Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T13:58:23.924Z Has data issue: false hasContentIssue false

15 - Iron mineralogy and aqueous alteration on Mars from the MER Mössbauer spectrometers

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

R. V. Morris
Affiliation:
NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA
G. Klingelhöfer
Affiliation:
Institut für Anorganische Chemie und Analytische Chemie, University of Mainz, Mainz, 55099, Germany
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The twin Mars Exploration Rovers (MER) Spirit (Gusev crater) and Opportunity (Meridiani Planum) used miniaturized Mössbauer spectrometers (MIMOS II) to analyze Martian surface materials in the first application of extraterrestrial Mössbauer (MB) spectroscopy. The instruments acquired spectra that identified the speciation of Fe according to oxidation state, coordination state, and mineralogical composition and provided quantitative information about the distribution of Fe among oxidation states, coordination states, and Fe-bearing phases. A total of 12 unique Fe-bearing phases were identified: Fe2 + in olivine, pyroxene, and ilmenite; Fe2 + and Fe3 + in magnetite and chromite; Fe3 + in nanophase ferric oxide (npOx), hematite, goethite, jarosite, an unassigned Fe3 + sulfate, and an unassigned Fe3 + phase associated with jarosite; and Fe0 in kamacite. Weakly altered basalts at Gusev crater (SO3 = 2.5 ± 1.4 wt.% and Fe3 +/FeT = 0.24 ± 0.11) are widespread on the Gusev plains and occur in less abundance on West Spur and Husband Hill in the Columbia Hills. Altered low-S rocks (SO3 = 5.2 ± 2.0 wt.% and Fe3 +/FeT = 0.63 ± 0.18) are the most common type of rock in the Columbia Hills. Ilm-bearing, weakly altered basalts were detected only in the Columbia Hills, as was the only occurrence of chromite in an altered low-S rock named Assemblee. Altered high-S rocks (SO3 > 14.2 wt.% and Fe3 +/FeT = 0.83 ± 0.05) are the outcrop rocks of the ubiquitous Burns formation at Meridiani Planum.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 339 - 365
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover Mission to Gusev crater: landing site to the Methuselah Outcrop in the Columbia Hills, J. Geophys. Res. 111, E02S01, doi:10.1029/2005JE002499, 2006a.CrossRefGoogle Scholar
Arvidson, R. E., Poulet, F., Morris, R. V., et al., Nature and origin of the hematite-bearing plains of Terra Meridiani based on analysis for orbital and Mars Exploration Rover data sets, J. Geophys. Res. 111, E12S08, doi:10.1029/2006JE002728, 2006b.CrossRefGoogle Scholar
Bancroft, G. M., Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists, New York: McGraw-Hill, 1973.Google Scholar
Banin, A., Han, F. X., Kan, I., and Cicelsky, A., Acidic volatiles and the Mars soil, J. Geophys. Res. 102, 13341–56, 1997.CrossRefGoogle Scholar
Bell, J. F. III, McSween, H. Y. Jr., Crisp, J. A., et al., Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. 105, 1721–55, 2000.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Spirit rover at Gusev crater, Science 305, 800–6, 2004a.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004b.CrossRefGoogle Scholar
Bell, J. F. III, Joseph, J., Sohl-Dickstein, J. N., et al., In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments, J. Geophys. Res. 111, E02S03, doi:10.1029/2005JE002444, 2006.
Bibring, J.-P., Langevin, Y., Mustard, J. F., et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science 312, 400–4, 2006.CrossRefGoogle ScholarPubMed
Bishop, J. L., Froschl, H., and Mancinelli, R. L., Alteration processes in volcanic soils and identification of exobiologically important weathering products on Mars using remote sensing, J. Geophys. Res. 103, 31457–76, 1998.CrossRefGoogle ScholarPubMed
Borggaard, O. K., Effect of surface area on mineralogy of iron oxides on their surface charge and anion-adsorption properties, Clays Clay Miner. 31, 230–2, 1983a.CrossRefGoogle Scholar
Borggaard, O. K., The influence of oxides on phosphate adsorption by soil, J. Soil Sci. 34, 333–41, 1983b.CrossRefGoogle Scholar
Burns, R. G., Does feroxyhyte occur on the surface of Mars?, Nature 285, 467, 1980a.CrossRefGoogle Scholar
Burns, R. G., Feroxyhte on Mars?, Nature 288, 196, 1980b.CrossRefGoogle Scholar
Burns, R. G., Gossans on Mars, Proc. Lunar Planet. Sci. Conf. XVIII, 713–21, 1988.Google Scholar
Burns, R. G., Mossbauer spectral characterization of iron in planetary surface materials. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. M. and Englert, P. A. J.), Cambridge: Cambridge University Press, pp. 539–56, 1993.Google Scholar
Burns, R. G. and Fisher, D. S., Iron-sulfur mineralogy of Mars: magmatic evolution and chemical weathering products, J. Geophys. Res. 95, 14415–21, 1990.CrossRefGoogle Scholar
Burns, R. G. and Solberg, T. C., 57Fe-bearing oxide, silicate, and aluminosilicate minerals, crystal structure trends in Mössbauer spectra, Spectroscopic Characterization of Minerals and Their Surfaces, Washington, DC: American Chemical Society, pp. 262–83, 1990.Google Scholar
Christensen, P. R., Bandfield, J. L., Clark, R. N., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer, J. Geophys. Res. 105, 9623–42, 2000.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–71, 2001.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover, Science 305, 837–42, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover, Science 306, 1733–9, 2004b.CrossRefGoogle Scholar
Clark, B. C. and Baird, A. K., Is the Martian lithosphere sulfur rich?, J. Geophys. Res. 84, 8395–403, 1979.CrossRefGoogle Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Clark, B. C., Arvidson, R. E., Gellert, R., et al., Evidence for montmorillonite or its compositional equivalent in the Columbia Hills, Mars, J. Geophys. Res. 112, E06S01, doi:10.1029/2006JE002756, 2007.CrossRefGoogle Scholar
Coey, J. M. D., Morup, S., Madsen, M. B., and Knudsen, J. M., Titanomaghemite in magnetic soils on Earth and Mars, J. Geophys. Res. 95, 14423–5, 1990.CrossRefGoogle Scholar
Cornell, R. and Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses, New York: VHC, 1996.Google Scholar
Grave, E. and Alboom, A., Evaluation of ferrous and ferric Mossbauer fractions, Phys. Chem. Miner. 18, 337–42, 1991.CrossRefGoogle Scholar
Grave, E., Chambaere, D., and Bowen, L. H., Nature on the Morin transition in Al-substituted hematite, J. Magn. Magn. Mater. 30, 349–54, 1983.CrossRefGoogle Scholar
Grave, E., Barrero, C. A., Costa, G. M. Da, Vandenberghe, R. E., and San, E., Mössbauer spectra of α- and γ-FeOOH and Fe2O3: effects of poor crystallinity and Al-for-Fe substitution, Clay Miner. 37, 591–606, 2002.CrossRefGoogle Scholar
Dutrizac, J. E. and J. L. Jambor, Jarosites and their application in hydrometallurgy. In Reviews in Mineralogy and Geochemistry, Vol. 40: Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance (ed. Alpers, C. N., Jambor, J. L., and Nordstom, D. K.), Washington, DC: Mineralogical Society of America & Geochemical Society, pp. 454–79, 2000.Google Scholar
Floran, R. J., Simonds, C. H., Grieve, R. A. F., et al., Petrology, structure and origin of the Manicouagan melt sheet, Quebec, Canada: a preliminary report, Geophys. Res. Lett. 3, 49–52, 1976.CrossRefGoogle Scholar
Floran, R. J., Grieve, R. A. F., Phinney, W. C., et al., Manicouagan impact melt, Quebec, 1, Stratigraphy, petrology, and chemistry, J. Geophys. Res. 83, 2737–59, 1978.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Gellert, R., Rieder, R., Brückner, J., Clark, B. C., et al., Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, E02S05, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Goetz, W., Bertelsen, P., Binau, C. S., et al., Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust, Nature 436, 7, doi:10.1038/nature03807, 2005.CrossRefGoogle ScholarPubMed
Golombek, M. P., Grant, J. A., Parker, T. J., et al., Selection of the Mars Exploration Rover landing sites, J. Geophys. Res. 108, 8072, doi:10.1029/2003JE002074. 2003.CrossRefGoogle Scholar
Greenwood, N. N. and Gibb, T. C., Mössbauer Spectroscopy, London: Chapman and Hall Ltd., 1971.CrossRefGoogle Scholar
Grotzinger, J. P., Arvidson, R. E., Bell, J. F. III, et al., Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Nature 240, 11–72, 2005.Google Scholar
Gütlich, P., Link, R., and Trautwein, A., Mössbauer Spectroscopy and Transition Metal Chemistry, Inorganic Chemistry Concepts, Vol. 3, New York: Springer-Verlag, 1978.CrossRefGoogle Scholar
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Cates, P. M., Viking magnetic properties experiment: extended mission results, J. Geophys. Res. 84, 8379–84, 1979.CrossRefGoogle Scholar
Hawthorne, F. C., Mossbauer spectroscopy. In Reviews in Mineralogy, Vol. 18: Spectroscopic Methods in Mineralogy and Geology (ed. Hawthorne, F. C.), Chantilly, VA: Mineralogical Society of America, pp. 255–340, 1988.Google Scholar
Hynek, B. M., Arvidson, R. E., and Phillips, R. J., Geologic setting and origin of Terra Meridiani hematite deposit, J. Geophys. Res. 107, 5508, doi:10.1029/2002JE001891, 2002.CrossRefGoogle Scholar
Johnson, J. H., Jarosite and akaganeite from White Island volcano, New Zealand: an X-ray and Mössbauer study, Geochem. Cosmochem. Acta 41, 539–44, 1977.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Athena MIMOS II Moessbauer spectrometer investigation, J. Geophys. Res. 108, 8067, doi:10.1029/2003JE002138, 2003.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Klingelhöfer, G., DeGrave, E., Morris, R. V., et al., Mössbauer spectroscopy of Mars: goethite in the Columbia Hills at Gusev crater, Hyperfine Interact, 166, 549–554, doi:10.1007/s110751–006–9329-y, 2006.CrossRefGoogle Scholar
Knauth, L. P., Burt, D. M., and Wohletz, K. H., Impact origin of sediments at the Opportunity landing site on Mars, Nature 438 (22/29), 1123–8, doi:10.1038/nature04383, 2005.CrossRefGoogle ScholarPubMed
Lane, M. D., Dyar, M. D., and Bishop, J. L., Spectroscopic evidence for hydrous iron sulfate in the Martian soil, Geophys. Res. Lett. 31, L19702, doi:10.1029/20–04GL021231, 2004.CrossRefGoogle Scholar
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al., The magnetic properties experiments on Mars Pathfinder, J. Geophys. Res. 104, 8761–79, 1999.CrossRefGoogle Scholar
Madsen, M. B., Bertelsen, P., Goetz, W., et al., Magnetic properties experiments on the Mars Exploration Rover mission, J. Geophys. Res. 108, 8069, doi:10.1029/2002JE002029, 2003.CrossRefGoogle Scholar
McCammon, C., Mössbauer spectroscopy of minerals. In Mineral Physics and Crystallography: A Handbook of Physical Constants (ed. Ahrens, T. J.), Washington, DC: American Geophysical Union, pp. 332–47, 1995.CrossRefGoogle Scholar
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438(22/29), 1129–31, doi:10.1038/nature04390, 2005a.CrossRefGoogle Scholar
McCollom, T. M. and Hynek, B. M., McCollom & Hynek reply, Nature 433(7), E2, doi:10.1038/nature05213, 2005b.Google Scholar
McLennan, S. M., Bell, J. F. III, Calvin, W. M., et al., Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, 2005.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:10.1029/2005JE002477, 2006.CrossRefGoogle Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, E02S12, doi:10.1029/2005JE002560, 2006.CrossRefGoogle Scholar
Morris, R. V., Agresti, D. G., Lauer, H. V. Jr., et al., Evidence for pigmentary hematite on Mars based on optical magnetic and Mössbauer studies of superparamagnetic (nanocrystalline) hematite, J. Geophys. Res. 94, 2760–78, 1989.CrossRefGoogle Scholar
Morris, R. V., Gooding, J. J., Lauer, H. V. Jr., and Singer, R. B., Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil, J. Geophys. Res. 95, 14427–34, 1990.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, Lauer, H. V. Jr., and Adams, J. B., Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9, Geochim. Cosmochim. Acta 57, 4597–609, 1993.CrossRefGoogle ScholarPubMed
Morris, R. V., Golden, D. C., Bell, J. F. III, and Lauer, H. V. Jr., Hematite, pyroxene, and phyllosilicates on Mars: implications from oxidized impact melt rocks from Manicouagan crater, Quebec, Canada, J. Geophys. Res. 100, 5319–28, 1995.CrossRefGoogle Scholar
Morris, R. V., D. W. Ming, D. C. Golden, and J. F. Bell III, An occurrence of jarositic tephra on Mauna Kea, Hawaii: implications for the ferric mineralogy of the Martian surface. In Mineral Spectroscopy: A Tribute to Roger G. Burns (ed. Dyar, M. D., McCammon, C., and Schaefer, M. W.), Houston: The Geochemical Society, Special Publication No. 5, pp. 327–36, 1996.Google Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. 105, 1757–817, 2000.CrossRefGoogle Scholar
Morris, R. V., Graff, T. G., Shelfer, T. D., and Bell, J. F. III, Effect of palagonitic dust coatings on visible, near-IR and Mossbauer spectra of rocks and minerals: implications for mineralogical remote sensing of Mars, Lunar Planet. Sci. XXXII, Houston, TX, Abstract #1912 (CD-ROM), March 12–16, 2001a.Google Scholar
Morris, R. V., Golden, D. C., Ming, D. W., et al., Phyllosilicate-poor palagonitic dust form Mauna Kea Volcano (Hawaii): a mineralogical analogue for magnetic martian dust?, J. Geophys. Res. 106, 5057–83, 2001b.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mössbauer mineralogy on Mars: first results from the Spirit landing site in Gusev crater, Science 305, 833–6, 2004.CrossRefGoogle Scholar
Morris, R. V., Ming, D. W., Graff, T. G., et al., Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 168–78, 2005.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006a.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res. 111, E12S15, doi:10.1029/2006JE00279, 2006b.CrossRefGoogle Scholar
Myneni, S. C. B., X-ray and vibrational spectroscopy of sulfate in Earth materials. In Reviews in Mineralogy and Geochemistry, Vol. 40: Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance (ed. Alpers, C. N., Jambor, J. L., and Nordstom, D. K.), Washington, D. C: Mineralogical Society of America & Geochemical Society, pp. 113–72, 2000.Google Scholar
Phinney, W. C., Simonds, C. H., Cochran, A., and McGee, P. E., West Clearwater, Quebec impact structure, Part II: Petrology, Proc. Lunar Planet. Sci. Conf. IX, 2659–93, 1978.Google Scholar
Posey-Dowty, J., Moskowitz, B., Crerar, D., et al., Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to martian surface mineralogy, Icarus 66, 105–16, 1986.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Settle, M., Formation and deposition of volcanic sulfate aerosols on Mars, J. Geophys. Res. 84, 8343–54, 1979.CrossRefGoogle Scholar
Simonds, C. H., Floran, R. J., McGee, P. E., Phinney, W. C., and Warner, J. W., Petrogenesis of melt rocks, Manicouagan impact structure, Quebec, J. Geophys. Res. 83, 2773–88, 1978.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Spirit rover's Athena science investigation at Gusev crater, Mars, Science 305, 794–9, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity rover's Athena science investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Aharonson, O., Arvidson, R. E., et al., Bedrock formation at Meridiani Planum, Nature 443(7), E1–E2, doi:10.1038/nature05212, 2005.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bollen, D., et al., Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle crater to Purgatory Ripple, J. Geophys. Res. 111, E12S12, doi:10.1029/2006JE002771, 2006a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. 111, E02S11, doi:10.1029/2005JE002562, 2006b.CrossRefGoogle Scholar
Stevens, J. G., Khasanov, A. M., Miller, J. W., Pollak, H., and Li, Z., Mössbauer Mineral Handbook, Ashville, NC: Biltmore Press, 1998.Google Scholar
Stoffregen, R. E., C. N. Alpers, and J. L. Jambor, Alunite-jarosite crystallography, thermodynamics, and geochemistry. In Reviews in Mineralogy and Geochemistry, Vol. 40: Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance (ed. Alpers, C. N., Jambor, J. L., and Nordstom, D. K.), Washington, DC: Mineralogical Society of America & Geochemical Society, pp. 453–80, 2000.Google Scholar
Straub, D. W., Burns, R. G., and Pratt, S. F., Spectral signature of oxidized pyroxenes: implications to remote sensing of terrestrial planets, J. Geophys. Res. 96, 18819–30, 1991.CrossRefGoogle Scholar
Towe, K. M., Feroxyhyte on Mars?, Nature 288, 196, 1980.CrossRefGoogle Scholar
Wang, A., Haskin, L. A., Squyres, S. W., et al., Sulfate deposition in subsurface regolith exposed in trenches at the plains traversed by Spirit rover in Gusev crater, Mars, J. Geophys. Res. 111, E02S17, doi:10.1029/2005JE002513, 2006a.Google Scholar
Wang, A., Korotev, R. L., Jolliff, B. L., et al., Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars, J. Geophys. Res. 111, E02S16, doi:10.1029/2005JE002516, 2006b.Google Scholar
Wegener, H., Der Mössbauer-Effect und Seine Anwendungen in Physik und Chemie, 2nd edn., Mannheim, Germany: Bibliographisches Institute, 1966.Google Scholar
Wertheim, G. K., Mössbauer Effect: Principles and Applications, San Diego, CA: Academic, 1964.Google Scholar
Yen, A. S., Murray, B. C., and Rossmann, G. R., Water content of the Martian soil: laboratory simulations of reflectance spectra, J. Geophys. Res. 103, 11125–33, 1998.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436(7), doi:10.1038/nature03637, 2005.Google ScholarPubMed
Yen, A. S., Mittlefehldt, D. W., McLennan, S. M., et al., Nickel on Mars: constraints on meteoritic material at the surface, J. Geophys. Res. 111, E12S11, doi:10.1029/2006JE002797, 2006.CrossRefGoogle Scholar
Zolotov, M. Y. and Shock, E. L., Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophys. Res. Lett. 32, L21203, doi:1029–2005GL024253, 2005.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×