Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T05:16:10.973Z Has data issue: false hasContentIssue false

8 - A geometry and algebra thread – Constructing, and using, Jennifer's puzzle

Published online by Cambridge University Press:  10 November 2010

Peter Hilton
Affiliation:
State University of New York, Binghamton
Jean Pedersen
Affiliation:
Santa Clara University, California
Get access

Summary

Required materials

  • Strips of paper (preferably of different colors)

  • Heavy paper, such as lightweight cardboard

  • Paper clips

Optional materials

  • Ruler

  • Compass

Facts of life

In many instances involving the use of geometry in the real world, we need to make adjustments to take into account the realities of life. For example, paper comes in various thicknesses (which are never zero!) and the interior of every container must be larger than what it contains. These and other very elementary facts of reality affect how we are able to take practical advantage of the theorems obtained from our study of the geometry of idealized lines, planes, and solids.

As this section title implies, we concern ourselves here with the details of practical construction, in this case of a particular set of nested polyhedra. Namely, we construct an octahedron and 4 tetrahedra that fit inside a larger tetrahedron that, in turn, fits inside a cube. As you will see – assuming that you become actively involved in carrying out these instructions – overcoming the difficulties encountered in using, in a real-life situation, a theory that is perfect in principle is very much a skill of the eyes and hands as well as of the mind.

What follows is first a description of the construction, along with some hints about how to solve Jennifer's puzzle; this is followed by some important mathematical consequences to be gained by constructing the puzzle.

Type
Chapter
Information
A Mathematical Tapestry
Demonstrating the Beautiful Unity of Mathematics
, pp. 110 - 122
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×