Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T00:33:59.849Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2012

Mircea Sofonea
Affiliation:
Université de Perpignan, France
Andaluzia Matei
Affiliation:
Universitatea din Craiova, Romania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R. A., Adams, Sobolev Spaces, New York, Academic Press, 1975.
[2] R. P., Agarwal, D., O'Regan and D. R., Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, New York, Springer, 2009.
[3] S. S., Antman, Nonlinear Problems of Elasticity, New York, Springer-Verlag, 1995.
[4] K., Atkinson and W., Han, Theoretical Numerical Analysis: a Functional Analysis Framework, Texts in Applied Mathematics 39, New York, Springer, 2001.
[5] C., Baiocchi and A., Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, Chichester, John Wiley, 1984.
[6] C., Baiocchi, V., Comincioli, L., Guerri and G., Volpi, Free boundary problems in the theory of fluid flow through porous media: a numerical approach, Calcolo 10 (1973), 1–85.Google Scholar
[7] M., Barboteu, J. R., Fernández and T., Raffat, Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity, Comput. Methods Appl. Mech. Engrg. 197 (2008), 3724–3732.Google Scholar
[8] M., Barboteu, A., Matei and M., Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, submitted to Quart. J. Mech. Appl. Math.
[9] M., Barboteu, Y., Ouaffik and M., Sofonea, Analysis and simulation of a piezoelectric contact problem, in L., Beznea, V., Brinzanescu, R., Purice, et al., eds., Proceedings of the Sixth Congress of Romanian Mathematicians, Vol. I, Bucharest, Editura Academiei Române, 2007, 485–492.
[10] M., Barboteu and M., Sofonea, Solvability of a dynamic contact problem between a piezoelectric body and a conductive foundation, Ap. Math. Comp. 215 (2009), 2978–2991.Google Scholar
[11] M., Barboteu and M., Sofonea, Modelling and analysis of the unilateral contact of a piezoelectric body with a conductive support, J. Math. Anal. App. 358 (2009), 110–124.Google Scholar
[12] V., Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Leyden, Editura Academiei, Bucharest-Noordhoff, 1976.
[13] V., Barbu, Optimal Control of Variational Inequalities, Boston, Pitman, 1984.
[14] V., Barbu and T., Precupanu, Convexity and Optimization in Banach Spaces, Dordrecht, D. Reidel Publishing Company, 1986.
[15] R. C., Batra and J. S., Yang, Saint-Venant's principle in linear piezoelectricity, J. Elasticity 38 (1995), 209–218.Google Scholar
[16] H. H., Bauschke and P. L., Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, New York, Springer, 2011.
[17] P., Bisegna, F., Lebon and F., Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in J. A. C., Martins and M. D. P. Monteiro, Marques, eds., Contact Mechanics, Dordrecht, Kluwer, 2002, 347–354.
[18] M., Boureanu, A., Matei and M., Sofonea, Analysis of a contact problem for electro-elastic-visco-plastic materials, Comm. Pure Appl. Anal. 11 (2012), 1185–1203.Google Scholar
[19] H., Brézis, Equations et inéquations non liné aires dans les espaces vectoriels en dualité, Ann. Inst. Fourier 18 (1968), 115–175.Google Scholar
[20] H., Brézis, Problèmes unilatéraux, J. Math. Pures et Appl. 51 (1972), 1–168.Google Scholar
[21] H., Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Mathematics Studies, Amsterdam, North Holland, 1973.
[22] H., Brézis, Analyse fonctionnelle – Théorie et applications, Paris, Masson, 1987.
[23] M., Campillo and I. R., Ionescu, Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res. 102 B9 (1997), 363–371.Google Scholar
[24] T., Cazenave and A., Haraux, Introduction aux problèmes d'évolution semi-linéaires, Paris, Ellipses, 1990.
[25] P. G., Ciarlet, Mathematical Elasticity, Volume I: Three Dimensional Elasticity, Studies in Mathematics and its Applications 20, Amsterdam, North-Holland, 1988.
[26] C., Ciulcu, D., Motreanu and M., Sofonea, Analysis of an elastic contact problem with slip dependent coefficient of friction, Math. Ineq. Appl. 4 (2001), 465–479.Google Scholar
[27] M., Cocu, Existence of solutions of Signorini problems with friction, Int. J. Engng. Sci. 22 (1984), 567–581.Google Scholar
[28] M., Cocu, E., Pratt and M., Raous, Existence d'une solution du problème quasistatique de contact unilatéral avec frottement non local, C. R. Acad. Sci. Paris, 320, Série I (1995), 1413–1417.Google Scholar
[29] M., Cocu, E., Pratt and M., Raous, Formulation and approximation of quasistatic frictional contact, Int. J. Engng. Sci. 34 (1996), 783–798.Google Scholar
[30] M., Cocu and J. M., Ricaud, Analysis of a class of implicit evolution inequalities associated to dynamic contact problems with friction, Int. J. Engng. Sci. 328 (2000), 1534–1549.Google Scholar
[31] N., Cristescu and I., Suliciu, Viscoplasticity, Bucharest, Martinus Nijhoff Publishers, Editura Tehnica, 1982.
[32] Z., Denkowski, S., Migórski and A., Ochal, Existence and uniqueness to a dynamic bilateral frictional contact problem in viscoelasticity, Acta Appl. Math. 94 (2006), 251–276.Google Scholar
[33] Z., Denkowski, S., Migórski and N. S., Papageorgiu, An Introduction to Nonlinear Analysis: Theory, Boston, Kluwer Academic/Plenum Publishers, 2003.
[34] Z., Denkowski, S., Migórski and N. S., Papageorgiu, An Introduction to Nonlinear Analysis: Applications, Boston, Kluwer Academic/Plenum Publishers, 2003.
[35] I., Doghri, Mechanics of Deformable Solids, Berlin, Springer, 2000.
[36] S., Drabla and M., Sofonea, Analysis of a Signorini problem with friction, IMA J. Appl. Math. 62 (1999), 1–18.Google Scholar
[37] S., Drabla, M., Sofonea and B., Teniou, Analysis of some frictionless contact problems for elastic bodies, Annales Polonici Mathematici LXIX (1998), 75–88.Google Scholar
[38] A. D., Drozdov, Finite Elasticity and Viscoelasticity – a Course in the Nonlinear Mechanics of Solids, Singapore, World Scientific, 1996.
[39] G., Duvaut, Loi de frottement non locale, J. Méc. Thé. Appl. Special issue (1982), 73–78.
[40] G., Duvaut and J.-L., Lions, Inequalities in Mechanics and Physics, Berlin, Springer-Verlag, 1976.
[41] C., Eck, J., Jarušek and M., Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics 270, New York, Chapman/CRC Press, 2005.
[42] C., Eck, J., Jarušek and M., Sofonea, A dynamic elastic-viscoplastic unilateral contact problem with normal damped response and Coulomb friction, European J. Appl. Math. 21 (2010), 229–251.Google Scholar
[43] I., Ekeland and R., Temam, Convex Analysis and Variational Problems, Amsterdam, North-Holland, 1976.
[44] L. C., Evans, Partial Differential Equations, Providence, AMS Press, 1999.
[45] G., Fichera, Problemi elastostatici con vincoli unilaterali. II. Problema di Signorini con ambique condizioni al contorno, Mem. Accad. Naz. Lincei, S. VIII, Vol. VII, Sez. I, 5 (1964) 91–140.Google Scholar
[46] A., Friedman, Variational Principles and Free-boundary Problems, New York, John Wiley, 1982.
[47] P., Germain and P., Muller, Introduction à la mécanique des milieux continus, Paris, Masson, 1980.
[48] R., Glowinski, Numerical Methods for Nonlinear Variational Problems, New York, Springer-Verlag, 1984.
[49] R., Glowinski, J.-L., Lions and R., Trémolières, Numerical Analysis of Variational Inequalities, Amsterdam, North-Holland, 1981.
[50] A., Guran, F., Pfeiffer and K., Popp, eds., Dynamics with Friction: Modeling, Analysis and Experiment, Part I, Singapore, World Scientific, 1996.
[51] M. E., Gurtin, An Introduction to Continuum Mechanics, New York, Academic Press, 1981.
[52] W., Han and B. D., Reddy, Plasticity: Mathematical Theory and Numerical Analysis, New York, Springer-Verlag, 1999.
[53] W., Han and M., Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems, SIAM J. Num. Anal. 38 (2000), 556–579.Google Scholar
[54] W., Han and M., Sofonea, Time-dependent variational inequalities for viscoelastic contact problems, J. Comp. Appl. Math. 136 (2001), 369–387.Google Scholar
[55] W., Han and M., Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, Providence, RI, American Mathematical Society; Somerville, MA, International Press, 2002.
[56] W., Han, M., Sofonea and K., Kazmi, Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials, Comp. Meth. Appl. Mech. Eng. 196 (2007), 3915–3926.Google Scholar
[57] J., Haslinger, I., Hlaváček and J., Nečas, Numerical methods for unilateral problems in solid mechanics, Handbook of Numerical Analysis, Vol. IV, P. G., Ciarlet and J.-L., Lions, eds., Amsterdam, North-Holland, 1996, 313–485.
[58] J.-B., Hiriart-Urruty and C., Lemaréchal, Convex Analysis and Minimization Algorithms, I, II, Berlin, Springer-Verlag, 1993.
[59] I., Hlaváček, J., Haslinger, J., Nečas and J., Lovíšek, Solution of Variational Inequalities in Mechanics, New York, Springer-Verlag, 1988.
[60] T., Ikeda, Fundamentals of Piezoelectricity, Oxford, Oxford University Press, 1990.
[61] I. R., Ionescu, C., Dascalu and M., Campillo, Slip-weakening friction on a periodic system of faults: spectral analysis, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 53 (2002), 980–995.Google Scholar
[62] I. R., Ionescu and Q.-L., Nguyen, Dynamic contact problems with slip dependent friction in viscoelasticity, Int. J. Appl. Math. Comput. Sci. 12 (2002), 71–80.Google Scholar
[63] I. R., Ionescu, Q.-L., Nguyen and S., Wolf, Slip displacement dependent friction in dynamic elasticity, Nonlinear Analysis 53 (2003), 375–390.Google Scholar
[64] I. R., Ionescu and J.-C., Paumier, Friction dynamique avec coefficient dépendant de la vitesse de glissement, C. R. Acad. Sci. Paris 316, Série I (1993), 121–125.Google Scholar
[65] I. R., Ionescu and J.-C., Paumier, On the contact problem with slip rate dependent friction in elastodynamics, European J. Mech., A – Solids 13 (1994), 556–568.Google Scholar
[66] I. R., Ionescu and M., Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford, Oxford University Press, 1993.
[67] J., Jarušek, Contact problem with given time-dependent friction force in linear viscoelasticity, Comment. Math. Univ. Carolinae 31 (1990), 257–262.Google Scholar
[68] J., Jarušek, Dynamic contact problems with given friction for viscoelastic bodies, Czechoslovak Mathematical Journal 46 (1996), 475–487.Google Scholar
[69] J., Jarušek and C., Eck, Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions, Math. Models Meth. Appl. Sci. 9 (1999), 11–34.Google Scholar
[70] J., Jarušek and M., Sofonea, On the solvability of dynamic elasticvisco-plastic contact problems, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 88 (2008), 3–22.Google Scholar
[71] J., Jarušek and M., Sofonea, On the solvability of dynamic elasticvisco-plastic contact problems with adhesion, Annals of AOSR, Series on Mathematics and its Applications 1 (2009), 191–214.Google Scholar
[72] K. L., Johnson, Contact Mechanics, Cambridge, Cambridge University Press, 1987.
[73] A. M., Khludnev and J., Sokolowski, Modelling and Control in Solid Mechanics, Basel, Birkhäuser-Verlag, 1997.
[74] N., Kikuchi and J. T., Oden, Theory of variational inequalities with applications to problems of flow through porous media, Int. J. Engng. Sci. 18 (1980), 1173–1284.Google Scholar
[75] N., Kikuchi and J. T., Oden, Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods, Philadelphia, SIAM, 1988.
[76] D., Kinderlehrer and G., Stampacchia, An Introduction to Variational Inequalities and their Applications, Classics in Applied Mathematics 31, Philadelphia, SIAM, 2000.
[77] A., Klarbring, A., Mikelič and M., Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci. 26 (1988), 811–832.Google Scholar
[78] A., Klarbring, A., Mikelič and M., Shillor, On friction problems with normal compliance, Nonlinear Analysis 13 (1989), 935–955.Google Scholar
[79] A. J., Kurdila and M., Zabarankin, Convex Functional Analysis, Basel, Birkhäuser, 2005.
[80] K. L., Kuttler and M., Shillor, Set-valued pseudomonotone maps and degenerate evolution inclusions, Comm. Contemp. Math. 1 (1999), 87–123.Google Scholar
[81] K. L., Kuttler and M., Shillor, Regularity of solutions to a dynamic frictionless contact problem with normal compliance, Nonlinear Analysis 59 (2004), 1063–1075.Google Scholar
[82] T. A., Laursen, Computational Contact and Impact Mechanics, Berlin, Springer, 2002.
[83] J., Lemaître and J.-L., Chaboche, Mechanics of Solids Materials, Cambridge, Cambridge University Press, 1990.
[84] Z., Lerguet, M., Shillor and M., Sofonea, A frictional contact problem for an electro-viscoelastic body, Electronic Journal of Di?erential Equations 170 (2007), 1–16.Google Scholar
[85] J.-L., Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, Gauthiers-Villars, 1969.
[86] J.-L., Lions and E., Magenes, Problèmes aux limites non-homogènes I, Paris, Dunod, 1968.
[87] J.-L., Lions and G., Stampacchia, Variational inequalitiesComm. Pure Appl. Math. 20, 493 (1967).Google Scholar
[88] Z., Liu and S., Migórski, Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity, Discrete and Continuous Dynamical Systems, Series B 9 (2008), 129–143.Google Scholar
[89] Z., Liu, S., Migórski and A., Ochal, Homogenization of boundary hemivariational inequalities in linear elasticity, J. Math. Anal. Appl. 340 (2008), 1347–1361.Google Scholar
[90] F., Maceri and P., Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support, Math. Comp. Modelling 28 (1998), 19–28.Google Scholar
[91] L. E., Malvern, Introduction to the Mechanics of a Continuum Medium, New Jersey, Princeton-Hall, Inc., 1969.
[92] J. A. C., Martins and M. D. P. Monteiro, Marques, eds., Contact Mechanics, Dordrecht, Kluwer, 2002.
[93] J. A. C., Martins and J. T., Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis TMA 11 (1987), 407–428.Google Scholar
[94] A., Matei, Modélisation Mathématique en Mécanique du Contact, Ph. D. Thesis, Université de Perpignan, Perpignan, 2002.
[95] A., Matei, V. V., Motreanu and M., Sofonea, A quasistatic antiplane contact problem with slip dependent friction, Advances in Nonlinear Variational Inequalities 4 (2001), 1–21.Google Scholar
[96] S., Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction, Appl. Anal. 84 (2005), 669–699.Google Scholar
[97] S., Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity, Discrete and Continuous Dynamical Systems, Series B 6 (2006), 1339–1356.Google Scholar
[98] S., Migórski, Evolution hemivariational inequality for a class of dynamic viscoelastic nonmonotone frictional contact problems, Comput. Math. Appl. 52 (2006), 677–698.Google Scholar
[99] S., Migórski and A., Ochal, Hemivariational inequality for viscoelastic contact problem with slip-dependent friction, Nonlinear Analysis 61 (2005), 135–161.Google Scholar
[100] S., Migórski and A., Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity 83 (2006), 247–275.Google Scholar
[101] S., Migórski and A., Ochal, Existence of solutions for second order evolution inclusions with application to mechanical contact problems, Optimization 55 (2006), 101–120.Google Scholar
[102] S., Migórski, A., Ochal and M., Sofonea, Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact, Math. Models Methods Appl. Sci. 18 (2008), 271–290.Google Scholar
[103] S., Migórski, A., Ochal and M., Sofonea, Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders, Nonlinear Analysis 70 (2009), 3738–3748.Google Scholar
[104] S., Migórski, A., Ochal and M., Sofonea, Modeling and analysis of an antiplane piezoelectric contact problem, Math. Models Methods Appl. Sci. 19 (2009), 1295–1324.Google Scholar
[105] S., Migórski, A., Ochal and M., Sofonea, Variational analysis of static frictional contact problems for electro-elastic materials, Math. Nachr. 283 (2010), 1314–1335.Google Scholar
[106] S., Migórski, A., Ochal and M., Sofonea, A dynamic frictional contact problem for piezoelectric materials, J. Math. Anal. Appl. 361 (2010), 161–176.Google Scholar
[107] S., Migórski, A., Ochal and M., Sofonea, Weak solvability of antiplane frictional contact problems for elastic cylinders, Nonlinear Analysis: Real World Applications 11 (2010), 172–183.Google Scholar
[108] S., Migórski, A., Ochal and M., Sofonea, Analysis of a dynamic contact problem for electro-viscoelastic cylinders, Nonlinear Analysis 73 (2010), 1221–1238.Google Scholar
[109] S., Migórski, A., Ochal and M., Sofonea, Analysis of a frictional contact problem for viscoelastic materials with long memory, Discrete and Continuous Dynamical Systems, Series B 15 (2011), 687–705.Google Scholar
[110] S., Migórski, A., Ochal and M., Sofonea, History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics, Nonlinear Analysis: Real World Applications 12 (2011), 3384–3396.Google Scholar
[111] S., Migórski, A., Ochal and M., Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, New York, Springer, 2012.
[112] J. J., Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la Société Mathématique de France 93 (1965), 273–283.Google Scholar
[113] D., Motreanu and M., Sofonea, Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials, Abstract and Applied Analysis 4 (1999), 255–279.Google Scholar
[114] D., Motreanu and M., Sofonea, Quasivariational inequalities and applications in frictional contact problems with normal compliance, Adv. Math. Sci. Appl. 10 (2000), 103–118.Google Scholar
[115] J., Nečas, Les méthodes directes en théorie des équations elliptiques, Praha, Academia, 1967.
[116] J., Nečas and I., Hlaváček, Mathematical Theory of Elastic and Elastico-Plastic Bodies: an Introduction, Amsterdam, Oxford, New York, Elsevier Scienti?c Publishing Company, 1981.
[117] Q. S., Nguyen, Stability and Nonlinear Solid Mechanics, Chichester, John Wiley & Sons, Ltd., 2000.
[118] J. T., Oden and J. A. C., Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering 52 (1985), 527–634.Google Scholar
[119] P. D., Panagiotopoulos, Inequality Problems in Mechanics and Applications, Boston, Birkhäuser, 1985.
[120] P. D., Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Berlin, Springer-Verlag, 1993.
[121] V. Z., Patron and B. A., Kudryavtsev, Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, London, Gordon & Breach, 1988.
[122] E., Rabinowicz, Friction and Wear of Materials, second edition, New York, Wiley, 1995.
[123] M., Raous, M., Jean and J. J., Moreau, eds., Contact Mechanics, New York, Plenum Press, 1995.
[124] B. D., Reddy, Introductory Functional Analysis with Applications to Boundary Value Problems and Finite Elements, New York, Springer, 1998.
[125] M., Rochdi, M., Shillor and M., Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, J. Elasticity 51 (1998), 105–126.Google Scholar
[126] M., Rochdi, M., Shillor and M., Sofonea, A quasistatic contact problem with directional friction and damped response, Appl. Anal. 68 (1998), 409–422.Google Scholar
[127] A. D., Rodríguez–Aros, M., Sofonea and J. M., Viaño, A class of evolutionary variational inequalities with Volterra-type integral term, Math. Models Methods Appl. Sci. 14 (2004), 555–577.Google Scholar
[128] A. D., Rodríguez–Aros, M., Sofonea and J. M., Viaño, Numerical approximation of a viscoelastic frictional contact problem, C. R. Acad. Sci. Paris, Sér. II Méc. 334 (2006), 279–284.Google Scholar
[129] A. D., Rodríguez–Aros, M., Sofonea and J. M., Viaño, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Numer. Math. 198 (2007), 327–358.Google Scholar
[130] I., Roşca, Functional framework for linear variational equations, in L., Dragoş, ed., Curent Topics in Continuum Mechanics, Bucharest, Editura Academiei Române, 2002, 177–258.
[131] M., Shillor, ed., Recent advances in contact mechanics, Special issue of Math. Comput. Modelling 28 (4–81) (1998).
[132] M., Shillor and M., Sofonea, A quasistatic viscoelastic contact problem with friction, Int. J. Engng. Sci. 38 (2000), 1517–1533.Google Scholar
[133] M., Shillor, M., Sofonea and J. J., Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics 655, Berlin, Springer, 2004.
[134] A., Signorini, Sopra alcune questioni di elastostatica, Atti della Società Italiana per il Progresso delle Scienze, 1933.
[135] M., Sofonea, C., Avramescu and A., Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Comm. Pure Appl. Anal. 7 (2008), 645–658.Google Scholar
[136] M., Sofonea and El H., Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction, Math. Model. Anal. 9 (2004), 229–242.Google Scholar
[137] M., Sofonea and El H., Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body, Adv. Math. Sci. Appl. 14 (2004), 613–631.Google Scholar
[138] M., Sofonea, W., Han and M., Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics 276, New York, Chapman-Hall/CRC Press, 2006.
[139] M., Sofonea and A., Matei, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics 18, New York, Springer, 2009.
[140] M., Sofonea and A., Matei, History-dependent quasivariational inequalities arising in Contact Mechanics, European J. Appl. Math. 22 (2011), 471–491.Google Scholar
[141] M., Sofonea and Y., Ouafik, A piezoelectric contact problem with normal compliance, Applicaciones Mathematicae 32 (2005), 425–442.Google Scholar
[142] M., Sofonea, A. D., Rodríguez–Aros and J. M., Viaño, A class of integro-differential variational inequalities with applications to viscoelastic contact, Math. Comput. Modelling 41 (2005), 1355–1369.Google Scholar
[143] L., Solymar and L. B., Au, Solutions Manual for Lectures on the Electrical Properties of Materials, fifth edition, Oxford, Oxford University Press, 1993.
[144] N., Strömberg, Thermomechanical Modelling of Tribological Systems, Ph.D. Thesis 497, Linköping University, Sweden, 1997.
[145] N., Strömberg, L., Johansson and A., Klarbring, Generalized standard model for contact friction and wear, in M., Raous, M., Jean and J. J., Moreau, eds., Contact Mechanics, New York, Plenum Press, 1995.
[146] N., Strömberg, L., Johansson and A., Klarbring, Derivation and analysis of a generalized standard model for contact friction and wear, Int. J. Solids Structures 33 (1996), 1817–1836.Google Scholar
[147] J. J., Telega, Topics on unilateral contact problems of elasticity and inelasticity, in J. J., Moreau and P. D., Panagiotopoulos, eds., Nonsmooth Mechanics and Applications, Wien, Springer-Verlag, 1988, 340–461.
[148] R., Temam and A., Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge, Cambridge University Press, 2001.
[149] P., Wriggers, Computational Contact Mechanics, Chichester, Wiley, 2002.
[150] P., Wriggers and U., Nackenhorst, eds., Analysis and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics 27, Berlin, Springer, 2006.
[151] P., Wriggers and P. D., Panagiotopoulos, eds., New Developments in Contact Problems, Wien, New York, Springer-Verlag, 1999.
[152] J., Yang, ed., Special Topics in the Theory of Piezoelectricity, New York, Springer, 2009.
[153] J. S., Yang, R. C., Batra and X. Q., Liang, The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators, Smart Mater. Struct. 3 (1994), 485–493.Google Scholar
[154] J., Yang and J. S., Yang, An Introduction to the Theory of Piezoelectricity, New York, Springer, 2005.
[155] E., Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-point Theorems, New York, Springer-Verlag, 1986.
[156] E., Zeidler, Nonlinear Functional Analysis and its Applications. III: Variational Methods and Optimization, New York, Springer-Verlag, 1986.
[157] E., Zeidler, Nonlinear Functional Analysis and its Applications. IV: Applications to Mathematical Physics, New York, Springer-Verlag, 1988.
[158] E., Zeidler, Nonlinear Functional Analysis and its Applications, II/A: Linear Monotone Operators, New York, Springer-Verlag, 1990.
[159] E., Zeidler, Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators, New York, Springer-Verlag, 1990.
[160] E., Zeidler, Applied Functional Analysis: Main Principles and Their Applications, New York, Springer-Verlag, 1995.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mircea Sofonea, Université de Perpignan, France, Andaluzia Matei, Universitatea din Craiova, Romania
  • Book: Mathematical Models in Contact Mechanics
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139104166.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mircea Sofonea, Université de Perpignan, France, Andaluzia Matei, Universitatea din Craiova, Romania
  • Book: Mathematical Models in Contact Mechanics
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139104166.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mircea Sofonea, Université de Perpignan, France, Andaluzia Matei, Universitatea din Craiova, Romania
  • Book: Mathematical Models in Contact Mechanics
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139104166.010
Available formats
×