Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T13:28:20.888Z Has data issue: false hasContentIssue false

21

Published online by Cambridge University Press:  05 August 2014

Get access

Summary

It will probably be plain by now to what conclusions I am coming; so I will state them at once dogmatically and then elaborate them a little. It is undeniable that a good deal of elementary mathematics—and I use the word ‘elementary’ in the sense in which professional mathematicians use it, in which it includes, for example, a fair working knowledge of the differential and integral calculus—has considerable practical utility. These parts of mathematics are, on the whole, rather dull; they are just the parts which have least aesthetic value. The ‘real’ mathematics of the ‘real’ mathematicians, the mathematics of Fermat and Euler and Gauss and Abel and Riemann, is almost wholly ‘useless’ (and this is as true of ‘applied’ as of ‘pure’ mathematics). It is not possible to justify the life of any genuine professional mathematician on the ground of the ‘utility’ of his work.

But here I must deal with a misconception. It is sometimes suggested that pure mathematicians glory in the uselessness of their work*, and make it a boast that it has no practical applications. The imputation is usually based on an incautious saying attributed to Gauss, to the effect that, if mathematics is the queen of the sciences, then the theory of numbers is, because of its supreme uselessness, the queen of mathematics—I have never been able to find an exact quotation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • 21
  • G. H. Hardy
  • Foreword by C. P. Snow
  • Book: A Mathematician's Apology
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107295599.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • 21
  • G. H. Hardy
  • Foreword by C. P. Snow
  • Book: A Mathematician's Apology
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107295599.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • 21
  • G. H. Hardy
  • Foreword by C. P. Snow
  • Book: A Mathematician's Apology
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107295599.023
Available formats
×