholar
[179] A., Enge, Computing modular polynomials in quasi-linear time, Math. Comp. 78(267) (2009), 1809–1824.Google Scholar
[180] A., Enge and P., Gaudry, A general framework for subexponential discrete logarithm algorithms, Acta Arith. 102 (2002), 83–103.Google Scholar
[181] A., Enge and P., Gaudry, An L(1/3 + ε) algorithm for the discrete logarithm problem for low degree In EUROCRYPT 2007 (M., Naor, ed.), LNCS, vol. 4515, Springer, 2007, pp. 379– 393.Google Scholar
[182] A., Enge, P., Gaudry and E., Thomé, An L(1/3) discrete logarithm algorithm for low degree curves, J. Crypt. 24(1) (2011), 24–41.Google Scholar
[183] A., Enge and A., Stein, Smooth ideals in hyperelliptic function fields, Math. Comp. 71(239) (2002), 1219–1230.Google Scholar
[184] S., Erickson, M. J., Jacobson Jr., N., Shang, S., Shen and A., Stein, Explicit formulas for real hyperelliptic curves of genus 2 in affine representation, WAIFI 2007 (C., Carlet and B., Sunar, eds.), LNCS, vol. 4547, Springer, 2007, pp. 202–218.Google Scholar
[185] L., De Feo, Fast algorithms for towers of finite fields and isogenies, Ph.D. thesis, L'École Polytechnique, 2010.
[186] R., Fischlin and C.-P., Schnorr, Stronger security proofs for RSA and Rabin bits, J. Crypt. 13(2) (2000), 221–244.Google Scholar
[187] P., Flajolet and A. M., Odlyzko, Random mapping statistics. In EUROCRYPT 1989 (J.-J., Quisquater and J., Vandewalle, eds.), LNCS, vol. 434, Springer, 1990, pp. 329–354.Google Scholar
[188] P., Flajolet and R., Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.Google Scholar
[189] R., Flassenberg and S., Paulus, Sieving in function fields, Experiment. Math. 8(4) (1999), 339–349.Google Scholar
[190] K., Fong, D., Hankerson, J., López and A. J., Menezes, Field inversion and point halving revisited, IEEE Trans. Computers 53(8) (2004), 1047–1059.Google Scholar
[191] C., Fontaine and F., Galand, A survey of homomorphic encryption for nonspecialists, EURASIP Journal on Information Security 2007(15) (2007), 1–10.Google Scholar
[192] M., Fouquet and F., Morain, Isogeny volcanoes and the SEA algorithm. In ANTS V (C., Fieker and D. R., Kohel, eds.), LNCS, vol. 2369, Springer, 2002, pp. 276–291.Google Scholar
[193] D. M., Freeman, O., Goldreich, E., Kiltz, A., Rosen and G., Segev, More constructions of lossy and correlation-secure trapdoor functions. In PKC 2010 (P. Q., Nguyen and D., Pointcheval, eds.), LNCS, vol. 6065, Springer, 2010, pp. 279–295.Google Scholar
[194] D., Freeman, M., Scott and E., Teske, A taxonomy of pairing-friendly elliptic curves, J. Crypt..23(2) (2010), 224–280.Google Scholar
[195] G., Grey, How to disguise an elliptic curve, talk at ECC 1998, Waterloo, 1998.
[196] G., Frey and H.-G., Rück, A remark concerning m-divisibility and the discrete logarithm problem in the divisor class group of curves, Math. Comp. 62(206) (1994), 865–874.Google Scholar
[197] M. D., Fried and M., Jarden, Field Arithmetic, 3rd edn, Springer, 2008.
[198] E., Fujisaki, T., Okamoto, D., Pointcheval and J., Stern, RSA-OAEP is secure under the RSA assumption, J. Crypt. 17(2) (2004), 81–104.Google Scholar
[199] W., Fulton, Algebraic Curves, Addison-Wesley, 1989, Out of print, but freely available here: www.math.lsa.umich.edu/∼wfulton/.Google Scholar
[200] S. D., Galbraith, Constructing isogenies between elliptic curves over finite fields, LMS J. Comput. Math. 2 (1999), 118–138.Google Scholar
[201] S. D., Galbraith, Supersingular curves in cryptography. In ASIACRYPT 2001 (C., Boyd, ed.), LNCS, vol. 2248, Springer, 2001, pp. 495–513.Google Scholar
[202] S. D., Galbraith, M., Harrison and D. J., Mireles Morales, Efficient hyperelliptic arithmetic using balanced representation for divisors. In ANTS VIII (A. J., van der Poorten and A., Stein, eds.), LNCS, vol. 5011, Springer, 2008, pp. 342–356.Google Scholar
[203] S. D., Galbraith, C., Heneghan and J. F., McKee, Tunable balancing of RSA. In ACISP 2005 (C., Boyd and J. M., Gonzàlez Nieto, eds.), LNCS, vol. 3574, Springer, 2005, pp. 280–292.Google Scholar
[204] S. D., Galbraith, F., Hess and N. P., Smart, Extending the GHS Weil descent attack. In EUROCRYPT 2002 (L. R., Knudsen, ed.), LNCS, vol. 2332, Springer, 2002, pp. 29–44.Google Scholar
[205] S. D., Galbraith, F., Hess and F., Vercauteren, Aspects of pairing inversion, IEEE Trans. Inf. Theory 54(12) (2008), 5719–5728.Google Scholar
[206] S. D., Galbraith and M., Holmes, A Non-Uniform Birthday Problem with Applications to Discrete Logarithms, Cryptology ePrint Archive, Report 2010/616, 2010.Google Scholar
[207] S. D., Galbraith, X., Lin and M., Scott, Endomorphisms for faster elliptic curve cryptography on a large class of curves. In EUROCRYPT 2009 (A., Joux, ed.), LNCS, vol. 5479, Springer, 2009, pp. 518–535.Google Scholar
[208] S. D., Galbraith and J. F., McKee, The probability that the number of points on an elliptic curve over a finite field is prime, J. Lond. Math. Soc. 62(3) (2000), 671–684.Google Scholar
[209] S. D., Galbraith, J. M., Pollard and R. S., Ruprai, Computing Discrete Logarithms in an Interval, Cryptology ePrint Archive, Report 2010/617, 2010.Google Scholar
[210] S. D., Galbraith and R. S., Ruprai, An improvement to the Gaudry–Schost algorithm for multidimensional discrete logarithm problems. In IMA Cryptography and Coding (M. G., Parker, ed.), LNCS, vol. 5921, Springer, 2009, pp. 368–382.Google Scholar
[211] S. D., Galbraith and R. S., Ruprai, Using equivalence classes to accelerate solving the discrete logarithm problem in a short interval. In PKC 2010 (P. Q., Nguyen and D., Pointcheval, eds.), LNCS, vol. 6056, Springer, 2010, pp. 368–383.Google Scholar
[212] S. D., Galbraith and N. P., Smart, A cryptographic application of Weil descent. In IMA Cryptography and Coding (M., Walker, ed.), LNCS, vol. 1746, Springer, 1999, pp. 191–200.Google Scholar
[213] S. D., Galbraith and A., Stolbunov, Improved Algorithm for the Isogeny Problem for Ordinary Elliptic Curves, Preprint, 2011.
[214] S. D., Galbraith and E. R., Verheul, An analysis of the vector decomposition problem. In PKC 2008 (R., Cramer, ed.), LNCS, vol. 4939, Springer, 2008, pp. 308–327.Google Scholar
[215] R. P., Gallant, R. J., Lambert and S. A., Vanstone, Improving the parallelized Pollard lambda search on binary anomalous curves, Math. Comp. 69 (2000), (232) 1699–1705.Google Scholar
[216] R. P., Gallant, R. J., Lambert and S. A., Vanstone, Faster point multiplication on elliptic curves with efficient endomorphisms. In CRYPTO 2001 (J., Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 190–200.Google Scholar
[217] N., Gama, P. Q., Nguyen and O., Regev, Lattice enumeration using extreme pruning. In EUROCRYPT 2010 (H., Gilbert, ed.), LNCS, vol. 6110, Springer, 2010, pp. 257–278.Google Scholar
[218] S., Gao, Normal bases over finite fields, Ph.D. thesis, Waterloo, 1993.
[219] T., Garefalakis, The generalised Weil pairing and the discrete logarithm problem on elliptic curves, Theor. Comput. Sci. 321(1) (2004), 59–72.Google Scholar
[220] J., von zur Gathen and J., Gerhard, Modern Computer Algebra, Cambridge University Press, 1999.Google Scholar
[221] J., von zur Gathen and M., Giesbrecht, Constructing normal bases in finite fields, J. Symb. Comput. 10(6) (1990), 547–570.Google Scholar
[222] J., von zur Gathen, I. E., Shparlinski and A., Sinclair, Finding points on curves over finite fields, SIAM J. Comput. 32(6) (2003), 1436–1448.Google Scholar
[223] P., Gaudry, An algorithm for solving the discrete log problem on hyperelliptic curves. In EUROCRYPT 2000 (B., Preneel, ed.), LNCS, vol. 1807, Springer, 2000, pp. 19–34.Google Scholar
[224] P., Gaudry, Fast genus 2 arithmetic based on theta functions, J. Math. Crypt. 1(3) (2007), 243–265.Google Scholar
[225] P., Gaudry, Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem, J. Symb. Comput. 44(12) (2009), 1690–1702.Google Scholar
[226] P., Gaudry, F., Hess and N. P., Smart, Constructive and destructive facets of Weil descent on elliptic curves, J. Crypt. 15 (2002), 19–46.Google Scholar
[227] P., Gaudry and D., Lubicz, The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines, Finite Fields Appl. 15 (2009), 246–260.Google Scholar
[228] P., Gaudry and É., Schost, A low-memory parallel version of Matsuo, Chao, and Tsujii's algorithm. In ANTS VI (D. A., Buell, ed.), LNCS, vol. 3076, Springer, 2004, pp. 208–222.Google Scholar
[229] P., Gaudry, E., Thomé, N., Thériault and C., Diem, A double large prime variation for small genus hyperelliptic index calculus, Math. Comp. 76(257) (2007), 475–492.Google Scholar
[230] C., Gentry, The geometry of provable security: some proofs of security in which lattices make a surprise appearance, The LLL Algorithm (P. Q., Nguyen and B., Vallée, eds.), Springer, 2010, pp. 391–426.Google Scholar
[231] M., Girault, An identity-based identification scheme based on discrete logarithms modulo a composite number. In EUROCRYPT 1990 (I., Damgàrd, ed.), LNCS, vol. 473, Springer, 1991, pp. 481–486.Google Scholar
[232] M., Girault, G., Poupard and J., Stern, On the fly authentication and signature schemes based on groups of unknown order, J. Crypt. 19 (2006), 463–487.Google Scholar
[233] O., Goldreich, S., Goldwasser and S., Halevi, Public-key cryptosystems from lattice reduction problem. In CRYPTO 1997 (B. S., Kaliski Jr., ed.), LNCS, vol. 1294, Springer, 1997, pp. 112–131.Google Scholar
[234] O., Goldreich, D., Ron and M., Sudan, Chinese remaindering with errrors, IEEE Trans. Inf. Theory 46(4) (2000), 1330–1338.Google Scholar
[235] S., Goldwasser, S., Micali and R. L., Rivest, A digital signature scheme secure against adaptive chosen-message attacks, SIAM J. Comput. 17(2) (1988), 281–308.Google Scholar
[236] G., Gong and L., Harn, Public-key cryptosystems based on cubic finite field extensions, IEEE Trans. Inf. Theory 45(7) (1999), 2601–2605.Google Scholar
[237] M. I., González Vasco, M., Näslund and I. E., Shparlinski, New results on the hardness of Diffie–Hellman bits, PKC 2004 (F., Bao, R. H., Deng and J., Zhou, eds.), LNCS, vol. 2947, Springer, 2004, pp. 159–172.Google Scholar
[238] M. I., González Vasco and I. E., Shparlinski, On the security of Diffie–Hellman bits. In Cryptography and Computational Number Theory (H., WangK. Y., Lam, I. E., Shparlinski and C., Xing, eds.), Progress in Computer Science and Applied Logic, Birkhäuser, 2001, pp. 257–268.Google Scholar
[239] D. M., Gordon, On the number of elliptic pseudoprimes, Math. Comp. 52(185) (1989), 231–245.Google Scholar
[240] D. M., Gordon and K. S., McCurley, Massively parallel computation of discrete logarithms. In CRYPTO 1992 (E. F., Brickell, ed.), LNCS, vol. 740, Springer, 1993, pp. 312–323.Google Scholar
[241] R., Granger, F., Hess, R., Oyono, N., Thériault and F., Vercauteren, Ate pairing on hyperelliptic curves. In EUROCRYPT 2007 (M., Naor, ed.), LNCS, vol. 4515, Springer, 2007, pp. 430–447.Google Scholar
[242] R., Granger and F., Vercauteren, On the discrete logarithm problem on algebraic tori. In CRYPTO 2005 (V., Shoup, ed.), LNCS, vol. 3621, Springer, 2005, pp. 66–85.Google Scholar
[243] A., Granville, Smooth numbers: computational number theory and beyond. In Algorithmic Number Theory (J. P., Buhler and P., Stevenhagen, eds.), MSRI Proceedings, vol. 44, Cambridge University Press, 2008, pp. 267–323.Google Scholar
[244] B. H., Gross, Heights and the special values of L-series. In CMS Conf. Proc., vol. 7, 1987, pp. 115–187.Google Scholar
[245] M., Grötschel, L., Lovász and A., Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, 1993.Google Scholar
[246] R. K., Guy, Unsolved Problems in Number Theory, 2nd edn, Springer, 1994.Google Scholar
[247] J. L., Hafner and K. S., McCurley, Asymptotically fast triangularization of matrices over rings, SIAM J. Comput. 20(6) (1991), 1068–1083.Google Scholar
[248] D., Hankerson, A., Menezes and S., Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.Google Scholar
[249] G., Hanrot and D., Stehlé, Improved analysis of Kannan's shortest lattice vector algorithm. In CRYPTO 2007 (A., Menezes, ed.), LNCS, vol. 4622, Springer, 2007, pp. 170–186.Google Scholar
[250] G. H., Hardy and E. M., Wright, An Introduction to the Theory of Numbers, 5th edn, Oxford University Press, 1980.Google Scholar
[251] R., Harley, Fast Arithmetic on Genus Two Curves, Preprint, 2000.
[252] R., Hartshorne, Algebraic Geometry, GTM, vol. 52, Springer, 1997.Google Scholar
[253] J., Håstad and M., Näslund, The security of all RSA and discrete log bits, J. ACM 51(2) (2004), 187–230.Google Scholar
[254] G., Havas, B. S., Majewski and K. R., Matthews, Extended GCD and Hermite normal form algorithms via lattice basis reduction, Experimental Math. 7(2) (1998), 125–136.Google Scholar
[255] B., Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced lattice bases, Theor. Comput. Sci. 41 (1985), 125–139.Google Scholar
[256] F., Hess, A note on the Tate pairing of curves over finite fields, Arch. Math. 82 (2004), 28–32.Google Scholar
[257] F., Hess, Pairing lattices. In Pairing 2008 (S. D., Galbraith and K. G., Paterson, eds.), LNCS, vol. 5209, Springer, 2008, pp. 18–38.Google Scholar
[258] F., Hess, N., Smart and F., Vercauteren, The eta pairing revisited, IEEE Trans. Inf. Theory 52(10) (2006), 4595–4602.Google Scholar
[259] N. J., Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn, SIAM, 2002.Google Scholar
[260] Y., Hitchcock, P., Montague, G., Carter and E., Dawson, The efficiency of solving multiple discrete logarithm problems and the implications for the security of fixed elliptic curves, Int. J. Inf. Secur. 3 (2004), 86–98.Google Scholar
[261] J., Hoffstein, J., Pipher and J. H., Silverman, An Introduction to Mathematical Cryptography, Springer, 2008.Google Scholar
[262] J., Hoffstein and J. H., Silverman, Random small Hamming weight products with applications to cryptography, Discrete Appl. Math. 130(1) (2003), 37–49.Google Scholar
[263] D., Hofheinz and E., Kiltz, The group of signed quadratic residues and applications. In CRYPTO 2009 (S., Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 637–653.Google Scholar
[264] S., Hohenberger and B., Waters, Short and stateless signatures from the RSA assumption. In CRYPTO 2009 (S., Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 654–670.Google Scholar
[265] J. E., Hopcroft and J. D., Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.Google Scholar
[266] J., Horwitz and R., Venkatesan, Random Cayley digraphs and the discrete logarithm. In ANTS V (C., Fieker and D. R., Kohel, eds.), LNCS, vol. 2369, Springer, 2002, pp. 416–430.Google Scholar
[267] E. W., Howe, On the group orders of elliptic curves over finite fields, Compositio Mathematica 85 (1993), 229–247.Google Scholar
[268] N., Howgrave-Graham, Finding small roots of univariate modular equations revisited. In IMA Cryptography and Coding (M., Darnell, ed.), LNCS, vol. 1355, Springer, 1997, pp. 131–142.Google Scholar
[269] N., Howgrave-Graham, Approximate integer common divisors, Cryptography and Lattices (CaLC) (J. H., Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 51–66.Google Scholar
[270] N., Howgrave-Graham and N. P., Smart, Lattice attacks on digital signature schemes, Des. Codes Crypt. 23 (2001), 283–290.Google Scholar
[271] T. W., Hungerford, Algebra, GTM vol. 73, Springer, 1974.Google Scholar
[272] D., Husemöller, Elliptic Curves, 2nd edn, GTM, vol. 111, Springer, 2004.Google Scholar
[273] T., Icart, How to hash into elliptic curves. In CRYPTO 2009 (S., Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 303–316.Google Scholar
[274] T., Iijima, K., Matsuo, J., Chao and S., Tsujii, Construction of Frobenius maps of twist elliptic curves and its application to elliptic scalar multiplication. In Symposium on Cryptography and Information Security (SCIS) 2002, IEICE Japan, 2002, pp. 699–702.Google Scholar
[275] T., Jager and J., Schwenk, On the equivalence of generic group models. In ProvSec 2008 (K., ChenJ., Baek, F., Bao and X., Lai, eds.), LNCS, vol. 5324, Springer, 2008, pp. 200–209.Google Scholar
[276] D., Jao, D., Jetchev and R., Venkatesan, On the bits of elliptic curve Diffie–Hellman keys. In INDOCRYPT 2007 (K., Srinathan, C., Pandu Rangan and M., Yung, eds.), LNCS, vol. 4859, Springer, 2007, pp. 33–47.Google Scholar
[277] D., Jao, S. D., Miller and R., Venkatesan, Do all elliptic curves of the same order have the same difficulty of discrete log?. In ASIACRYPT 2005 (B. K., Roy, ed.), LNCS, vol. 3788, Springer, 2005, pp. 21–40.Google Scholar
[278] D., Jao, S. D., Miller and R., Venkatesan, Expander graphs based on GRH with an application to elliptic curve cryptography, J. Number Theory 129(6) (2009), 1491–1504.Google Scholar
[279] D., Jao and V., Soukharev, A subexponential algorithm for evaluating large degree isogenies. In ANTS IX (G., Hanrot, F., Morain and E., Thomé, eds.), LNCS, vol. 6197, Springer, 2010, pp. 219–233.Google Scholar
[280] D., Jao and K., Yoshida, Boneh–Boyen signatures and the strong Diffie–Hellman problem. In Pairing 2009 (H., Shacham and B., Waters, eds.), LNCS, vol. 5671, Springer, 2009, pp. 1–16.Google Scholar
[281] D., Jetchev and R., Venkatesan, Bits security of the elliptic curve Diffie–Hellman secret keys. In CRYPTO 2008 (D., Wagner, ed.), LNCS, vol. 5157, Springer, 2008, pp. 75–92.Google Scholar
[282] Z.-T., Jiang, W.-L., Xu and Y.-M., Wang, Polynomial analysis of DH secrete key and bit security, Wuhan University Journal of Natural Sciences 10(1) (2005), no. 1, 239–242.Google Scholar
[283] A., Joux, Algorithmic Cryptanalysis, Chapman & Hall/CRC, 2009.Google Scholar
[284] A., Joux and R., Lercier, The function field sieve in the medium prime case. In EUROCRYPT 2006 (S., Vaudenay, ed.), LNCS, vol. 4004, Springer, 2006.Google Scholar
[285] A., Joux, R., Lercier, N. P., Smart and F., Vercauteren, The number field sieve in the medium prime case. In CRYPTO 2006 (C., Dwork, ed.), LNCS, vol. 4117, Springer, 2006, pp. 326–344.Google Scholar
[286] M., Joye and G., Neven, Identity-based cryptography, Cryptology and Information Security, vol. 2, IOS Press, 2008.Google Scholar
[287] M., Joye and S.-M., Yen, Optimal left-to-right binary signed-digit recoding, IEEE Trans. Computers 49(7) (2000), 740–748.Google Scholar
[288] M. J., Jacobson Jr., N., Koblitz, J. H., Silverman, A., Stein and E., Teske, Analysis of the Xedni calculus attack, Des. Codes Crypt. 20(1) (2000), 1–64.Google Scholar
[289] M. J., Jacobson Jr. and A. J., van der Poorten, Computational aspects of NUCOMP. In ANTS V (C., Fieker and D. R., Kohel, eds.), LNCS, vol. 2369, Springer, 2002, pp. 120–133.Google Scholar
[290] C. S., Jutla, On finding small solutions of modular multivariate polynomial equations. In EUROCRYPT 1998 (K., Nyberg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 158–170.Google Scholar
[291] M., Kaib and H., Ritter, Block reduction for arbitrary norms, Technical Report, Universität Frankfurt am Main, 1994.
[292] M., Kaib and C.-P., Schnorr, The generalized Gauss reduction algorithm, Journal of Algorithms 21(3) (1996), 565–578.Google Scholar
[293] B. S., Kaliski Jr., Elliptic curves and cryptography: a pseudorandom bit generator and other tools, Ph.D. thesis, MIT, 1988.
[294] W., van der Kallen, Complexity of the Havas, Majewski, Matthews LLL Hermite normal form algorithm, J. Symb. Comput. 30(3) (2000), 329–337.Google Scholar
[295] R., Kannan, Improved algorithms for integer programming and related lattice problems. In Symposium on the Theory of Computing (STOC), ACM, 1983, pp. 193–206.Google Scholar
[296] R., Kannan, Minkowski's convex body theorem and integer programming, Mathematics of Operations Research 12(3) (1987), 415–440.Google Scholar
[297] R., Kannan and A., Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499–507.Google Scholar
[298] M., Katagi, T., Akishita, I., Kitamura and T., Takagi, Some improved algorithms for hyperelliptic curve cryptosystems using degenerate divisors. In ICISC 2004 (C., Park and S., Chee, eds.), LNCS, vol. 3506, Springer, 2004, pp. 296–312.Google Scholar
[299] M., Katagi, I., Kitamura, T., Akishita and T., Takagi, Novel efficient implementations of hyperelliptic curve cryptosystems using degenerate divisors. In WISA 2004 (C.-H., Lim and M., Yung, eds.), LNCS, vol. 3325, Springer, 2004, pp. 345–359.Google Scholar
[300] J., Katz and Y., Lindell, Introduction to Modern Cryptography, Chapman & Hall/CRC, 2008.Google Scholar
[301] J. H., Kim, R., Montenegro, Y., Peres and P., Tetali, A birthday paradox for Markov chains, with an optimal bound for collision in the Pollard rho algorithm for discrete logarithm. In ANTS VIII (A. J., van der Poorten and A., Stein, eds.), LNCS, vol. 5011, Springer, 2008, pp. 402–415.Google Scholar
[302] J. H., Kim, R., Montenegro and P., Tetali, Near optimal bounds for collision in Pollard rho for discrete log. In Foundations of Computer Science (FOCS), IEEE, 2007, pp. 215–223.Google Scholar
[303] B., King, A point compression method for elliptic curves defined over GF(2n). In PKC 2004 (F., Bao, R. H., Deng, and J., Zhou, eds.), LNCS, vol. 2947, Springer, 2004, pp. 333–345.Google Scholar
[304] S., Kim and J.-H., Cheon, A parameterized splitting system and its application to the discrete logarithm problem with low Hamming weight product exponents. In PKC 2008 (R., Cramer, ed.), LNCS, vol. 4939, Springer, 2008, pp. 328–343.Google Scholar
[305] J. F. C., Kingman and S. J., Taylor, Introduction to Measure Theory and Probability, Cambridge University Press, 1966.Google Scholar
[306] P. N., Klein, Finding the closest lattice vector when it's unusually close, Symposium on Discrete Algorithms (SODA), ACM/SIAM, 2000, pp. 937–941.Google Scholar
[307] E. W., Knudsen, Elliptic scalar multiplication using point halving. In ASIACRYPT 1999 (K.-Y., Lam, E., Okamoto and C., Xing, eds.), LNCS, vol. 1716, Springer, 1999, pp. 135–149.Google Scholar
[308] D. E., Knuth, Art of Computer Programming, Volume 2: Semi-Numerical Algorithms, 3rd edn, Addison-Wesley, 1997.Google Scholar
[309] N., Koblitz, Elliptic curve cryptosystems, Math. Comp. 48(177) (1987), 203–209.Google Scholar
[310] N., Koblitz, Primality of the number of points on an elliptic curve over a finite field, Pacific J. Math. 131(1) (1988), 157–165.Google Scholar
[311] N., Koblitz, Hyperelliptic cryptosystems, J. Crypt. 1 (1989), 139–150.Google Scholar
[312] N., Koblitz, CM curves with good cryptographic properties. In CRYPTO 1991 (J., Feigenbaum, ed.), LNCS, vol. 576, Springer, 1992, pp. 279–287.Google Scholar
[313] N., Koblitz, A Course in Number Theory and Cryptography, 2nd edn, GTM vol. 114, Springer, 1994.Google Scholar
[314] C. K., Koç and T., Acar, Montgomery multplication in GF(2k), Des. Codes Crypt. 14(1) (1998), 57–69.Google Scholar
[315] D. R., Kohel, Endomorphism rings of elliptic curves over finite fields, Ph.D. thesis, University of California, Berkeley, 1996.
[316] D. R., Kohel, Constructive and Destructive Facets of Torus-based Cryptography, Preprint, 2004.
[317] D. R., Kohel and I. E., Shparlinski, On exponential sums and group generators for elliptic curves over finite fields. In ANTS IV (W., Bosma, ed.), LNCS, vol. 1838, Springer, 2000, pp. 395–404.Google Scholar
[318] S., Kozaki, T., Kutsuma and K., Matsuo, Remarks on Cheon's algorithms for pairing-related problems, Pairing 2007 (T., Takagi, T., Okamoto, E., Okamoto and T., Okamoto, eds.), LNCS, vol. 4575, Springer, 2007, pp. 302–316.
[319] M., Kraitchik, Théorie des Nombres, Vol. 1, Gauthier-Villars, Paris, 1922.Google Scholar
[320] F., Kuhn and R., Struik, Random walks revisited: extensions of Pollard's rho algorithm for computing multiple discrete logarithms. In SAC 2001 (S., Vaudenay and A. M., Youssef, eds.), LNCS, vol. 2259, Springer, 2001, pp. 212–229.Google Scholar
[321] R. M., Kuhn, Curves of genus 2 with split Jacobian, Trans. Amer. Math. Soc. 307(1) (1988), 41–49.Google Scholar
[322] R., Kumar and D., Sivakumar, Complexity of SVP – a reader's digest, SIGACT News, Complexity Theory Column 32 (2001), 13.Google Scholar
[323] K., Kurosawa and Y., Desmedt, A new paradigm of hybrid encryption scheme. In CRYPTO 2004 (M. K., Franklin, ed.), LNCS, vol. 3152, Springer, 2004, pp. 426–442.Google Scholar
[324] J. C., Lagarias, H. W., Lenstra Jr. and C.-P., Schnorr, Korkin–Zolotarev bases and successive minima of a lattice and its reciprocal lattice, Combinatorica 10(4) (1990), 333–348.Google Scholar
[325] C., Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bureau of Standards 49 (1952), 33–53.Google Scholar
[326] S., Lang, Introduction to Algebraic Geometry, Wiley, 1964.Google Scholar
[327] S., Lang, Algebraic Number Theory, GTM, vol. 110, Springer, 1986.Google Scholar
[328] S., Lang, Elliptic Functions, 2nd edn, GTM, vol. 112, Springer, 1987.Google Scholar
[329] S., Lang, Algebra, 3rd edn, Addison-Wesley, 1993.Google Scholar
[330] T., Lange, Koblitz curve cryptosystems, Finite Fields Appl. 11(2) (2005), 200–229.Google Scholar
[331] E., Lee, H.-S., Lee and C.-M., Park, Efficient and Generalized Pairing Computation on Abelian Varieties, IEEE Trans. Inf. Theory 55(4) (2009), 1793–1803.Google Scholar
[332] A. K., Lenstra, Factorization of polynomials. In Computational Methods in Number Theory, (H. W., Lenstra Jr. and R., Tijdeman, eds.) Mathematical Center Tracts 154, Mathematisch Centrum Amsterdam, 1984, pp. 169–198.Google Scholar
[333] A. K., Lenstra, Integer factoring, Des. Codes Crypt. 19(2/3) (2000), 101–128.Google Scholar
[334] A. K., Lenstra and H. W., Lenstra Jr., The Development of the Number Field Sieve, LNM, vol. 1554, Springer, 1993.Google Scholar
[335] A. K., Lenstra, H. W., Lenstra Jr. and L., Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534.Google Scholar
[336] A. K., Lenstra and I. E., Shparlinski, Selective forgery of RSA signatures with fixed-pattern padding. In PKC 2002 (D., Naccache and P., Paillier, eds.), LNCS, vol. 2274, Springer, 2002, pp. 228–236.Google Scholar
[337] A. K., Lenstra and E. R., Verheul, The XTR public key system. In CRYPTO 2000 (M., Bellare, ed.), LNCS, vol. 1880, Springer, 2000, pp. 1–19.Google Scholar
[338] A. K., Lenstra and E. R., Verheul, Fast irreducibility and subgroup membership testing in XTR. In PKC 2001 (K., Kim, ed.), LNCS, vol. 1992, Springer, 2001, pp. 73–86.Google Scholar
[339] H. W., Lenstra Jr., Factoring integerswith elliptic curves, Annals of Mathematics 126(3) (1987), 649–673.Google Scholar
[340] H. W., Lenstra Jr., Elliptic curves and number theoretic algorithms. In Proc. International Congr. Math., Berkeley 1986, AMS, 1988, pp. 99–120.Google Scholar
[341] H. W., Lenstra Jr., Finding isomorphisms between finite fields, Math. Comp. 56(193) (1991), 329–347.Google Scholar
[342] H. W., Lenstra Jr., J., Pila and C., Pomerance, A hyperelliptic smoothness test I, Phil. Trans. R. Soc. Lond. A 345 (1993), 397–408.Google Scholar
[343] H. W., Lenstra Jr. and C., Pomerance, A rigorous time bound for factoring integers, J. Amer. Math. Soc. 5(3) (1992), no. 3, 483–516.Google Scholar
[344] R., Lercier, Computing isogenies in F2n. In ANTS II (H., Cohen, ed.), LNCS, vol. 1122, Springer, 1996, pp. 197–212.Google Scholar
[345] R., Lercier and F., Morain, Algorithms for computing isogenies between elliptic curves, Computational Perspectives on Number Theory (D. A., Buell and J. T., Teitelbaum, eds.), Studies in Advanced Mathematics, vol. 7, AMS, 1998, pp. 77–96.Google Scholar
[346] R., Lercier and T., Sirvent, On Elkies subgroups of ℓ-torsion points in elliptic curves defined over a finite field, J. Théor. Nombres Bordeaux 20(3) (2008), 783–797.Google Scholar
[347] G., Leurent and P. Q., Nguyen, How risky is the random oracle model?. In CRYPTO 2009 (S., Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 445–464.Google Scholar
[348] K.-Z., Li and F., Oort, Moduli of supersingular abelian varieties, LNM, vol. 1680, Springer, 1998.Google Scholar
[349] W.-C., Li, M., Näslund and I. E., Shparlinski, Hidden number problem with the trace and bit security of XTR and LUC. In CRYPTO 2002 (M., Yung, ed.), LNCS, vol. 2442, Springer, 2002, pp. 433–448.Google Scholar
[350] R., Lidl and H., Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, 1994.Google Scholar
[351] R., Lidl and H., Niederreiter, Finite Fields, Cambridge University Press, 1997.Google Scholar
[352] R., Lindner and C., Peikert, Better key sizes (and attacks) for LWE-based encryption, CT-RSA 2011 (A., Kiayias, ed.), LNCS, vol. 6558, 2011, pp. 1–23.Google Scholar
[353] P., Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc. 342(2) (1994), 729–752.Google Scholar
[354] D. L., Long and A., Wigderson, The discrete logarithm hides O(log n) bits, SIAM J. Comput. 17(2) (1988), 363–372.Google Scholar
[355] D., Lorenzini, An Invitation to Arithmetic Geometry, Graduate Studies in Mathematics, vol. 106, AMS, 1993.Google Scholar
[356] L., Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM, 1986.Google Scholar
[357] L., Lovász and H. E., Scarf, The generalized basis reduction algorithm, Mathematics of Operations Research 17(3) (1992), 751–764.Google Scholar
[358] R., Lovorn Bender and C., Pomerance, Rigorous discrete logarithm computations in finite fields via smooth polynomials. In Computational Perspectives on Number Theory (D. A., Buell and J. T., Teitelbaum, eds.), Studies in Advanced Mathematics, vol. 7, AMS, 1998, pp. 221–232.Google Scholar
[359] M., Luby, Pseudorandomness and Cryptographic Applications, Princeton, 1996.Google Scholar
[360] H., Lüneburg, On a little but useful algorithm. In AAECC-3, 1985 (J., Calmet, ed.), LNCS, vol. 229, Springer, 1986, pp. 296–301.Google Scholar
[361] C., Mauduit and A., Sárközy, On finite pseudorandom binary sequences I: measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365–377.
[362] U. M., Maurer, Towards the equivalence of breaking the Diffie–Hellman protocol and computing discrete logarithms. In CRYPTO 1994 (Y., Desmedt, ed.), LNCS, vol. 839, Springer, 1994, pp. 271–281.Google Scholar
[363] U. M., Maurer, Fast generation of prime numbers and secure public-key cryptographic parameters, J. Crypt. 8(3) (1995), 123–155.Google Scholar
[364] U. M., Maurer, Abstract models of computation in cryptography. In IMA Int. Conf. (N. P., Smart, ed.), LNCS, vol. 3796, Springer, 2005, pp. 1–12.Google Scholar
[365] U. M., Maurer and S., Wolf, Diffie–Hellman oracles. In CRYPTO 1996 (N., Koblitz, ed.), LNCS, vol. 1109, Springer, 1996, pp. 268–282.Google Scholar
[366] U. M., Maurer and S., Wolf, On the complexity of breaking the Diffie–Hellman protocol, Technical Report 244, Institute for Theoretical Computer Science, ETH Zurich, 1996.
[367] U. M., Maurer and S., Wolf, Lower bounds on generic algorithms in groups. In EUROCRYPT 1998 (K., Nyberg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 72–84.Google Scholar
[368] U. M., Maurer and S., Wolf, The relationship between breaking the Diffie–Hellman protocol and computing discrete logarithms, SIAM J. Comput. 28(5) (1999), 1689–1721.Google Scholar
[369] U. M., Maurer and S., Wolf, The Diffie–Hellman protocol, Des. Codes Crypt. 19(2/3) (2000), 147–171.Google Scholar
[370] A., May, New RSA Vulnerabilities Using Lattice Reduction Methods, Ph.D. thesis, Paderborn, 2003.
[371] A., May, Using LLL-reduction for solving RSA and factorization problems: a survey. In The LLL Algorithm (P. Q., Nguyen and B., Vallée, eds.), Springer, 2010, pp. 315–348.Google Scholar
[372] J. F., McKee, Subtleties in the distribution of the numbers of points on elliptic curves over a finite prime field, J. London Math. Soc. 59(2) (1999), 448–460.Google Scholar
[373] W., Meier and O., Staffelbach, Efficient multiplication on certain non-supersingular elliptic curves. In CRYPTO 1992 (E. F., Brickell, ed.), LNCS, vol. 740, Springer, 1993, pp. 333–344.Google Scholar
[374] A., Menezes and S. A., Vanstone, The implementation of elliptic curve cryptosystems. In AUSCRYPT 1990 (J., Seberry and J., Pieprzyk, eds.), LNCS, vol. 453, Springer, 1990, pp. 2–13.Google Scholar
[375] A. J., Menezes, T., Okamoto and S. A., Vanstone, Reducing elliptic curve logarithms to a finite field, IEEE Trans. Inf. Theory 39(5) (1993), 1639–1646.Google Scholar
[376] A.J., Menezes, P.C., van Oorschot and S.A., Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.Google Scholar
[377] J.-F., Mestre, La méthode des graphes. exemples et applications, Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number fields (Katata, 1986), Nagoya University, 1986, pp. 217–242.Google Scholar
[378] D., Micciancio and S., Goldwasser, Complexity of Lattice Problems: A Cryptographic Perspective, Kluwer, 2002.Google Scholar
[379] D., Micciancio and O., Regev, Lattice-based cryptography. In Post Quantum Cryptography (D. J., Bernstein, J., Buchmann and E., Dahmen, eds.), Springer, 2009, pp. 147–191.Google Scholar
[380] D., Micciancio and P., Voulgaris, Faster exponential time algorithms for the shortest vector problem. In SODA (M., Charikar, ed.), SIAM, 2010, pp. 1468–1480.Google Scholar
[381] D., Micciancio and B., Warinschi, A linear space algorithm for computing the Hermite normal form. In ISSAC, 2001, pp. 231–236.Google Scholar
[382] S. D., Miller and R., Venkatesan, Spectral analysis of Pollard rho collisions. In ANTS VII (F., Hess, S., Pauli and M. E., Pohst, eds.), LNCS, vol. 4076, Springer, 2006, pp. 573–581.Google Scholar
[383] V. S., Miller, Short programs for functions on curves, Unpublished manuscript, 1986.
[384] V. S., Miller, Use of elliptic curves in cryptography. In CRYPTO 1985 (H. C., Williams, ed.), LNCS, vol. 218, Springer, 1986, pp. 417–426.Google Scholar
[385] V. S., Miller, The Weil pairing, and its efficient calculation, J. Crypt. 17(4) (2004), 235–261.Google Scholar
[386] A., Miyaji, T., Ono and H., Cohen, Efficient elliptic curve exponentiation. In ICICS 1997 (Y., Han, T., Okamoto and S., Qing, eds.), LNCS, vol. 1334, Springer, 1997, pp. 282–291.Google Scholar
[387] B., Möller, Algorithms for multi-exponentiation. In SAC 2001 (S., Vaudenay and A. M., Youssef, eds.), LNCS, vol. 2259, Springer, 2001, pp. 165–180.Google Scholar
[388] B., Möller, Improved techniques for fast exponentiation. In ICISC 2002 (P.-J., Lee and C.-H., Lim, eds.), LNCS, vol. 2587, Springer, 2003, pp. 298–312.Google Scholar
[389] B., Möller, Fractional windows revisited: improved signed-digit representations for efficient exponentiation. In ICISC 2004 (C., Park and S., Chee, eds.), LNCS, vol. 3506, Springer, 2005, pp. 137–153.Google Scholar
[390] R., Montenegro and P., Tetali, How long does it take to catch a wild kangaroo?. In Symposium on Theory of Computing (STOC), 2009, pp. 553–559.Google Scholar
[391] P. L., Montgomery, Modular multiplication without trial division, Math. Comp. 44(170) (1985), 519–521.Google Scholar
[392] P. L., Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48(177) (1987), 243–264.Google Scholar
[393] F., Morain and J.-L., Nicolas, On Cornacchia's Algorithm for Solving the Diophantine Equation u2 + dv2 = m, Preprint, 1990.
[394] F., Morain and J., Olivos, Speeding up the computations on an elliptic curve using addition subtraction chains. In Theoretical Informatics and Applications, vol. 24, 1990, pp. 531–543.Google Scholar
[395] C. J., Moreno, Algebraic Curves over Finite Fields, Cambridge University Press, 1991.Google Scholar
[396] W. H., Mow, Universal lattice decoding: principle and recent advances, Wireless Communications and Mobile Computing 3(5) (2003), 553–569.Google Scholar
[397] V., Müller, Fast multiplication on elliptic curves over small fields of characteristic two, J. Crypt. 11(4) (1998), 219–234.Google Scholar
[398] D., Mumford, Abelian Varieties, Oxford University Press, 1970.Google Scholar
[399] D., Mumford, Tata lectures on theta II, Progess in Mathematics, vol. 43, Birkhäuser, 1984.Google Scholar
[400] M. R., Murty, Ramanujan graphs, J. Ramanujan Math. Soc. 18(1) (2003), 1–20.Google Scholar
[401] R., Murty and I. E., Shparlinski, Group structure of elliptic curves over finite fields and applications, Topics in Geometry, Coding Theory and Cryptography (A., Garcia and H., Stichtenoth, eds.), Springer-Verlag, 2006, pp. 167–194.Google Scholar
[402] A., Muzereau, N. P., Smart and F., Vercauteren, The equivalence between the DHP and DLP for elliptic curves used in practical applications, LMS J. Comput. Math. 7 (2004), 50–72.Google Scholar
[403] D., Naccache, D., M'Raïhi, S., Vaudenay and D., Raphaeli, Can D.S.A. be improved? Complexity trade-offs with the digital signature standard. In EUROCRYPT 1994 (A., De Santis, ed.), LNCS, vol. 950, Springer, 1995, pp. 77–85.Google Scholar
[404] D., Naccache and I. E., Shparlinski, Divisibility, smoothness and cryptographic applications, Algebraic Aspects of Digital Communications (T., Shaska and E., Hasimaj, eds.) NATO Series for Peace and Security, 24 IOS Press, 2009, pp. 115–173.Google Scholar
[405] V. I., Nechaev, Complexity of a determinate algorithm for the discrete logarithm, Mathematical Notes 55(2) (1994), 165–172.Google Scholar
[406] G., Neven, N. P., Smart and B., Warinschi, Hash function requirements for Schnorr signatures, J. Math. Crypt. 3(1) (2009), 69–87.Google Scholar
[407] P., Nguyen and D., Stehlé, Floating-point LLL revisited. In EUROCRYPT 2005 (R., Cramer, ed.), LNCS, vol. 3494, Springer, 2005, pp. 215–233.Google Scholar
[408] P., Nguyen and D., Stehlé, Low-dimensional lattice basis reduction revisited, ACM Transactions on Algorithms 5(4:46) (2009), 1–48.Google Scholar
[409] P. Q., Nguyen, Public key cryptanalysis. In Recent Trends in Cryptography (I., Luengo, ed.), AMS, 2009, pp. 67–119.Google Scholar
[410] P. Q., Nguyen and O., Regev, Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In EUROCRYPT 2006 (S., Vaudenay, ed.), LNCS, vol. 4004, Springer, 2006, pp. 271–288.Google Scholar
[411] P. Q., Nguyen and I. E., Shparlinski, The insecurity of the digital signature algorithm with partially known nonces, J. Crypt. 15(3) (2002), 151–176.Google Scholar
[412] P. Q., Nguyen and I. E., Shparlinski, The insecurity of the elliptic curve digital signature algorithm with partially known nonces, Des. Codes Crypt. 30(2) (2003), 201–217.Google Scholar
[413] P. Q., Nguyen and D., Stehlé, Low-dimensional lattice basis reduction revisited. In ANTS VI (D. A., Buell, ed.), LNCS, vol. 3076, Springer, 2004, pp. 338–357.Google Scholar
[414] P. Q., Nguyen and J., Stern, Lattice reduction in cryptology: an update. In ANTS IV (W., Bosma, ed.), LNCS, vol. 1838, Springer, 2000, pp. 85–112.Google Scholar
[415] P. Q., Nguyen and J., Stern, The two faces of lattices in cryptology. In Cryptography and Lattices (CaLC) (J. H., Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 146–180.Google Scholar
[416] P. Q., Nguyen and B., Vallée, The LLL algorithm: survey and applications, Information Security and Cryptography, Springer, 2009.Google Scholar
[417] P. Q., Nguyen and T., Vidick, Sieve algorithms for the shortest vector problem are practical, J. Math. Crypt. 2(2) (2008), 181–207.Google Scholar
[418] H., Niederreiter, A new efficient factorization algorithm for polynomials over small finite fields, Applicable Algebra in Engineering, Communication and Computing 4(2) (1993), 81–87.Google Scholar
[419] G., Nivasch, Cycle detection using a stack, Inf. Process. Lett. 90(3) (2004), 135–140.Google Scholar
[420] I., Niven, H. S., Zuckerman and H. L., Montgomery, An Introduction to the Theory of Numbers, 5th edn, Wiley, 1991.Google Scholar
[421] A. M., Odlyzko, Discrete logarithms in finite fields and their cryptographic significance. In EUROCRYPT 1984 (T., Beth, N., Cot and I., Ingemarsson, eds.), LNCS, vol. 209, Springer, 1985, pp. 224–314.Google Scholar
[422] P. C., van Oorschot and M. J., Wiener, On Diffie–Hellman key agreement with short exponents. In EUROCRYPT 1996 (U. M., Maurer, ed.), LNCS, vol. 1070, Springer, 1996, pp. 332–343.Google Scholar
[423] P. C., van Oorschot and M. J., Wiener, Parallel collision search with cryptanalytic applications, J. Crypt. 12(1) (1999), 1–28.Google Scholar
[424] P., Paillier, Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT 1999 (J., Stern, ed.), LNCS, vol. 1592, Springer, 1999, pp. 223–238.Google Scholar
[425] P., Paillier, Impossibility proofs for RSA signatures in the standard model. In CT-RSA 2007 (M., Abe, ed.), LNCS, vol. 4377, Springer, 2007, pp. 31–48.Google Scholar
[426] P., Paillier and D., Vergnaud, Discrete-log-based signatures may not be equivalent to discrete log.In ASIACRYPT 2005 (B. K., Roy, ed.), LNCS, vol. 3788, Springer, 2005, pp. 1–20.Google Scholar
[427] P., Paillier and J. L., Villar, Trading one-wayness against chosen-ciphertext security in factoring-based encryption. In ASIACRYPT 2006 (X., Lai and K., Chen, eds.), LNCS, vol. 4284, Springer, 2006, pp. 252–266.Google Scholar
[428] S., Patel and G. S., Sundaram, An efficient discrete log pseudo random generator. In CRYPTO 1998 (H., Krawczyk, ed.), LNCS, vol. 1462, Springer, 1998, pp. 304–317.Google Scholar
[429] S., Paulus and H.-G., Rück, Real and imaginary quadratic representations of hyperelliptic function fields, Math. Comp. 68(227) (1999), 1233–1241.Google Scholar
[430] R., Peralta, Simultaneous security of bits in the discrete log. In EUROCRYPT 1985 (F., Pichler, ed.), LNCS, vol. 219, Springer, 1986, pp. 62–72.Google Scholar
[431] A. K., Pizer, Ramanujan graphs. In Computational Perspectives on Number Theory (D. A., Buell and J. T., Teitelbaum, eds.), Studies in Advanced Mathematics, vol. 7, AMS, 1998, pp. 159–178.Google Scholar
[432] S., Pohlig and M., Hellman, An improved algorithm for computing logarithms over GF(p) and its cryptographic significance, IEEE Trans. Inf. Theory 24 (1978), 106–110.Google Scholar
[433] D., Pointcheval and J., Stern, Security arguments for digital signatures and blind signatures, J. Crypt. 13(3) (2000), 361–396.Google Scholar
[434] D., Pointcheval and S., Vaudenay, On provable security for digital signature algorithms, Technical report LIENS 96-17, École Normale Supérieure, 1996.
[435] J. M., Pollard, Theorems on factorisation and primality testing, Proc. Camb. Phil. Soc. 76 (1974), 521–528.Google Scholar
[436] J. M., Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331–334.Google Scholar
[437] J. M., Pollard, Monte Carlo methods for index computation (mod p), Math. Comp. 32(143) (1978), 918–924.Google Scholar
[438] J. M., Pollard, Kangaroos, monopoly and discrete logarithms, J. Crypt. 13(4) (2000), 437–447.Google Scholar
[439] C., Pomerance, A tale of two sieves, Notices of the Amer. Math. Soc. 43 (1996), 1473–1485.Google Scholar
[440] V. R., Pratt, Every prime has a succinct certificate, SIAM J. Comput. 4(3) (1974), 214–220.Google Scholar
[441] X., Pujol and D., Stehlé, Rigorous and efficient short lattice vectors enumeration. In ASIACRYPT 2008 (J., Pieprzyk, ed.), LNCS, vol. 5350, Springer, 2008, pp. 390–405.Google Scholar
[442] G., Qiao and K.-Y, Lam, RSA signature algorithm for microcontroller implementation. In CARDIS 1998 (J.-J., Quisquater and B., Schneier, eds.), LNCS, vol. 1820, Springer, 2000, pp. 353–356.Google Scholar
[443] J. J., Quisquater and C., Couvreur, Fast decipherment algorithm for RSA public-key cryptosystem, Electronics Letters (21) (1982), 905–907.Google Scholar
[444] M. O., Rabin, Digitalized signatures and public-key functions as intractable as factorization, Tech. Report MIT/LCS/TR-212, MIT Laboratory for Computer Science, 1979.
[445] J.-F., Raymond and A., Stiglic, Security Issues in the Diffie–Hellman Key Agreement Protocol, Preprint, 2000.
[446] O., Regev, The learning with errors problem (invited survey), 25th Annual IEEE Conference on Computational Complexity, IEEE, 2010, pp. 191–204.Google Scholar
[447] M., Reid, Undergraduate Algebraic Geometry, Cambridge University Press, 1988.Google Scholar
[448] M., Reid, Graded rings and varieties in weighted projective space, Chapter of unfinished book, 2002.
[449] G., Reitwiesner, Binary arithmetic, Advances in Computers 1 (1960), 231–308.
[450] P., Rogaway, Formalizing human ignorance. In VIETCRYPT 2006 (P. Q., Nguyen, ed.), LNCS, vol. 4341, Springer, 2006, pp. 211–228.Google Scholar
[451] S., Ross, A First Course in Probability, 6th edn, Prentice Hall, 2001.Google Scholar
[452] K., Rubin and A., Silverberg, Torus-based cryptography. In CRYPTO 2003 (D., Boneh, ed.), LNCS, vol. 2729, Springer, 2003, pp. 349–365.Google Scholar
[453] K., Rubin and A., Silverberg, Compression in finite fields and torus-based cryptography, SIAM J. Comput. 37(5) (2008), 1401–1428.Google Scholar
[454] H.-G., Rück, A note on elliptic curves over finite fields, Math. Comp. 49(179) (1987), 301–304.Google Scholar
[455] H.-G., Rück, On the discrete logarithm in the divisor class group of curves, Math. Comp. 68(226) (1999), 805–806.Google Scholar
[456] A., Rupp, G., Leander, E., Bangerter, A. W., Dent and A.-R., Sadeghi, Sufficient conditions for intractability over black-box groups: generic lower bounds for generalized DL and DH problems. In ASIACRYPT 2008 (J., Pieprzyk, ed.), LNCS, vol. 5350, Springer, 2008, pp. 489–505.Google Scholar
[457] A.-R., Sadeghi and M., Steiner, Assumptions related to discrete logarithms: why subtleties make a real difference. In EUROCRYPT 2001 (B., Pfitzmann, ed.), LNCS, vol. 2045, Springer, 2001, pp. 244–261.Google Scholar
[458] A., Sárközy and C. L., Stewart, On pseudorandomness in families of sequences derived from the Legendre symbol, Periodica Math. Hung. 54(2) (2007), 163–173.Google Scholar
[459] T., Satoh, On Generalization of Cheon's Algorithm, Cryptology ePrint Archive, Report 2009/058, 2009.Google Scholar
[460] T., Satoh and K., Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Comment. Math. Univ. St. Paul. 47(1) (1998), 81–92.Google Scholar
[461] J., Sattler and C.-P., Schnorr, Generating random walks in groups, Ann. Univ. Sci. Budapest. Sect. Comput. 6 (1985), 65–79.Google Scholar
[462] A., Schinzel and M., Skalba, On equations y2 = xn + k in a finite field, Bull. Polish Acad. Sci. Math. 52(3) (2004), 223–226.Google Scholar
[463] O., Schirokauer, Using number fields to compute logarithms in finite fields, Math. Comp. 69(231) (2000), 1267–1283.Google Scholar
[464] O., Schirokauer, The special function field sieve, SIAM J. Discrete Math 16(1) (2002), 81–98.Google Scholar
[465] O., Schirokauer, The impact of the number field sieve on the discrete logarithm problem in finite fields. In Algorithmic Number Theory (J., Buhler and P., Stevenhagen, eds.), MSRI publications, vol. 44, Cambridge University Press, 2008, pp. 397–420.Google Scholar
[466] O., Schirokauer, The number field sieve for integers of low weight, Math. Comp. 79(269) (2010), 583–602.Google Scholar
[467] O., Schirokauer, D., Weber and T. F., Denny, Discrete logarithms: the effectiveness of the index calculus method. In ANTS II (H., Cohen, ed.), LNCS, vol. 1122, Springer, 1996, pp. 337–361.Google Scholar
[468] C.-P., Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theor. Comput. Sci. 53 (1987), 201–224.Google Scholar
[469] C.-P., Schnorr, Efficient identification and signatures for smart cards. In CRYPTO 1989 (G., Brassard, ed.), LNCS, vol. 435, Springer, 1990, pp. 239–252.Google Scholar
[470] C.-P., Schnorr, Efficient signature generation by smart cards, J. Crypt. 4(3) (1991), 161–174.Google Scholar
[471] C.-P., Schnorr, Security of almost all discrete log bits, Electronic Colloquium on Computational Complexity (ECCC) 5(33) (1998), 1–13.Google Scholar
[472] C.-P., Schnorr, Progress on LLL and lattice reduction. In> The LLL Algorithm (P. Q., Nguyen and B., Vallée, eds.), Springer, 2010, pp. 145–178.Google Scholar
[473] C.-P., Schnorr and M., Euchner, Lattice basis reduction: improved practical algorithms and solving subset sum problems, Math. Program. 66 (1994), 181–199.Google Scholar
[474] C.-P., Schnorr and H. W., Lenstra Jr., A Monte Carlo factoring algorithm with linear storage, Math. Comp. 43(167) (1984), 289–311.Google Scholar
[475] R., Schoof, Elliptic curves over finite fields and the computation of square roots (mod)p, Math. Comp. 44(170) (1985), 483–494.Google Scholar
[476] R., Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), 183–211.Google Scholar
[477] R., Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordeaux 7 (1995), 219–254.Google Scholar
[478] A., Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.Google Scholar
[479] R., Schroeppel, H. K., Orman, S. W., O'Malley and O., Spatscheck, Fast key exchange with elliptic curve systems. In CRYPTO 1995 (D., Coppersmith, ed.), LNCS, vol. 963, Springer, 1995, pp. 43–56.Google Scholar
[480] E., Schulte-Geers, Collision search in a random mapping: some asymptotic results, Presentation at ECC 2000, Essen, Germany, 2000.
[481] M., Scott, Faster pairings using an elliptic curve with an efficient endomorphism. In INDOCRYPT 2005 (S., Maitra, C. E. V., Madhavan and R., Venkatesan, eds.), LNCS, vol. 3797, Springer, 2005, pp. 258–269.Google Scholar
[482] R., Sedgewick, T. G., Szymanski and A. C.-C., Yao, The complexity of finding cycles in periodic functions, SIAM J. Comput. 11(2) (1982), 376–390.Google Scholar
[483] B. I., Selivanov, On waiting time in the scheme of random allocation of coloured particles, Discrete Math. Appl. 5(1) (1995), 73–82.Google Scholar
[484] I. A., Semaev, Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p, Math. Comp. 67(221) (1998), 353–356.Google Scholar
[485] I. A., Semaev, A 3-dimensional lattice reduction algorithm. In Cryptography and Lattices (CaLC) (J. H., Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 181–193.Google Scholar
[486] I. A., Semaev, Summation Polynomials and the Discrete Logarithm Problem on Elliptic Curves, Cryptology ePrint Archive, Report 2004/031, 2004.
[487] J.-P., Serre, Sur la topologie des variétés algébriques en charactéristique p. In Symp. Int. Top. Alg., Mexico, 1958, pp. 24–53.Google Scholar
[488] J.-P., Serre, Local Fields, GTM, vol. 67, Springer, 1979.Google Scholar
[489] I. R., Shafarevich, Basic Algebraic Geometry, 2nd edn, Springer, 1995.Google Scholar
[490] J. O., Shallit, A Primer on Balanced Binary Representations, Preprint, 1992.Google Scholar
[491] A., Shallue and C. E., van de Woestijne, Construction of rational points on elliptic curves over finite fields. In ANTS VII (F., Hess, S., Pauli and M. E., Pohst, eds.), LNCS, vol. 4076, Springer, 2006, pp. 510–524.Google Scholar
[492] D., Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII, Utilitas Math., Winnipeg, Man., 1973, pp. 51–70.
[493] M., Shirase, D.-G., Han, Y., Hibino, H.-W., Kim and T., Takagi, Compressed XTR. In ACNS 2007 (J., Katz and M., Yung, eds.), LNCS, vol. 4521, Springer, 2007, pp. 420–431.Google Scholar
[494] V., Shoup, Lower bounds for discrete logarithms and related problems. In EUROCRYPT 1997 (W., Fumy, ed.), LNCS, vol. 1233, Springer, 1997, pp. 256–266.Google Scholar
[495] V., Shoup, On formal models for secure key exchange (version 4), 15 November 1999, Tech. report, IBM, 1999, Revision of Report RZ 3120.
[496] V., Shoup, OAEP reconsidered. In CRYPTO 2001 (J., Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 239–259.Google Scholar
[497] V., Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge University Press, 2005.Google Scholar
[498] I. E., Shparlinski, Computing Jacobi symbols modulo sparse integers and polynomials and some applications, J. Algorithms 36 (2000), 241–252.Google Scholar
[499] I. E., Shparlinski, Cryptographic Applications of Analytic Number Theory, Birkhauser, 2003.
[500] I. E., Shparlinski, Playing “hide-and-seek” with numbers: the hidden number problem, lattices and exponential sums. In Public-Key Cryptography (P., Garrett and D., Lieman, eds.), Proceedings of Symposia in Applied Mathematics, vol. 62, AMS, 2005, pp. 153–177.Google Scholar
[501] I. E., Shparlinski and A., Winterhof, A nonuniform algorithm for the hidden number problem in subgroups. In PKC 2004 (F., Bao, R. H., Deng and J., Zhou, eds.), LNCS, vol. 2947, Springer, 2004, pp. 416–424.Google Scholar
[502] I. E., Shparlinski and A., Winterhof, A hidden number problem in small subgroups, Math. Comp. 74(252) (2005), 2073– 2080.Google Scholar
[503] A., Sidorenko, Design and analysis of provably secure pseudorandom generators, Ph.D. thesis, Eindhoven, 2007.
[504] C. L., Siegel, Lectures on the Geometry of Numbers, Springer, 1989.Google Scholar
[505] J. H., Silverman, The Arithmetic of Elliptic Curves, GTM, vol. 106, Springer, 1986.Google Scholar
[506] J. H., Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM, vol. 151, Springer, 1994.Google Scholar
[507] J. H., Silverman and J., Suzuki, Elliptic curve discrete logarithms and the index calculus. In ASIACRYPT 1998 (K., Ohta and D., Pei, eds.), LNCS, vol. 1514, Springer, 1998, pp. 110–125.Google Scholar
[508] J. H., Silverman and J., Tate, Rational Points on Elliptic Curves, Springer, 1994.Google Scholar
[509] M., Sipser, Introduction to the Theory of Computation, Course Technology, 2005.Google Scholar
[510] M., Skalba, Points on elliptic curves over finite fields, Acta Arith. 117(3) (2005), 293–301.Google Scholar
[511] N. P., Smart, The discrete logarithm problem on elliptic curves of trace one, J. Cryptology 12(3) (1999), 193–196.Google Scholar
[512] N. P., Smart, Elliptic curve cryptosystems over small fields of odd characteristic, J. Crypt. 12(2) (1999), 141–151.Google Scholar
[513] N. P., Smart, Cryptography: An Introduction, McGraw-Hill, 2004.Google Scholar
[514] B. A., Smith, Isogenies and the discrete logarithm problem in Jacobians of genus 3 hyperelliptic curves, J. Crypt. 22(4) (2009), 505–529.Google Scholar
[515] P. J., Smith and M. J. J., Lennon, LUC: a new public key system. In International Conference on Information Security (E. Graham, Dougall, ed.), IFIP Transactions, vol. A-37, North-Holland, 1993, pp. 103–117.Google Scholar
[516] P. J., Smith and C., Skinner, A public-key cryptosystem and a digital signature system based on the Lucas function analogue to discrete logarithms. In ASIACRYPT 1994 (J., Pieprzyk and R., Safavi-Naini, eds.), LNCS, vol. 917, Springer, 1994, pp. 357–364.Google Scholar
[517] J. A., Solinas, Efficient arithmetic on Koblitz curves, Des. Codes Crypt. 19 (2000), 195–249.Google Scholar
[518] J. A., Solinas, Low-weight binary representations for pairs of integers, Technical Report CORR 2001-41, 2001.
[519] M., Stam, On Montgomery-like representations of elliptic curves over GF(2k). In PKC 2003 (Y. G., Desmedt, ed.), LNCS, vol. 2567, Springer, 2003, pp. 240–253.Google Scholar
[520] M., Stam, Speeding up subgroup cryptosystems, Ph.D. thesis, Eindhoven, 2003.
[521] M., Stam and A. K., Lenstra, Speeding up XTR. In ASIACRYPT 2001 (C., Boyd, ed.), LNCS, vol. 2248, Springer, 2001, pp. 125–143.Google Scholar
[522] H. M., Stark, Class-numbers of complex quadratic fields. In Modular Functions of One Variable I (W., Kuyk, ed.), LNM, vol. 320, Springer, 1972, pp. 153–174.Google Scholar
[523] D., Stehlé, Floating point LLL: Theoretical and practical aspects. In The LLL Algorithm (P. Q., Nguyen and B., Vallée, eds.), Springer, 2010, pp. 179–213.Google Scholar
[524] D., Stehlé and P., Zimmermann, A binary recursive GCD algorithm. In ANTS VI (D. A., Buell, ed.), LNCS, vol. 3076, Springer, 2004, pp. 411–425.Google Scholar
[525] P., Stevenhagen, The number field sieve. In Algorithmic Number Theory (J., Buhler and P., Stevenhagen, eds.), MSRI publications, Cambridge University Press, 2008, pp. 83–99.Google Scholar
[526] I., Stewart, Galois Theory, 3rd edn, Chapman & Hall, 2003.Google Scholar
[527] I., Stewart and D., Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd edn, AK Peters, 2002.Google Scholar
[528] H., Stichtenoth, Die Hasse–Witt Invariante eines Kongruenzfunktionenkörpers, Arch. Math. 33 (1979), 357–360.Google Scholar
[529] H., Stichtenoth, Algebraic Function Fields and Codes, Springer, 1993.Google Scholar
[530] H., Stichtenoth and C., Xing, On the structure of the divisor class group of a class of curves over finite fields, Arch. Math. 65 (1995), 141–150.Google Scholar
[531] D. R., Stinson, Some baby-step–giant-step algorithms for the low Hamming weight discrete logarithm problem, Math. Comp. 71(237) (2001), 379–391.Google Scholar
[532] D. R., Stinson, Cryptography: Theory and Practice, 3rd edn, Chapman & Hall/CRC, 2005.Google Scholar
[533] A., Storjohann and G., Labahn, Asymptotically fast computation of Hermite normal forms of integer matrices, ISSAC 1996, ACM Press, 1996, pp. 259–266.
[534] E. G., Straus, Addition chains of vectors, American Mathematical Monthly 71(7) (1964), 806–808.Google Scholar
[535] A. H., Suk, Cryptanalysis of RSA with lattice attacks, MSc thesis, University of Illinois at Urbana-Champaign, 2003.
[536] A. V., Sutherland, Order computations in generic groups, Ph.D.thesis, MIT, 2007.
[537] A. V., Sutherland, Structure computation and discrete logarithms in finite abelian p-groups, Math. Comp. 80(273) (2011), 477–500.Google Scholar
[538] T., Takagi, Fast RSA-type cryptosystem modulo pkq. In CRYPTO 1998 (H., Krawczyk, ed.), LNCS, vol. 1462, Springer, 1998, pp. 318–326.
[539] J., Talbot and D., Welsh, Complexity and Cryptography: An Introduction, Cambridge University Press, 2006.Google Scholar
[540] J., Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134– 144.Google Scholar
[541] E., Teske, A space efficient algorithm for group structure computation, Math. Comp. 67(224) (1998), 1637–1663.Google Scholar
[542] E., Teske, Speeding up Pollard's rhomethod for computing discrete logarithms. In ANTS III (J. P., Buhler, ed.), LNCS, vol. 1423, Springer, 1998, pp. 541–554.
[543] E., Teske, On random walks for Pollard's rho method, Math. Comp. 70(234) (2001), 809–825.Google Scholar
[544] E., Teske, Computing discrete logarithms with the parallelized kangaroo method, Discrete Appl. Math. 130 (2003), 61–82.Google Scholar
[545] N., Thériault, Index calculus attack for hyperelliptic curves of small genus. In ASIACRYPT 2003 (C.-S., zaih, ed.), LNCS, vol. 2894, Springer, 2003, pp. 75–92.
[546] E., Thomé, Algorithmes de calcul de logarithmes discrets dans les corps finis, Ph.D. thesis, L'École Polytechnique, 2003.
[547] W., Trappe and L. C., Washington, Introduction to Cryptography with Coding Theory, 2nd edn, Pearson, 2005.Google Scholar
[548] M. A., Tsfasman, Group of points of an elliptic curve over a finite field, Theory of Numbers and Its Applications, Tbilisi, 1985, pp. 286–287.Google Scholar
[549] J. W. M., Turk, Fast arithmetic operations on numbers and polynomials, Computational Methods in Number Theory, Part 1, Mathematical Centre Tracts 154, Amsterdam, 1984.Google Scholar
[550] B., Vallée, Une approche géométrique de la réduction de réseaux en petite dimension, Ph.D. thesis, Université de Caen, 1986.
[551] B., Vallée, Gauss' algorithm revisited, J. Algorithms 12(4) (1991), 556–572.Google Scholar
[552] S., Vaudenay, Hidden collisions on DSS. In CRYPTO 1996 (N., Koblitz, ed.), LNCS, vol. 1109, Springer, 1996, pp. 83–88.Google Scholar
[553] S., Vaudenay, A Classical Introduction to Cryptography, Springer, 2006.
[554] F., Vercauteren, Optimal pairings, IEEE Trans. Inf. Theory 56(1) (2010), 455–461.Google Scholar
[555] E. R., Verheul, Certificates of recoverability with scale recovery agent security. In PKC 2000 (H., Imai and Y., Zheng, eds.), LNCS, vol. 1751, Springer, 2000, pp. 258–275.Google Scholar
[556] E. R., Verheul, Evidence that XTR is more secure than supersingular elliptic curve cryptosystems, J. Crypt. 17(4) (2004), 277–296.Google Scholar
[557] E. R., Verheul and H. C. A., van Tilborg, Cryptanalysis of ‘less short’ RSA secret exponents, Applicable Algebra in Engineering, Communication and Computing 8(5) (1997), 425–435.Google Scholar
[558] M.F., Vignéras, Arithmétique des algébres de quaternions, LNM, vol. 800, Springer, 1980.Google Scholar
[559] J. F., Voloch, A note on elliptic curves over finite fields, Bulletin de la Société Mathématique de France 116(4) (1988), 455–458.Google Scholar
[560] L. C., Washington, Elliptic Curves: Number Theory and Cryptography, 2nd edn, CRC Press, 2008.Google Scholar
[561] E., Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. 2 (1969), 521–560.Google Scholar
[562] D. H., Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inf. Theory 32 (1986), 54–62.Google Scholar
[563] M. J., Wiener, Bounds on Birthday Attack Times, Cryptology ePrint Archive, Report 2005/318.
[564] M. J., Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans. Inf. Theory 36(3) (1990), 553–558.Google Scholar
[565] M. J., Wiener and R. J., Zuccherato, Faster attacks on elliptic curve cryptosystems. In SAC 1998 (S. E., Tavares and H., Meijer, eds.), LNCS, vol. 1556, Springer, 1998, pp. 190–200.Google Scholar
[566] H. C., Williams, A modification of the RSA public key encryption procedure, IEEE Trans. Inf. Theory 26(6) (1980), 726–729.Google Scholar
[567] H. C., Williams, A p + 1 method of factoring, Math. Comp. 39(159) (1982), 225–234.Google Scholar
[568] D. J., Winter, The Structure of Fields, GTM 16, Springer, 1974.Google Scholar
[569] M., Woodroofe, Probability with Applications, McGraw-Hill, 1975.Google Scholar
[570] S.-M., Yen and C.-S., Laih, Improved digital signature suitable for batch verification, IEEE Trans. Computers 44(7) (1995), 957–959.Google Scholar
[571] S.-M., Yen, C.-S., Laih, and A. K., Lenstra, Multi-exponentiation, IEEE Proceedings Computers and Digital Techniques 141(6) (1994), 325–326.Google Scholar
[572] N., Yui, On the jacobian varieties of hyperelliptic curves over fields of characteristic p > 2, J. Algebra 52 (1978), 378–410.Google Scholar
[573] O., Zariski and P., Samuel, Commutative Algebra (Vol. I and II), Van Nostrand, Princeton University Press, 1960.Google Scholar
[574] N., Zierler, A conversion algorithm for logarithms on G F(2n), J. Pure Appl. Algebra 4 (1974), 353–356.Google Scholar
[575] P., Zimmermann, Private communication, 10 March 2009.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Steven D. Galbraith, University of Auckland
  • Book: Mathematics of Public Key Cryptography
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139012843.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Steven D. Galbraith, University of Auckland
  • Book: Mathematics of Public Key Cryptography
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139012843.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Steven D. Galbraith, University of Auckland
  • Book: Mathematics of Public Key Cryptography
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139012843.029
Available formats
×