Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T23:13:28.776Z Has data issue: false hasContentIssue false

Part VI - Cannabinoids and Schizophrenia: Aetiopathology and Treatment Implications

Published online by Cambridge University Press:  12 May 2023

Deepak Cyril D'Souza
Affiliation:
Staff Psychiatrist, VA Connecticut Healthcare System; Professor of Psychiatry, Yale University School of Medicine
David Castle
Affiliation:
University of Tasmania, Australia
Sir Robin Murray
Affiliation:
Honorary Consultant Psychiatrist, Psychosis Service at the South London and Maudsley NHS Trust; Professor of Psychiatric Research at the Institute of Psychiatry
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Marijuana and Madness , pp. 167 - 224
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Allebeck, P., Adamsson, C., Engström, A., et al. (1993). Cannabis and schizophrenia: A longitudinal study of cases treated in Stockholm County. Acta Psychiatr Scand, 88, 2124.Google Scholar
Andréasson, S., Engström, A., Allebeck, P., et al. (1987). Cannabis and schizophrenia: A longitudinal study of Swedish conscripts. Lancet, 330, 14831486.Google Scholar
Arango, C., Dragioti, E., Solmi, M., et al. (2021). Risk and protective factors for mental disorders beyond genetics: An evidence‐based atlas. World Psychiatry, 20, 417436.CrossRefGoogle ScholarPubMed
Arseneault, L., Cannon, M., Witton, J., et al. (2004). Causal association between cannabis and psychosis: Examination of the evidence. Br J Psychiatry, 184, 110117.CrossRefGoogle ScholarPubMed
Ayonrinde, O. A. (2020). Cannabis and psychosis: Revisiting a nineteenth century study of ‘Indian Hemp and Insanity’ in Colonial British India. Psychol Med, 50, 11641172.Google Scholar
Bechtold, J., Hipwell, A., Lewis, D. A., et al. (2016). Concurrent and sustained cumulative effects of adolescent marijuana use on subclinical psychotic symptoms. Am J Psychiatry, 173, 781789.Google Scholar
Belbasis, L., Köhler, C. A., Stefanis, N., et al. (2018). Risk factors and peripheral biomarkers for schizophrenia spectrum disorders: An umbrella review of meta‐analyses. Acta Psychiatr Scand, 137, 8897.Google Scholar
Carliner, H., Brown, Q. L., Sarvet, A. L., et al. (2017). Cannabis use, attitudes, and legal status in the US: A review. Prev Med, 104, 1323.Google Scholar
Caspi, A., Houts, R. M., Ambler, A., et al. (2020). Longitudinal assessment of mental health disorders and comorbidities across 4 decades among participants in the Dunedin birth cohort study. JAMA Netw Open, 3, e203221.Google Scholar
Clark, C. S. (2019). High-potency cannabis and incident psychosis: Correcting the causal assumption. Lancet Psychiatry, 6, e14.CrossRefGoogle ScholarPubMed
Clouston, T. S. (1896). The Cairo Asylum: Dr. Warnock on hasheesh insanity. J Mental Sci, 42, 790795.Google Scholar
D’Souza, D. C., Abi-Saab, W. M., Madonick, S., et al. (2005). Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction. Biol Psychiatry, 57, 594608.CrossRefGoogle ScholarPubMed
Davis, G. P., Compton, M. T., Wang, S., et al. (2013). Association between cannabis use, psychosis, and schizotypal personality disorder: Findings from the National Epidemiologic Survey on Alcohol and Related Conditions. Schizophr Res, 151, 197202.Google Scholar
De Pablo, G. S., Catalan, A., and Fusar-Poli, P. (2020). Clinical validity of DSM-5 attenuated psychosis syndrome: Advances in diagnosis, prognosis, and treatment. JAMA Psychiatry, 77, 311320.CrossRefGoogle Scholar
Di Forti, M., Marconi, A., Carra, E., et al. (2015). Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: A case-control study. Lancet Psychiatry, 2, 233238.Google Scholar
Di Forti, M., Morgan, C., Dazzan, P., et al. (2009). High-potency cannabis and the risk of psychosis. Br J Psychiatry, 195, 488491.Google Scholar
Di Forti, M., Morgan, C., Selten, J. P., et al. (2019a). High-potency cannabis and incident psychosis: Correcting the causal assumption – authors’ reply. Lancet Psychiatry, 6, 466467.CrossRefGoogle ScholarPubMed
Di Forti, M., Quattrone, D., Freeman, T. P., et al. (2019b). The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): A multicentre case-control study. Lancet Psychiatry, 6, 427436.Google Scholar
European Monitoring Centre for Drugs and Drug Addiction. (2018). European Drug Report 2018: Trends and Developments. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Gage, S. H., Jones, H. J., Burgess, S., et al. (2017). Assessing causality in associations between cannabis use and schizophrenia risk: A two-sample Mendelian randomization study. Psychol Med, 47, 971980.Google Scholar
Gillespie, N. A., and Kendler, K. S. (2021). Use of genetically informed methods to clarify the nature of the association between cannabis use and risk for schizophrenia. JAMA Psychiatry, 78, 467468.Google Scholar
Gillespie, N. A., Pasman, J. A., Treur, J. L., et al. (2019). High-potency cannabis and incident psychosis: Correcting the causal assumption. Lancet Psychiatry, 6, 464.Google Scholar
Giordano, G. N., Ohlsson, H., Sundquist, K., et al. (2015). The association between cannabis abuse and subsequent schizophrenia: A Swedish national co-relative control study. Psychol Med, 45, 407414.Google Scholar
Gobbi, G., Atkin, T., Zytynski, T., et al. (2019). Association of cannabis use in adolescence and risk of depression, anxiety, and suicidality in young adulthood: A systematic review and meta-analysis. JAMA Psychiatry, 76, 426434.Google Scholar
Guloksuz, S., Pries, L. K., Ten Have, M., et al. (2020). Association of preceding psychosis risk states and non‐psychotic mental disorders with incidence of clinical psychosis in the general population: A prospective study in the NEMESIS‐2 cohort. World Psychiatry, 19, 199205.CrossRefGoogle ScholarPubMed
Gunasekera, B., Davies, C., Martin-Santos, R., et al. (2021). The yin and yang of cannabis: A systematic review of human neuroimaging evidence of the differential effects of Δ9-tetrahydrocannabinol and cannabidiol. Biol Psychiatry Cogn Neurosci Neuroimaging, 6, 636645.Google Scholar
Hall, W. (2019). The Indian Hemp Drugs Commission 1893–1894. Addiction, 114, 16791682.Google Scholar
Harley, M., Kelleher, I., Clarke, M., et al. (2010). Cannabis use and childhood trauma interact additively to increase the risk of psychotic symptoms in adolescence. Psychol Med, 40, 16271634.Google Scholar
Hill, A. B. (1965). The environment and disease: Association or causation? Proc R Soc Med. 58, 295300.Google ScholarPubMed
Hindley, G., Beck, K., Borgan, F., et al. (2020). Psychiatric symptoms caused by cannabis constituents: A systematic review and meta-analysis. Lancet Psychiatry, 7, 344353.Google Scholar
Hjorthøj, C., Posselt, C. M., and Nordentoft, M. (2021a). Development over time of the population-attributable risk fraction for cannabis use disorder in schizophrenia in Denmark. JAMA Psychiatry, 78, 10131019.CrossRefGoogle ScholarPubMed
Hjorthøj, C., Uddin, M. J., Wimberley, T., et al. (2021b). No evidence of associations between genetic liability for schizophrenia and development of cannabis use disorder. Psychol Med, 51, 479484.Google Scholar
Ioannidis, J. P. (2016). Exposure‐wide epidemiology: Revisiting Bradford Hill. Stat Med, 35, 17491762.CrossRefGoogle ScholarPubMed
Jones, H. J., Gage, S. H., Heron, J., et al. (2018). Association of combined patterns of tobacco and cannabis use in adolescence with psychotic experiences. JAMA Psychiatry, 75, 240246.Google Scholar
Jongsma, H. E., Gayer-Anderson, C., Lasalvia, A., et al. (2018). Treated incidence of psychotic disorders in the multinational EU-GEI study. JAMA Psychiatry, 75, 3646.Google Scholar
Kendler, K. S., Ohlsson, H., Sundquist, J., et al. (2019). Prediction of onset of substance-induced psychotic disorder and its progression to schizophrenia in a Swedish national sample. Am J Psychiatry, 176, 711719.Google Scholar
Konings, M., Stefanis, N., Kuepper, R., et al. (2012). Replication in two independent population-based samples that childhood maltreatment and cannabis use synergistically impact on psychosis risk. Psychol Med, 42, 149159.Google Scholar
Koskinen, J., Löhönen, J., Koponen, H., et al. (2010). Rate of cannabis use disorders in clinical samples of patients with schizophrenia: A meta-analysis. Schizophr Bull, 36, 11151130.Google Scholar
Large, M., Sharma, S., Compton, M. T., et al. (2011). Cannabis use and earlier onset of psychosis: A systematic meta-analysis. Arch Gen Psychiatry, 68, 555561.CrossRefGoogle ScholarPubMed
Laviolette, S. R. (2021). Exploring the impact of adolescent exposure to cannabinoids and nicotine on psychiatric risk: Insights from translational animal models. Psychol Med, 51, 940947.CrossRefGoogle ScholarPubMed
Lee, P. N., Forey, B. A., and Coombs, K. J. (2012). Systematic review with meta-analysis of the epidemiological evidence in the 1900s relating smoking to lung cancer. BMC Cancer, 12, 190.Google Scholar
Libuy, N., de Angel, V., Ibáñez, C., et al. (2018). The relative prevalence of schizophrenia among cannabis and cocaine users attending addiction services. Schizophr Res, 194, 1317.Google Scholar
Linnman, C. (2019). High-potency cannabis and incident psychosis: Correcting the causal assumption. Lancet Psychiatry, 6, 465466.Google Scholar
Linszen, D. H., Dingemans, P. M., and Lenior, M. E. (1994). Cannabis abuse and the course of recent-onset schizophrenic disorders. Arch Gen Psychiatry, 51, 273279.CrossRefGoogle ScholarPubMed
Marconi, A., Di Forti, M., Lewis, C. M., et al. (2016). Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull, 42, 12621269.Google Scholar
McGrath, J., Welham, J., Scott, J., et al. (2010). Association between cannabis use and psychosis-related outcomes using sibling pair analysis in a cohort of young adults. Arch Gen Psychiatry, 67, 440447.Google Scholar
McGuire, P., Robson, P., Cubala, W. J., et al. (2018). Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: A multicenter randomized controlled trial. Am J Psychiatry, 175, 225231.CrossRefGoogle ScholarPubMed
Moore, T. H., Zammit, S., Lingford-Hughes, A., et al. (2007). Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet, 370, 319328.Google Scholar
Morrison, P. D., Zois, V., McKeown, D. A., et al. (2009). The acute effects of synthetic intravenous Δ9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med, 39, 16071616.Google Scholar
Murray, R. M., Englund, A., Abi-Dargham, A., et al. (2017). Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology, 124, 89104.CrossRefGoogle ScholarPubMed
Murray, R. M., and Hall, W. (2020). Will legalization and commercialization of cannabis use increase the incidence and prevalence of psychosis? JAMA Psychiatry, 77, 777778.Google Scholar
Mustonen, A., Niemelä, S., Nordström, T., et al. (2018). Adolescent cannabis use, baseline prodromal symptoms and the risk of psychosis. Br J Psychiatry, 212, 227233.Google Scholar
Pasman, J. A., Verweij, K. J., Gerring, Z., et al. (2018). GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability. Nature Neurosci, 21, 11611170.CrossRefGoogle Scholar
Plana-Ripoll, O., Pedersen, C. B., Holtz, Y., et al. (2019). Exploring comorbidity within mental disorders among a Danish national population. JAMA Psychiatry, 76, 259270.Google Scholar
Quattrone, D., Ferraro, L., Tripoli, G., et al. (2021). Daily use of high-potency cannabis is associated with more positive symptoms in first-episode psychosis patients: The EU-GEI case–control study. Psychol Med, 51, 13291337.CrossRefGoogle Scholar
Radua, J., Ramella‐Cravaro, V., Ioannidis, J. P., et al. (2018). What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry, 17, 4966.Google Scholar
Rolfe, M., Tang, C. M., Sabally, S., et al. (1993). Psychosis and cannabis abuse in The Gambia: A case-control study. Br J Psychiatry, 163, 798801.CrossRefGoogle ScholarPubMed
Rothman, K. J., and Greenland, S. (1998). Types of epidemiologic studies. Mod Epidemiol, 3, 9597.Google Scholar
Rubino, T., and Parolaro, D. (2016). The impact of exposure to cannabinoids in adolescence: Insights from animal models. Biol Psychiatry, 79, 578585.CrossRefGoogle ScholarPubMed
San-Martin, R., Castro, L. A., Menezes, P. R., et al. (2020). Meta-analysis of sensorimotor gating deficits in patients with schizophrenia evaluated by prepulse inhibition test. Schizophr Bull, 46, 14821497.Google Scholar
Semple, D. M., McIntosh, A. M., and Lawrie, S. M. (2005). Cannabis as a risk factor for psychosis: Systematic review. J Psychopharmacol, 19, 187194.CrossRefGoogle ScholarPubMed
Sommer, I., and van den Brink, W. (2019). High-potency cannabis and incident psychosis: Correcting the causal assumption. Lancet Psychiatry, 6, 464465.Google Scholar
Sullivan, P. F., Kendler, K. S., and Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Arch Gen psychiatry, 60, 11871192.Google Scholar
Susser, M. (1991). What is a cause and how do we know one? A grammar for pragmatic epidemiology. Am J Epidemiol, 133, 635648.Google Scholar
Thomsen, K. R., Lindholst, C., Thylstrup, B., et al. (2019). Changes in the composition of cannabis from 2000–2017 in Denmark: Analysis of confiscated samples of cannabis resin. Exp Clin Psychopharmacol, 27, 402.Google Scholar
Tsuang, M. T., Lyons, M. J., Eisen, S. A., et al. (1996). Genetic influences on abuse of illicit drugs: A study of 3,297 twin pairs. Am J Med Genet, 67, 473477.Google Scholar
United Nations Office on Drugs and Crime (2006). World Drug Report (Vol. 1). Amsterdam: Boom Koninklijke Uitgevers.Google Scholar
Varese, F., Smeets, F., Drukker, M., et al. (2012). Childhood adversities increase the risk of psychosis: A meta-analysis of patient-control, prospective-and cross-sectional cohort studies. Schizophr Bull, 38, 661671.Google Scholar
Vaucher, J., Keating, B. J., Lasserre, A. M., et al. (2018). Cannabis use and risk of schizophrenia: A Mendelian randomization study. Mol Psychiatry, 23, 12871292.Google Scholar

References

Atwood, B. K., and Mackie, K. (2010). CB2: A cannabinoid receptor with an identity crisis. Br J Pharmacol, 160, 467479.Google Scholar
Bagher, A. M., Laprairie, R. B., Kelly, M. E. M., et al. (2013). Co-expression of the human cannabinoid receptor coding region splice variants (hCB₁) affects the function of hCB₁ receptor complexes. Eur J Pharmacol, 721, 341354.CrossRefGoogle ScholarPubMed
Basavarajappa, B. S., and Hungund, B. L. (2002). Neuromodulatory role of the endocannabinoid signaling system in alcoholism: An overview. Prostaglandins Leukot Essent Fatty Acids, 66, 287299.Google Scholar
Benito, C., Tolon, R. M., Pazos, M. R., et al. (2008). Cannabinoid CB2 receptors in human brain inflammation. Br J Pharmacol, 153, 277285.CrossRefGoogle ScholarPubMed
Breivogel, C. S., Griffin, G., Di, M. V., and Martin, B. R. (2001). Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol, 60, 155163.CrossRefGoogle Scholar
Castillo, P. E., Younts, T. J., Chávez, A. E., et al. (2012). Endocannabinoid signaling and synaptic function. Neuron, 76, 7081.Google Scholar
D’Souza, D. C., Abi-Saab, W. M., Madonick, S., et al. (2005). Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction. Biol Psychiatry, 57, 594608.Google Scholar
Dalton, V. S., Long, L. E., Weickert, C. S., et al. (2011). Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex. Neuropsychopharmacology, 36, 16201630.CrossRefGoogle ScholarPubMed
Dean, B., Sundram, S., Bradbury, R., et al. (2001). Studies on [3H]CP-55940 binding in the human central nervous system: Regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience, 103, 915.CrossRefGoogle ScholarPubMed
Deng, C., Han, M., and Huang, X. F. (2007). No changes in densities of cannabinoid receptors in the superior temporal gyrus in schizophrenia. Neurosci Bull, 23, 341347.Google Scholar
Di Marzo, V., Breivogel, C. S., Tao, Q., et al. (2000). Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: Evidence for non-CB(1), non-CB(2) receptor- mediated actions of anandamide in mouse brain. J Neurochem, 75, 24342444.CrossRefGoogle Scholar
Eggan, S. M., Hashimoto, T., and Lewis, D. A. (2008). Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. Arch Gen Psychiatry, 65, 772784.Google Scholar
Eggan, S. M., Stoyak, S. R., Verrico, C. D., et al. (2010). Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: Comparison of schizophrenia and major depressive disorder. Neuropsychopharmacology, 35, 20602071.Google Scholar
Elphick, M. R., and Egertova, M. (2001). The neurobiology and evolution of cannabinoid signalling. Phil Trans R Soc Lond B, 356, 381408.Google Scholar
Garani, R., Watts, J. J., and Mizrahi, R. (2021). Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry, 106, 110096.Google Scholar
Glass, M., Dragunow, M., and Faull, R. L. (1997). Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the foetal, neonatal and adult human brain. Neuroscience, 77, 299318.CrossRefGoogle Scholar
Glass, M., Faull, R. L., and Dragunow, M. (1993). Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience, 56, 523527.Google Scholar
Guillozet-Bongaarts, A. L., Hyde, T. M., Dalley, R. A., et al. (2014). Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry, 19, 478485.Google Scholar
Herkenham, M., Lynn, A. B., Little, M. D., et al. (1990). Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA, 87, 19321936.Google Scholar
Hoehe, M. R., Caenazzo, L., Martinez, M. M., et al. (1991). Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6q14–q15. New Biol, 3, 880885.Google Scholar
Howlett, A. C., and Abood, M. E. (2017). CB1 and CB2 receptor pharmacology. Adv Pharmacol, 80, 169206.Google Scholar
Ishiguro, H., Horiuchi, Y., Ishikawa, M., et al. (2010). Brain cannabinoid CB2 receptor in schizophrenia. Biol Psychiatry, 67, 974982.Google Scholar
Jenko, K. J., Hirvonen, J., Henter, I. D., et al. (2012). Binding of a tritiated inverse agonist to cannabinoid CB1 receptors is increased in patients with schizophrenia. Schizophr Res, 141, 185188.Google Scholar
Katona, I., Urbán, G. M., Wallace, M., et al. (2006). Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci, 26, 56285637.Google Scholar
Koethe, D., Llenos, I. C., Dulay, J. R., et al. (2007). Expression of CB1 cannabinoid receptor in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression. J Neural Transm, 114, 10551063.Google Scholar
Mailleux, P., Parmentier, M., and Vanderhaeghen, J. J. (1992). Distribution of cannabinoid receptor messenger RNA in the human brain: An in situ hybridization histochemistry with oligonucleotides. Neurosci Lett, 143, 200204.Google Scholar
Marco, E. M., Granstrem, O., Moreno, E., et al. (2007). Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats. Eur J Pharmacol, 557, 3743.Google Scholar
Matsuda, L. A. (1997). Molecular aspects of cannabinoid receptors. Crit Rev Neurobiol, 11, 143166.Google Scholar
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., et al. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346, 561564.Google Scholar
Mechoulam, R., and Hanus, L. (2000). A historical overview of chemical research on cannabinoids. Chem Phys Lipids, 108, 113.Google Scholar
Morrison, P. D., and Murray, R. M. (2020). Cannabis points to the synaptic pathology of mental disorders: How aberrant synaptic components disrupt the highest psychological functions. Dialogues Clin Neurosci, 22, 251258.Google Scholar
Muguruza, C., Lehtonen, M., Aaltonen, N., et al. (2013). Quantification of endocannabinoids in postmortem brain of schizophrenic subjects. Schizophr Res, 148, 145150.CrossRefGoogle ScholarPubMed
Muguruza, C., Morentin, B., Meana, J. J., et al. (2019). Endocannabinoid system imbalance in the postmortem prefrontal cortex of subjects with schizophrenia. J Psychopharmacol, 33, 11321140.Google Scholar
Newell, K. A., Deng, C., and Huang, X. F. (2006). Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res, 172, 556560.Google Scholar
Nunez, E., Benito, C., Pazos, M. R., et al. (2004). Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: An immunohistochemical study. Synapse, 53, 208213.Google Scholar
Palkovits, M., Harvey-White, J., Liu, J., et al. (2008). Regional distribution and effects of postmortem delay on endocannabinoid content of the human brain. Neuroscience, 152, 10321039.Google Scholar
Pertwee, R. G. (2010). Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem, 17, 13601381.Google Scholar
Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. Nat Rev Neurosci, 4, 873884.CrossRefGoogle ScholarPubMed
Price, M. R., Baillie, G. L., Thomas, A., et al. (2005). Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol, 68, 14841495.CrossRefGoogle ScholarPubMed
Ryberg, E., Vu, H. K., Larsson, N., et al. (2005). Identification and characterisation of a novel splice variant of the human CB1 receptor. FEBS Lett, 579, 259264.Google Scholar
Schlicker, E., and Kathmann, M. (2001). Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci, 22, 565572.Google Scholar
Shire, D., Carillon, C., Kaghad, M., et al. (1995). An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem, 270, 37263731.Google Scholar
Stella, N. (2010). Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia, 58, 10171030.Google Scholar
Straiker, A., Wager-Miller, J., Hutchens, J., et al. (2012). Differential signalling in human cannabinoid CB1 receptors and their splice variants in autaptic hippocampal neurones. Br J Pharmacol, 165, 26602671.Google Scholar
Sundram, S., Copolov, D., and Dean, B. (2005). Clozapine decreases [3H] CP 55940 binding to the cannabinoid 1 receptor in the rat nucleus accumbens. Naunyn Schmiedebergs Arch Pharmacol, 371, 428433.Google Scholar
Tao, R., Li, C., Jaffe, A. E., et al. (2020). Cannabinoid receptor CNR1 expression and DNA methylation in human prefrontal cortex, hippocampus and caudate in brain development and schizophrenia. Transl Psychiatry, 10, 158.Google Scholar
Thune, J. J., Uylings, H. B. M., and Pakkenberg, B. (2001). No deficit in total number of neurons in the prefrontal cortex in schizophrenics. J Psychiatr Res, 35, 1521.Google Scholar
Uriguen, L., Garcia-Fuster, M. J., Callado, L. F., et al. (2009). Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: Effect of antipsychotic treatment. Psychopharmacology (Berl), 206, 313324.Google Scholar
Van Sickle, M. D., Duncan, M., Kingsley, P. J., et al. (2005). Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science, 310, 329332.Google Scholar
Vogt, B. A., Pandya, D. N., and Rosene, D. L. (1987). Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol, 262, 256270.Google Scholar
Volk, D. W., Eggan, S. M., Horti, A. G., et al. (2014). Reciprocal alterations in cortical cannabinoid receptor 1 binding relative to protein immunoreactivity and transcript levels in schizophrenia. Schizophr Res, 159, 124129.Google Scholar
Volk, D. W., Eggan, S. M., and Lewis, D. A. (2010). Alterations in metabotropic glutamate receptor 1α and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry, 167, 14891498.CrossRefGoogle ScholarPubMed
Volk, D. W., and Lewis, D. A. (2016). The role of endocannabinoid signaling in cortical inhibitory neuron dysfunction in schizophrenia. Biol Psychiatry, 79, 595603.Google Scholar
Volk, D. W., Siegel, B. I., Verrico, C. D., et al. (2013). Endocannabinoid metabolism in the prefrontal cortex in schizophrenia. Schizophr Res, 147, 5357.Google Scholar
Westlake, T. M., Howlett, A. C., Bonner, T. I., et al. (1994). Cannabinoid receptor binding and messenger RNA expression in human brain: An in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience, 63, 637652.Google Scholar
Wiley, J. L., Kendler, S. H., Burston, J. J., et al. (2008). Antipsychotic-induced alterations in CB1 receptor-mediated G-protein signaling and in vivo pharmacology in rats. Neuropharmacology, 55, 11831190.Google Scholar
Zavitsanou, K., Garrick, T., and Huang, X. F. (2004). Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 28, 355360.Google Scholar

References

Bailey, C. H., Giustetto, M., Huang, Y. Y., et al. (2000). Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat Rev Neurosci, 1, 1120.Google Scholar
Borgan, F., Laurikainen, H., Veronese, M., et al. (2019). In vivo availability of cannabinoid 1 receptor levels in patients with first-episode psychosis. JAMA Psychiatry, 76, 10741084.Google Scholar
Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical Networks. Science, 304, 19261929.Google Scholar
Carlsson, A. (2001). A half-century of neurotransmitter research: Impact on neurology and psychiatry. Nobel lecture. Biosci Rep, 21, 691710.Google Scholar
Ceccarini, J., De Hert, M., Van Winkel, R., et al. (2013). Increased ventral striatal CB1 receptor binding is related to negative symptoms in drug-free patients with schizophrenia. Neuroimage, 79, 304312.Google Scholar
Ceccarini, J., Kuepper, R., Kemels, D., et al. (2015). [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict Biol, 20, 357367.Google Scholar
Chevaleyre, V., Takahashi, K. A., and Castillo, P. E. (2006). Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci, 29, 3776.Google Scholar
Collingridge, G. L., and Bliss, T. V. P. (1995). Memories of NMDA receptors and LTP. Trends Neurosci, 18, 5456.Google Scholar
Cortes-Briones, J., Skosnik, P. D., Mathalon, D., et al. (2015). Δ9-THC disrupts gamma (γ)-band neural oscillations in humans. Neuropsychopharmacology, 40, 21242134.Google Scholar
D’Souza, D. C., Cortes-Briones, J. A., Ranganathan, M., et al. (2016). Rapid changes in CB1 receptor availability in cannabis dependent males after abstinence from cannabis. Biol Psychiatry Cogn Neurosci Neuroimaging, 1, 6067.Google ScholarPubMed
D’Souza, D. C., Perry, E., MacDougall, L., et al. (2004). The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology, 29, 15581572.Google Scholar
Dalton, V. S., Long, L. E., Weickert, C. S., et al. (2011). Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex. Neuropsychopharmacology, 36, 16201630.Google Scholar
De Marchi, N., De Petrocellis, L., Orlando, P., et al. (2003). Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis, 2, 5.Google Scholar
Dean, B., Sundram, S., Bradbury, R., et al. (2001). Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience, 103, 915.Google Scholar
DeFelipe, J. (2006). Brain plasticity and mental processes: Cajal again. Nat Rev Neurosci, 7, 811817.Google Scholar
Deng, C., Han, M., and Huang, X.-F. (2007). No changes in densities of cannabinoid receptors in the superior temporal gyrus in schizophrenia. Neurosci Bull, 23, 341347.Google Scholar
Desfossés, J., Stip, E., Bentaleb, L. A., et al. (2012). Plasma endocannabinoid alterations in individuals with substance use disorder are dependent on the ‘mirror effect’ of schizophrenia. Front Psychiatry, 3, 85.Google Scholar
Eggan, S. M., Hashimoto, T., and Lewis, D. A. (2008). Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. Arch Gen Psychiatry, 65, 772784.Google Scholar
Eggan, S. M., Stoyak, S. R., Verrico, C. D., et al. (2010). Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: Comparison of schizophrenia and major depressive disorder. Neuropsychopharmacology, 35, 20602071.Google Scholar
Engel, A. K., and Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci, 5, 1625.Google Scholar
Giuffrida, A., Leweke, F. M., Gerth, C. W., et al. (2004). Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology, 29, 21082114.CrossRefGoogle ScholarPubMed
Hillard, C. J. (2018). Circulating endocannabinoids: From whence do they come and where are they going? Neuropsychopharmacology, 43, 155172.Google Scholar
Hirvonen, J., Goodwin, R. S., Li, C.-T., et al. (2012). Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol Psychiatry, 17, 642649.Google Scholar
Ibarra-Lecue, I., Pilar-Cuéllar, F., Muguruza, C., et al. (2018). The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem Pharmacol, 157, 97107.CrossRefGoogle ScholarPubMed
Jenko, K. J., Hirvonen, J., Henter, I. D., et al. (2012). Binding of a tritiated inverse agonist to cannabinoid CB1 receptors is increased in patients with schizophrenia. Schizophr Res, 141, 185188.CrossRefGoogle ScholarPubMed
Kandel, E. R. (1998). A new intellectual framework for psychiatry. Am J Psychiatry, 155, 457469.Google Scholar
Katona, I., and Freund, T. F. (2012). Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci, 35, 529558.Google Scholar
Katz, B., and Miledi, R. (1970). Membrane noise produced by acetylcholine. Nature, 226, 962963.Google Scholar
Koethe, D., Giuffrida, A., Schreiber, D., et al. (2009). Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. Br J Psychiatry, 194, 371372.Google Scholar
Koethe, D., Llenos, I. C., Dulay, J. R., et al. (2007). Expression of CB1 cannabinoid receptor in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression. J Neural Transm (Vienna), 114, 10551063.Google Scholar
Koethe, D., Pahlisch, F., Hellmich, M., et al. (2019). Familial abnormalities of endocannabinoid signaling in schizophrenia. World J Biol Psychiatry, 20, 117125.Google Scholar
Kreitzer, A. C., and Malenka, R. C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature, 445, 643647.Google Scholar
Kucewicz, M. T., Tricklebank, M. D., Bogacz, R., et al. (2011). Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation. J Neurosci, 31, 1556015568.Google Scholar
Leweke, F. M., Giuffrida, A., Koethe, D., et al. (2007). Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: Impact of cannabis use. Schizophr Res, 94, 2936.Google Scholar
Leweke, F. M., Giuffrida, A., Wurster, U., et al. (1999). Elevated endogenous cannabinoids in schizophrenia. NeuroReport, 10, 16651669.Google Scholar
Lewis, D. A., Hashimoto, T., and Volk, D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci, 6, 312324.Google Scholar
Lisman, J. (2017). Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: Long-term potentiation, long-term depression, short-term potentiation and scaling. Phil Trans R Soc Lond B Biol Sci, 372, 20160260.Google Scholar
Mihov, Y. (2016). Positron emission tomography studies on cannabinoid receptor type 1 in schizophrenia. Biol Psychiatry, 79, e97e99.Google Scholar
Minichino, A., Senior, M., Brondino, N., et al. (2019). Measuring disturbance of the endocannabinoid system in psychosis: A systematic review and meta-analysis. JAMA Psychiatry, 76, 914923.Google Scholar
Morrison, P. D., Nottage, J., Stone, J. M., et al. (2011). Disruption of frontal θ coherence by Δ9-tetrahydrocannabinol is associated with positive psychotic symptoms. Neuropsychopharmacology, 36, 827836.CrossRefGoogle ScholarPubMed
Morrison, P. D., Taylor, D., and McGuire, P. (2019). The Maudsley Guidelines on Advanced Prescribing in Psychosis. Hoboken, NJ: Wiley.Google Scholar
Muguruza, C., Lehtonen, M., Aaltonen, N., et al. (2013). Quantification of endocannabinoids in postmortem brain of schizophrenic subjects. Schizophr Res, 148, 145150.Google Scholar
Newell, K. A., Deng, C., and Huang, X.-F. (2006). Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res, 172, 556560.Google Scholar
Nottage, J. F., Stone, J., Murray, R. M., et al. (2015). Delta-9-tetrahydrocannabinol, neural oscillations above 20 Hz and induced acute psychosis. Psychopharmacology (Berl), 232, 519528.Google Scholar
Pittman-Polletta, B. R., Kocsis, B., Vijayan, S., et al. (2015). Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry, 77, 10201030.Google Scholar
Potvin, S., Kouassi, E., Lipp, O., et al. (2008). Endogenous cannabinoids in patients with schizophrenia and substance use disorder during quetiapine therapy. J Psychopharmacol, 22, 262269.Google Scholar
Potvin, S., Mahrouche, L., Assaf, R., et al. (2020). Peripheral endogenous cannabinoid levels are increased in schizophrenia patients evaluated in a psychiatric emergency setting. Front Psychiatry, 11, 628.Google Scholar
Ranganathan, M., Cortes-Briones, J., Radhakrishnan, R., et al. (2016). Reduced brain cannabinoid receptor availability in schizophrenia. Biol Psychiatry, 79, 9971005.Google Scholar
Robbe, D., and Buzsáki, G. (2009). Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J Neurosci, 29, 1259712605.Google Scholar
Robbe, D., Montgomery, S. M., Thome, A., et al. (2006). Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat Neurosci, 9, 15261533.Google Scholar
Shen, W., Flajolet, M., Greengard, P., et al. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848851.Google Scholar
Sloan, M. E., Grant, C. W., Gowin, J. L., et al. (2019). Endocannabinoid signaling in psychiatric disorders: A review of positron emission tomography studies. Acta Pharmacol Sin, 40, 342350.Google Scholar
Stone, J. M., Morrison, P. D., Brugger, S., et al. (2012). Communication breakdown: Delta-9 tetrahydrocannabinol effects on pre-speech neural coherence. Mol Psychiatry, 17, 568569.Google Scholar
Uhlhaas, P. J., and Singer, W. (2015). Oscillations and neuronal dynamics in schizophrenia: The search for basic symptoms and translational opportunities. Biol Psychiatry, 77, 10011009.Google Scholar
Urigüen, L., García-Fuster, M. J., Callado, L. F., et al. (2009). Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: Effect of antipsychotic treatment. Psychopharmacology (Berl), 206, 313324.Google Scholar
Volk, D. W., Eggan, S. M., and Lewis, D. A. (2010). Alterations in metabotropic glutamate receptor 1α and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry, 167, 14891498.Google Scholar
Wang, D., Sun, X., Yan, J., et al. (2018). Alterations of eicosanoids and related mediators in patients with schizophrenia. J Psychiatr Res, 102, 168178.Google Scholar
Wilson, R. I., and Nicoll, R. A. (2001). Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature, 410, 588592.Google Scholar
Wong, D. F., Kuwabara, H., Horti, A. G., et al. (2010). Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage, 52, 15051513.Google Scholar
Xu, H., Perez, S., Cornil, A., et al. (2018). Dopamine-endocannabinoid interactions mediate spike-timing-dependent potentiation in the striatum. Nat Commun, 9, 4118.Google Scholar
Zavitsanou, K., Garrick, T., and Huang, X. F. (2004). Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 28, 355360.Google Scholar

References

Almeida, V., Levin, R., Peres, F. F., et al. (2013). Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test. Prog Neuropsychopharmacol Biol Psychiatry, 41, 3035.Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. Arlington: American Psychiatric Association.Google Scholar
Appiah-Kusi, E., Petros, N., Wilson, R., et al. (2020). Effects of short-term cannabidiol treatment on response to social stress in subjects at clinical high risk of developing psychosis. Psychopharmacology, 237, 11211130.Google Scholar
Bellack, A. S., Morrison, R. L., Wixted, J. T., et al. (1990). An analysis of social competence in schizophrenia. Br J Psychiatry, 156, 809818.Google Scholar
Bhattacharyya, S., Wilson, R., Appiah-Kusi, E., et al. (2018). Effect of cannabidiol on medial temporal, midbrain, and striatal dysfunction in people at clinical high risk of psychosis: A randomized clinical trial. JAMA Psychiatry, 75, 11071117.Google Scholar
Boggs, D. L., Surti, T., Gupta, A., et al. (2018). The effects of cannabidiol (CBD) on cognition and symptoms in outpatients with chronic schizophrenia: A randomized placebo controlled trial. Psychopharmacology (Berl), 235, 19231932.Google Scholar
Bowie, C. R., Best, M. W., Depp, C., et al. (2018). Cognitive and functional deficits in bipolar disorder and schizophrenia as a function of the presence and history of psychosis. Bipolar Disord, 20, 604613.Google Scholar
Braff, D., Stone, C., Callaway, E., et al. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology, 15, 339343.Google Scholar
Braff, D. L., Geyer, M. A., and Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl), 156, 234258.Google Scholar
Bucci, P., Galderisi, S., Mucci, A., et al. (2018). Premorbid academic and social functioning in patients with schizophrenia and its associations with negative symptoms and cognition. Acta Psychiatr Scand, 138, 253266.Google Scholar
Charlson, F. J., Ferrari, A. J., Santomauro, D. F., et al. (2018). Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophr Bull, 44, 11951203.Google Scholar
Deiana, S., Watanabe, A., Yamasaki, Y., et al. (2015). MK-801-induced deficits in social recognition in rats: Reversal by aripiprazole, but not olanzapine, risperidone, or cannabidiol. Behav Pharmacol, 26, 748765.Google Scholar
Díaz-Caneja, C. M., Cervilla, J. A., Haro, J. M., et al. (2019). Cognition and functionality in delusional disorder. Eur Psychiatry, 55, 5260.Google Scholar
Fadda, P., Robinson, L., Fratta, W., et al. (2004). Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats. Neuropharmacology, 47, 11701179.Google Scholar
Fadda, P., Robinson, L., Fratta, W., et al. (2006). Scopolamine and MK801-induced working memory deficits in rats are not reversed by CBD-rich cannabis extracts. Behav Brain Res, 168, 307311.Google Scholar
Ffytche, D. H., and Aarsland, D. (2017). Psychosis in Parkinson’s disease. Int Rev Neurobiol, 133, 585622.Google Scholar
Gomes, F. V., Issy, A. C., Ferreira, F. R., et al. (2015a). Cannabidiol attenuates sensorimotor gating disruption and molecular changes induced by chronic antagonism of NMDA receptors in mice. Int J Neuropsychopharmacol, 18, pyu041.Google Scholar
Gomes, F. V., Llorente, R., Del Bel, E. A., et al. (2015b). Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol. Schizophr Res, 164, 155163.Google Scholar
Gururajan, A., Taylor, D. A., and Malone, D. T. (2011). Effect of cannabidiol in a MK-801-rodent model of aspects of schizophrenia. Behav Brain Res, 222, 299308.Google Scholar
Gururajan, A., Taylor, D. A., and Malone, D. T. (2012). Cannabidiol and clozapine reverse MK-801-induced deficits in social interaction and hyperactivity in Sprague-Dawley rats. J Psychopharmacol, 26, 13171332.Google Scholar
Hallak, J. E., Machado-De-Sousa, J. P., Crippa, J. A., et al. (2010). Performance of schizophrenic patients in the Stroop Color Word Test and electrodermal responsiveness after acute administration of cannabidiol (CBD). Rev Bras Psiquiatr, 32, 5661.Google Scholar
Kahn, R. S., and Keefe, R. S. E. (2013). Schizophrenia is a cognitive illness: Time for a change in focus. JAMA Psychiatry, 70, 11071112.Google Scholar
Kirby, B. P. (2016). Animal models of psychotic disorders: Dimensional approach modeling negative symptoms. In Pletnikov, M. V., and Waddington, J. L. (eds.) Handbook of Behavioral Neuroscience (pp. 5567). London: Elsevier.Google Scholar
Klein, C., Karanges, E., Spiro, A., et al. (2011). Cannabidiol potentiates delta-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats. Psychopharmacology (Berl), 218, 443457.Google Scholar
Kozela, E., Krawczyk, M., Kos, T., et al. (2019). Cannabidiol improves cognitive impairment and reverses cortical transcriptional changes induced by ketamine, in schizophrenia-like model in rats. Mol Neurobiol, 57, 17331747.Google Scholar
Leucht, S., Cipriani, A., Spineli, L., et al. (2013). Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. Lancet, 382, 951962.Google Scholar
Levin, R., Peres, F. F., Almeida, V., et al. (2014). Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: The SHR strain. Front Pharmacol, 5, 10.Google Scholar
Lewandowski, K. E., Cohen, B. M., and Ongur, D. (2011). Evolution of neuropsychological dysfunction during the course of schizophrenia and bipolar disorder. Psychol Med, 41, 225241.Google Scholar
Leweke, F. M., Mueller, J. K., Lange, B., et al. (2016). Therapeutic potential of cannabinoids in psychosis. Biol Psychiatry, 79, 604612.Google Scholar
Leweke, F. M., Odorfer, T. M., and Bumb, J. M. (2012a). Medical needs in the treatment of psychotic disorders. Handb Exp Pharmacol, 212, 165185.Google Scholar
Leweke, F. M., Piomelli, D., Pahlisch, F., et al. (2012b). Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry, 2, e94.CrossRefGoogle ScholarPubMed
Leweke, F. M., Rohleder, C., Gerth, C. W., et al. (2021). Cannabidiol and amisulpride improve cognition in acute schizophrenia in an explorative, double-blind, active-controlled, randomized clinical trial. Front Pharmacol, 12, 614811.Google Scholar
Long, L. E., Chesworth, R., Huang, X. F., et al. (2010). A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int J Neuropsychopharmacol, 13, 861876.Google Scholar
Long, L. E., Chesworth, R., Huang, X. F., et al. (2012). Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice. PLoS ONE, 7, e34129.CrossRefGoogle ScholarPubMed
Long, L. E., Malone, D. T., and Taylor, D. A. (2006). Cannabidiol reverses MK-801-induced disruption of prepulse inhibition in mice. Neuropsychopharmacology, 31, 795803.Google Scholar
Mack, J., Rabins, P., Anderson, K., et al. (2012). Prevalence of psychotic symptoms in a community-based Parkinson disease sample. Am J Geriatr Psychiatry, 20, 123132.Google Scholar
Makiol, C., and Kluge, M. (2019). Remission of severe, treatment-resistant schizophrenia following adjunctive cannabidiol. Aust NZ J Psychiatry, 53, 262.Google Scholar
Malone, D. T., Jongejan, D., and Taylor, D. A. (2009). Cannabidiol reverses the reduction in social interaction produced by low dose Delta(9)-tetrahydrocannabinol in rats. Pharmacol Biochem Behav, 93, 9196.Google Scholar
McGuire, P., Robson, P., Cubala, W. J., et al. (2018). Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: A multicenter randomized controlled trial. Am J Psychiatry, 175, 225231.Google Scholar
Moreira, F. A., and Guimaraes, F. S. (2005). Cannabidiol inhibits the hyperlocomotion induced by psychotomimetic drugs in mice. Eur J Pharmacol, 512, 199205.Google Scholar
Moreno-Küstner, B., Martín, C., and Pastor, L. (2018). Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS ONE, 13, e0195687.Google Scholar
Mueller, J. K., Rohleder, C., and Leweke, F. M. (2016). What is the promise of nicotinergic compounds in schizophrenia treatment? Future Med Chem, 8, 20092012.Google Scholar
Murphy, M., Mills, S., Winstone, J., et al. (2017). Chronic adolescent delta(9)-tetrahydrocannabinol treatment of male mice leads to long-term cognitive and behavioral dysfunction, which are prevented by concurrent cannabidiol treatment. Cannabis Cannabinoid Res, 2, 235246.Google Scholar
Nikolaides, A., Miess, S., Auvera, I., et al. (2016). Restricted attention to social cues in schizophrenia patients. Eur Arch Psychiatry Clin Neurosci, 266, 649661.Google Scholar
Osborne, A. L., Solowij, N., Babic, I., et al. (2017). Improved social interaction, recognition and working memory with cannabidiol treatment in a prenatal infection (poly I:C) rat model. Neuropsychopharmacology, 42, 14471457.Google Scholar
Osborne, A. L., Solowij, N., Babic, I., et al. (2019). Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun, 81, 574587.Google Scholar
Pedrazzi, J. F., Issy, A. C., Gomes, F. V., et al. (2015). Cannabidiol effects in the prepulse inhibition disruption induced by amphetamine. Psychopharmacology (Berl), 232, 30573065.Google Scholar
Peres, F. F., Diana, M. C., Levin, R., et al. (2018). Cannabidiol administered during peri-adolescence prevents behavioral abnormalities in an animal model of schizophrenia. Front Pharmacol, 9, 901.CrossRefGoogle Scholar
Peres, F. F., Diana, M. C., Suiama, M. A., et al. (2016). Peripubertal treatment with cannabidiol prevents the emergence of psychosis in an animal model of schizophrenia. Schizophr Res, 172, 220221.Google Scholar
Rohleder, C., Muller, J. K., Lange, B., et al. (2016a). Cannabidiol as a potential new type of an antipsychotic. A critical review of the evidence. Front Pharmacol, 7, 422.Google Scholar
Rohleder, C., Wiedermann, D., Neumaier, B., et al. (2016b). The functional networks of prepulse inhibition: Neuronal connectivity analysis based on FDG-PET in awake and unrestrained rats. Front Behav Neurosci, 10, 148.Google Scholar
Samara, M. T., Nikolakopoulou, A., Salanti, G., et al. (2019). How many patients with schizophrenia do not respond to antipsychotic drugs in the short term? An analysis based on individual patient data from randomized controlled trials. Schizophr Bull, 45, 639646.Google Scholar
Seidman, L. J., Shapiro, D. I., Stone, W. S., et al. (2016). Association of neurocognition with transition to psychosis: Baseline functioning in the second phase of the North American prodrome longitudinal study. JAMA Psychiatry, 73, 12391248.Google Scholar
Sheffield, J. M., Karcher, N. R., and Barch, D. M. (2018). Cognitive deficits in psychotic disorders: A lifespan perspective. Neuropsychol Rev, 28, 509533.Google Scholar
Stark, T., Ruda-Kucerova, J., Iannotti, F. A., et al. (2019). Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology, 146, 212221.Google Scholar
Swerdlow, N. R., Light, G. A., Thomas, M. L., et al. (2018). Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophr Res, 198, 615.Google Scholar
Wong, A. H. C., and Van Tol, H. H. M. (2003). Schizophrenia: From phenomenology to neurobiology. Neurosci Biobehav Rev, 27, 269306.Google Scholar
Wright, M. J., Jr., Vandewater, S. A., and Taffe, M. A. (2013). Cannabidiol attenuates deficits of visuospatial associative memory induced by Delta(9) tetrahydrocannabinol. Br J Pharmacol, 170, 13651373.Google Scholar
Zuardi, A. W., Crippa, J. A., Hallak, J. E., et al. (2009). Cannabidiol for the treatment of psychosis in Parkinson’s disease. J Psychopharmacol, 23, 979983.Google Scholar
Zuardi, A. W., Hallak, J. E., Dursun, S. M., et al. (2006). Cannabidiol monotherapy for treatment-resistant schizophrenia. J Psychopharmacol, 20, 683686.CrossRefGoogle ScholarPubMed
Zuardi, A. W., Morais, S. L., Guimarães, F. S., et al. (1995). Antipsychotic effect of cannabidiol. J Clin Psychiatry, 56, 485486.Google Scholar
Zuardi, A. W., Rodrigues, J. A., and Cunha, J. M. (1991). Effects of cannabidiol in animal models predictive of antipsychotic activity. Psychopharmacology (Berl), 104, 260264.Google Scholar

References

Abdellaoui, A., Smit, D. J. A., van den Brink, W., et al. (2021). Genomic relationships across psychiatric disorders including substance use disorders. Drug Alcohol Depend, 220, 108535.Google Scholar
Andreasen, N. C. (1989). The American concept of schizophrenia. Schizophr Bull, 15, 519531.Google Scholar
Andréasson, S., Allbeck, P., Engström, A., et al. (1987). Cannabis and schizophrenia: A longitudinal study of Swedish conscripts. Lancet, 330, 14831486.Google Scholar
Arseneault, L., Cannon, M., Witton, J., et al. (2004). Causal association between cannabis and psychosis: Examination of the evidence. Br J Psychiatry, 184, 110117.Google Scholar
Asarnow, R. F., Nuechterlein, K. H., Fogelson, D., et al. (2001). Schizophrenia and schizophrenia-spectrum personality disorders in the first-degree relatives of children with schizophrenia: The UCLA family study. Arch Gen Psychiatry, 58, 581588.Google Scholar
Baron, M., Gruen, R., Rainer, J. D., et al. (1985). A family study of schizophrenic and normal control probands: Implications for the spectrum concept of schizophrenia. Am J Psychiatry, 142, 447455.Google Scholar
Boydell, J., Dean, K., Dutta, R., et al. (2007). A comparison of symptoms and family history in schizophrenia with and without prior cannabis use: Implications for the concept of cannabis psychosis. Schizophr Res, 93, 203210.Google Scholar
Bulik-Sullivan, B. K., Finucane, H. K., Anttila, V., et al. (2015a). An atlas of genetic correlations across human diseases and traits. Nat Genet, 47, 1236.Google Scholar
Bulik-Sullivan, B. K., Loh, P.-R., et al. (2015b). LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet, 47, 291295.Google Scholar
Carey, C. E., Agrawal, A., Bucholz, K. K., et al. (2016). Associations between polygenic risk for psychiatric disorders and substance involvement. Front Genet, 7, 149.Google Scholar
Degenhardt, L., and Hall, W. (2006). Is cannabis use a contributory cause of psychosis? Can J Psychiatry, 51, 556565.Google Scholar
Demontis, D., Rajagopal, V. M., Thorgeirsson, T. E., et al. (2019). Genome-wide association study implicates CHRNA2 in cannabis use disorder. Nat Neurosci, 22, 10661074.Google Scholar
Distel, M. A., Vink, J. M., Bartels, M., et al. (2011). Age moderates non‐genetic influences on the initiation of cannabis use: A twin‐sibling study in Dutch adolescents and young adults. Addiction, 106, 16581666.Google Scholar
Ellingson, J. M., Ross, J. M., Winiger, E., et al. (2021). Familial factors may not explain the effect of moderate‐to‐heavy cannabis use on cognitive functioning in adolescents: A sibling‐comparison study. Addiction, 116, 833844.Google Scholar
Di Forti, M., Quattrone, D., Freeman, T. P., et al. (2019a). The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): A multicentre case-control study. Lancet Psychiatry, 6, 427436.Google Scholar
Di Forti, M., Sallis, H., Allegri, F., et al. (2014). Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users. Schizophr Bull, 40, 15091517.Google Scholar
Di Forti, M., Wu-Choi, B., Quattrone, D., et al. (2019b). The independent and combined influence of schizophrenia polygenic risk score and heavy cannabis use on risk for psychotic disorder: A case-control analysis from the EUGEI study. bioRxiv, 844803.Google Scholar
Gage, S. H., Hickman, M., and Zammit, S. (2016). Association between cannabis and psychosis: Epidemiologic evidence. Biol Psychiatry, 79, 549556.Google Scholar
Gage, S. H., Jones, H. J., Burgess, S., et al. (2017). Assessing causality in associations between cannabis use and schizophrenia risk: A two-sample Mendelian randomization study. Psychol Med, 47, 971980.Google Scholar
Giordano, G. N., Ohlsson, H., Sundquist, K., et al. (2015). The association between cannabis abuse and subsequent schizophrenia: A Swedish national co-relative control study. Psychol Med, 45, 407414.Google Scholar
Hall, W., Stjepanović, D., Caulkins, J., et al. (2019). Public health implications of legalising the production and sale of cannabis for medicinal and recreational use. Lancet, 394, 15801590.Google Scholar
Henquet, C., Murray, R., Linszen, D., et al. (2005). The environment and schizophrenia: The role of cannabis use. Schizophr Bull, 31, 608612.Google Scholar
Hjorthøj, C., Uddin, M. J., Wimberley, T., et al. (2021). No evidence of associations between genetic liability for schizophrenia and development of cannabis use disorder. Psychol Med, 51, 479484.Google Scholar
Johnson, E. C., Demontis, D., Thorgeirsson, T. E., et al. (2020). A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry, 7, 10321045.Google Scholar
Johnson, E. C., Hatoum, A. S., Deak, J. D., et al. (2021). The relationship between cannabis and schizophrenia: A genetically informed perspective. Addiction, 116, 32273234.Google Scholar
Karcher, N. R., Barch, D. M., Demers, C. H., et al. (2019). Genetic predisposition vs individual-specific processes in the association between psychotic-like experiences and cannabis use. JAMA Psychiatry, 76, 8794.Google Scholar
Kendler, K. S., McGuire, M., Gruenberg, A. M., et al. (1993). The Roscommon Family Study: III. Schizophrenia-related personality disorders in relatives. Arch Gen Psychiatry, 50, 781788.Google Scholar
Lynskey, M. T., Heath, A. C., Bucholz, K. K., et al. (2003). Escalation of drug use in early-onset cannabis users vs co-twin controls. JAMA, 289, 427433.Google Scholar
Maier, W., Lichtermann, D., Minges, J., et al. (1993). Continuity and discontinuity of affective disorders and schizophrenia: Results of a controlled family study. Arch Gen Psychiatry, 50, 871883.Google Scholar
Marconi, A., Di Forti, M., Lewis, C. M., et al. (2016). Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull, 42, 12621269.Google Scholar
McGrath, J., Welham, J., Scott, J., et al. (2010). Association between cannabis use and psychosis-related outcomes using sibling pair analysis in a cohort of young adults. Arch Gen Psychiatry, 67, 440447.Google Scholar
McGuire, P. K., Jones, P., Harvey, I., et al. (1995). Morbid risk of schizophrenia for relatives of patients with cannabis-associated psychosis. Schizophr Res, 15, 277281.Google Scholar
Merikangas, K. R., Li, J. J., Stipelman, B., et al. (2009). The familial aggregation of cannabis use disorders. Addiction, 104, 622629.Google Scholar
Nesvåg, R., Reichborn-Kjennerud, T., Gillespie, N. A., et al. (2017). Genetic and environmental contributions to the association between cannabis use and psychotic-like experiences in young adult twins. Schizophr Bull, 43, 644653.Google Scholar
O’Connor, L. J., and Price, A. L. (2018). Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat Genet, 50, 17281734.Google Scholar
van Os, J., Bak, M., Hanssen, M., et al. (2002). Cannabis use and psychosis: A longitudinal population-based study. Am J Epidemiol, 156, 319327.Google Scholar
Pasman, J. A., Verweij, K. J. H., Gerring, Z., et al. (2018). GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat Neurosci, 21, 11611170.Google Scholar
Power, R. A., Verweij, K. J., Zuhair, M., et al. (2014). Genetic predisposition to schizophrenia associated with increased use of cannabis. Mol Psychiatry, 19, 1201.Google Scholar
Proal, A. C., Fleming, J., Galvez-Buccollini, J. A., et al. (2014). A controlled family study of cannabis users with and without psychosis. Schizophr Res, 152, 283288.Google Scholar
Reginsson, G. W., Ingason, A., Euesden, J., et al. (2018). Polygenic risk scores for schizophrenia and bipolar disorder associate with addiction. Addict Biol, 23, 485492.Google Scholar
Saha, S., Chant, D., Welham, J., et al. (2005). A systematic review of the prevalence of schizophrenia. PLoS Med, 2, e141.Google Scholar
Vaucher, J., Keating, B. J., Lasserre, A. M., et al. (2017). Cannabis use and risk of schizophrenia: A Mendelian randomization study. Mol Psychiatry, 23, 1287.Google Scholar
Veling, W., Mackenbach, J. P., van Os, J., et al. (2008). Cannabis use and genetic predisposition for schizophrenia: A case-control study. Psychol Med, 38, 12511256.Google Scholar
Verweij, K. J. H., Abdellaoui, A., Nivard, M. G., et al. (2017). Genetic association between schizophrenia and cannabis use. Drug Alcohol Depend, 171, 117121.Google Scholar
Vitaro, F., Brendgen, M., and Arseneault, L. (2009). The discordant MZ-twin method: One step closer to the holy grail of causality. Int J Behav Dev, 33, 376382.Google Scholar
Yung, A. R., Nelson, B., Baker, K., et al. (2009). Psychotic-like experiences in a community sample of adolescents: Implications for the continuum model of psychosis and prediction of schizophrenia. Aust NZ J Psychiatry, 43, 118128.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×